JPH0949209A - Vibration isolation method of bridge and construction of vibration isolation - Google Patents

Vibration isolation method of bridge and construction of vibration isolation

Info

Publication number
JPH0949209A
JPH0949209A JP20087495A JP20087495A JPH0949209A JP H0949209 A JPH0949209 A JP H0949209A JP 20087495 A JP20087495 A JP 20087495A JP 20087495 A JP20087495 A JP 20087495A JP H0949209 A JPH0949209 A JP H0949209A
Authority
JP
Japan
Prior art keywords
girder
damper member
bridge
abutment
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20087495A
Other languages
Japanese (ja)
Inventor
Hisaaki Otsuka
久哲 大塚
Shigeki Unjiyou
茂樹 運上
Hidetaka Mukai
秀毅 向
Michio Sugimoto
三千雄 杉本
Taku Hirai
卓 平井
Kazuhiko Suzuki
一彦 鈴木
Morio Seishiyou
守雄 聖生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOBOKU KENKYU CENTER
Minister for Public Works for State of New South Wales
Nippon Steel Corp
Takenaka Doboku Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
DOBOKU KENKYU CENTER
Minister for Public Works for State of New South Wales
Nippon Steel Corp
Public Works Research Institute Ministry of Construction
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOBOKU KENKYU CENTER, Minister for Public Works for State of New South Wales, Nippon Steel Corp, Public Works Research Institute Ministry of Construction, Takenaka Doboku Co Ltd filed Critical DOBOKU KENKYU CENTER
Priority to JP20087495A priority Critical patent/JPH0949209A/en
Publication of JPH0949209A publication Critical patent/JPH0949209A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower vibration energy by erecting the basic section of a damper member of ultra-low yield point steel, etc., on an abutment, etc., connecting the upper part thereof to a girder, and bearing vertical load of the girder on a movable bearing provided on the abutment, etc. SOLUTION: A steel vessel type stopper contraction 23 forming an inward thick flange part forming an opening edge of the upper end as a stopper is embedded into concrete forming an abutment A. A bar-shaped damper member 4 formed of ultra-low yield point steel is vertically erected at a position sharing the center line of the stopper construction 2 is a hollow section thereof while keeping a clearance in a specific size, and a fixed plate 5 of the basic section is fixed with an anchor bolt 6. A bearing pin 8 is inserted into a pin hole 7 formed in a long slot transferring no axial force influenced by thermal deformation on the upper end of the damper member 4 at a right angle to the bridge axis and, at the same time, both ends of the bearing pin 8 is fixed to a girder B borne on the abutment A through a movable bearing 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、橋梁の桁の地震
時の振動を減衰し、桁の水平変位が過大にならないよう
に抑制するため実施される免震方法及び免震構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation method and a seismic isolation structure implemented for damping vibrations of bridge girders during an earthquake and suppressing horizontal displacement of girders from becoming excessive.

【0002】[0002]

【従来の技術】図9のように橋台Aと橋脚Bとで桁Cを
支持する構成の橋梁において、桁の免震方法又は免震構
造としては、従来、薄い鉄板とゴムシートとを交互に重
ね合わせ接着して一体化した公知の積層ゴムをアイソレ
ータ(可動支承)に使用して桁を水平変位可能に支持さ
せるとともに、前記積層ゴムの中心部にダンパー部材と
して鉛棒を垂直に組み込んだ支持機構Dが一般的に実施
されている。
2. Description of the Related Art In a bridge having a structure of supporting a girder C between an abutment A and a pier B as shown in FIG. 9, as a seismic isolation method or structure of the girder, conventionally, thin iron plates and rubber sheets are alternately used. A well-known laminated rubber laminated and bonded together is used as an isolator (movable bearing) to support the girder so that it can be displaced horizontally, and a lead rod is vertically installed as a damper member at the center of the laminated rubber. Mechanism D is commonly implemented.

【0003】[0003]

【発明が解決しようとする課題】橋梁が地震を受けた場
合、地震波は橋脚又は橋台から桁へ入り、大きく増幅さ
れる。例えば橋脚の基部で300ガルの地震エネルギ
は、桁に入ると1000ガルにも増幅されることが知ら
れている。その結果、大重量の桁の水平振動、とりわけ
過大な水平変位によって橋脚や橋台が破壊され、落橋な
どの被害が発生することがある。
When a bridge receives an earthquake, seismic waves enter the girder from the pier or abutment and are greatly amplified. For example, it is known that seismic energy of 300 gal at the base of a pier is amplified to 1000 gal when it enters the girder. As a result, horizontal vibrations of heavy girders, especially excessive horizontal displacement, may destroy piers and abutments, resulting in damage such as falling bridges.

【0004】従来の積層ゴムをアイソレータ(可動支
承)として用い、ダンパー部材として鉛棒を組み込んだ
支持機構による免震方法又は免震構造は、それなりの作
用、効果を奏しているが、大地震を受けた場合に桁の過
大な水平変位を抑制する機能に乏しく、落橋などの被害
を未然に防止することは至難であった。従って、本発明
の目的は、支持機構を改良して、橋梁の桁の地震時の振
動を低減すると共に、大地震時における桁の過大な水平
変位を抑制して落橋などの被害を未然に防止することで
ある。
The conventional base isolation method or structure using a laminated rubber as an isolator (movable support) and a lead rod incorporated as a damper member has some actions and effects, but a large earthquake occurs. It was difficult to prevent damage such as falling bridges because it lacked the function of suppressing excessive horizontal displacement of the girder when it was received. Therefore, the object of the present invention is to improve the support mechanism to reduce the vibration of the bridge girder at the time of an earthquake, and to prevent the excessive horizontal displacement of the girder at the time of a large earthquake to prevent damage such as bridge collapse. It is to be.

【0005】本発明の究極の目的は、超低降伏点鋼等に
特有の履歴減衰を利用して、桁に入った振動エネルギを
低減すると共に、大地震によって桁の水平変位がある大
きさ(許容限度の大きさ)に達すると、それ以上の過大
な変位を抑制すると共に減衰性能をも向上させる橋梁の
免震方法及び免震構造を提供することにある。
The ultimate object of the present invention is to reduce the vibration energy entering the girder by utilizing the hysteresis damping peculiar to ultra-low yield point steel, etc. It is intended to provide a seismic isolation method and a seismic isolation structure for a bridge that suppresses an excessive displacement when the allowable limit is reached) and also improves damping performance.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、請求項1の発明は、橋梁の桁とこれを
支持する橋脚又は橋台との間における免震方法であっ
て、降伏応力が低く伸び性能に優れた超低降伏点鋼など
で形成した棒状のダンパー部材の基部を橋脚又は橋台に
固定して垂直に立て、該ダンパー部材の上部を水平力の
み伝達し鉛直荷重は伝達しない構造で桁と連結するこ
と、前記桁の鉛直荷重は橋脚又は橋台に設置した可動支
承で支持させること、をそれぞれ特徴とする。
As a means for solving the above-mentioned problems, the invention of claim 1 is a seismic isolation method between a bridge girder and a bridge pier or abutment supporting the bridge girder, and is characterized by yielding. The base of a rod-shaped damper member made of ultra-low yield point steel with low stress and excellent elongation performance is fixed vertically on a bridge pier or abutment, and the upper part of the damper member transmits only horizontal force and vertical load is transmitted. The structure is not connected to the girder, and the vertical load of the girder is supported by a movable bearing installed on the pier or abutment.

【0007】請求項2の発明は、同じく橋梁の桁とこれ
を支持する橋脚又は橋台との間における免震方法であっ
て、降伏応力が低く伸び性能に優れた超低降伏点鋼など
で形成した棒状のダンパー部材の基部を橋脚又は橋台に
固定して垂直に立て、該ダンパー部材の上部を水平力の
み伝達し鉛直荷重は伝達しない構造で桁と連結するこ
と、前記ダンパー部材の撓み変形が一定大きさになると
当該ダンパー部材の垂直方向の中間部位に当接し支持す
るストッパを設けること、前記桁の鉛直荷重は橋脚又は
橋台に設置した可動支承で支持させること、をそれぞれ
特徴とする。
A second aspect of the present invention is also a seismic isolation method between a girder of a bridge and a pier or abutment supporting the girder, which is formed of an ultra-low yield point steel having a low yield stress and an excellent elongation performance. The base of the rod-shaped damper member is fixed to a pier or abutment and stands vertically, and the upper part of the damper member is connected to the girder in a structure that transmits only horizontal force and does not transmit vertical load, and the bending deformation of the damper member is When the size of the damper member is constant, a stopper for contacting and supporting an intermediate portion of the damper member in the vertical direction is provided, and the vertical load of the girder is supported by a movable bearing installed on a pier or abutment.

【0008】次に、請求項3の発明は、橋梁の桁とこれ
を支持する橋脚又は橋台との間における免震構造であっ
て、降伏応力が低く伸び性能に優れた超低降伏点鋼など
で形成した棒状のダンパー部材がその基部を橋脚又は橋
台に固定して垂直に立てられ、該ダンパー部材の上部が
水平力のみ伝達し鉛直荷重は伝達しない構造で桁と連結
されていること、前記桁はその鉛直荷重を支持し水平方
向の動きは拘束しない可動支承で橋脚又は橋台上に支持
されていること、をそれぞれ特徴とする。
Next, an invention of claim 3 is a seismic isolation structure between a bridge girder and a bridge pier or abutment supporting the bridge girder, and has an ultra-low yield point steel having a low yield stress and an excellent elongation performance. The rod-shaped damper member formed in 1. is vertically erected with its base fixed to a pier or abutment, and the upper part of the damper member is connected to the girder in a structure that transmits only horizontal force and does not transmit vertical load, Each girder is characterized by being supported on a bridge pier or abutment by a movable bearing that supports its vertical load and does not restrain horizontal movement.

【0009】請求項4の発明は、同じく橋梁の桁とこれ
を支持する橋脚又は橋台との間における免震構造であっ
て、降伏応力が低く伸び性能に優れた超低降伏点鋼など
で形成した棒状のダンパー部材がその基部を橋脚又は橋
台に固定して垂直に立てられ、該ダンパー部材の上部は
水平力のみ伝達し鉛直荷重は伝達しない構造で桁と連結
されていること、前記ダンパー部材の垂直方向の中間部
位に、当該ダンパー部材の撓み変形が一定大きさになる
と支持するストッパが、橋脚又は橋台に固定して設置さ
れていること、前記桁はその鉛直荷重を支持し水平方向
の動きは拘束しない可動支承で橋脚又は橋台上に支持さ
れていること、をそれぞれ特徴とする。
A fourth aspect of the present invention is also a seismic isolation structure between a girder of a bridge and a pier or abutment supporting the girder, which is formed of an ultra low yield point steel having a low yield stress and an excellent elongation performance. The rod-shaped damper member is vertically erected with its base fixed to a bridge pier or abutment, and the upper portion of the damper member is connected to the girder in a structure that transmits only horizontal force but not vertical load. A stopper that supports when the flexural deformation of the damper member reaches a certain amount is fixedly installed at the bridge pier or abutment at an intermediate portion in the vertical direction of the girder. Each is characterized by being supported on a pier or abutment by a movable bearing that does not restrain movement.

【0010】上記請求項1又は2又は3又は4にそれぞ
れ記載したダンパー部材は、超低降伏点鋼、又は極低降
伏点鋼、又は鉛合金、又は純鉄若しくはこれらに類似の
材質である。上記請求項3又は4に記載した、ダンパー
部材の上部と桁との連結構造は、桁又はダンパー部材に
桁荷重若しくはダンパー部材の熱変形の影響を受けない
長さのピン孔が垂直方向に長く設けられ、前記ピン孔に
水平力のみ伝達する支持ピンを水平方向に通して連結さ
れていることを特徴とする。
The damper member described in claim 1 or 2 or 3 or 4 is made of ultra-low yield point steel, ultra-low yield point steel, lead alloy, pure iron or a material similar thereto. In the connecting structure of the upper part of the damper member and the girder described in claim 3 or 4, the girder or the damper member has a vertically long pin hole which is not affected by a girder load or thermal deformation of the damper member. A support pin that is provided and that transmits only a horizontal force is connected to the pin hole in a horizontal direction.

【0011】上記請求項3又は4に記載した、ダンパー
部材の上部と桁との連結構造は、桁に桁荷重若しくはダ
ンパー部材の熱変形の影響を受けない長さの孔が垂直方
向に長く設けられ、前記孔にダンパー部材の上部が通さ
れ水平力のみ伝達可能に連結されていることを特徴とす
る。上記請求項2又は4に記載したストッパは、ダンパ
ー部材の中間部位の外周を包囲する水平な構造材、又は
ダンパー部材の内部の軸方向に基部から中間部位に届く
長さで同心配置に収納された棒状の構造材で構成されて
いる。
In the connecting structure between the upper part of the damper member and the girder described in claim 3 or 4, the girder is provided with a long hole in the vertical direction which is not affected by the girder load or thermal deformation of the damper member. The upper part of the damper member is passed through the hole and connected so that only horizontal force can be transmitted. The stopper according to claim 2 or 4 is accommodated in a horizontal structure that surrounds the outer periphery of the intermediate portion of the damper member, or is concentrically arranged with a length that reaches the intermediate portion from the base in the axial direction inside the damper member. It is composed of a rod-shaped structural material.

【0012】前記ダンパー部材の中間部位の外周を包囲
する水平なストッパは、橋脚又は橋台を形成するコンク
リート中に埋め込まれ固定されている。
A horizontal stopper surrounding the outer periphery of the intermediate portion of the damper member is embedded and fixed in concrete forming a bridge pier or abutment.

【0013】[0013]

【発明の実施の形態】本発明の免震方法又は免震構造
は、降伏応力が低く伸び性能に優れた超低降伏点鋼など
で形成した棒状のダンパー部材の基部を橋脚又は橋台に
固定して垂直に立て、該ダンパー部材の上部を水平力の
み伝達し鉛直荷重は伝達しない構造で桁と連結し、前記
桁の鉛直荷重は橋脚又は橋台に設置した可動支承で支持
させる形態、又は、降伏応力が低く伸び性能に優れた超
低降伏点鋼などで形成した棒状のダンパー部材の基部を
橋脚又は橋台に固定して垂直に立て、該ダンパー部材の
上部を水平力のみ伝達し鉛直荷重は伝達しない構造で桁
と連結し、前記ダンパー部材の撓み変形が一定大きさに
なると当該ダンパー部材の垂直方向の中間部位を支持す
るストッパを設け、前記桁の鉛直荷重は橋脚又は橋台に
設置した可動支承で支持させる形態でそれぞれ実施され
る。従って、橋脚又は橋台の上に可動支承で支持された
桁は、水平方向への変位は可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The seismic isolation method or seismic isolation structure of the present invention comprises a base of a rod-shaped damper member formed of ultra-low yield point steel or the like having a low yield stress and an excellent elongation performance, fixed to a pier or abutment. Vertically, the upper part of the damper member is connected to the girder with a structure that transmits only horizontal force and not vertical load, and the vertical load of the girder is supported by a movable bearing installed on the pier or abutment, or yielding. The base of a rod-shaped damper member made of ultra-low yield point steel with low stress and excellent elongation performance is fixed vertically on a bridge pier or abutment, and the upper part of the damper member transmits only horizontal force and vertical load is transmitted. If the flexural deformation of the damper member reaches a certain level, a stopper is provided to support the vertical middle part of the damper member, and the vertical load of the girder is a movable bearing installed on the pier or abutment. so Are each implemented in the form for lifting. Therefore, the girder supported by the movable bearing on the pier or abutment can be displaced in the horizontal direction.

【0014】基部を橋脚又は橋台に固定して垂直に立て
た前記ダンパー部材は、一種の片持ち梁に等しい。該ダ
ンパー部材の上部(つまり、自由端側)が桁と水平力の
み伝達可能に連結されているから、地震などによって桁
が水平変位を発生すると、ダンパー部材に水平力を伝達
して曲げ作用を生ずる。このときダンパー部材は自由端
に曲げ荷重の作用を受けた片持ち梁に特有の撓み変形
(弾塑性変形)をしながら地震エネルギを吸収し減衰さ
せる。この場合、超低降伏点鋼(極低降伏点鋼)は、そ
の応力ーひずみ特性を図4に示したように、一般鋼材に
比較して降伏点応力は1000Kgf/cm2 程度と低く、
伸び性能は50%以上という性状を呈して履歴によるエ
ネルギ吸収性能が高いから、前記桁の水平変位に伴いダ
ンパー部材は撓み変形において優れたエネルギ減衰効果
を発揮する。
The damper member, which has its base fixed to a bridge pier or abutment and stands upright, is equivalent to a kind of cantilever. Since the upper part (that is, the free end side) of the damper member is connected to the girder so that only horizontal force can be transmitted, when the girder horizontally displaces due to an earthquake or the like, the horizontal force is transmitted to the damper member to cause bending action. Occurs. At this time, the damper member absorbs and attenuates the seismic energy while performing flexural deformation (elasto-plastic deformation) peculiar to the cantilever beam having the free end subjected to the action of bending load. In this case, the ultra-low yield point steel (extremely low yield point steel) has a low yield point stress of about 1000 Kgf / cm 2 as compared with general steel, as shown in FIG.
Since the elongation performance is 50% or more and the energy absorption performance due to the history is high, the damper member exerts an excellent energy damping effect in the flexural deformation due to the horizontal displacement of the girder.

【0015】請求項2又は4に記載した発明の実施形態
の場合は、桁の水平方向の変位が一定大きさになったと
き、例えば当該橋梁の設計上許容される限度の水平変位
に近づいた段階で、ダンパー部材の中間部位がストッパ
に当接し支持される。よって前記ストッパが効き始めた
段階からは、図3中に点線で示したように、ダンパー部
材は自由端に曲げ荷重の作用を受け、中間部位のストッ
パの位置に反力を受ける不静定片持ち梁に特有の撓み変
形をすることになり、桁の水平変位を小さく抑制され
る。しかしながら、ダンパー部材の自由端側は依然とし
て相応の撓み変形をするので、その限度にエネルギ吸収
機能を奏する。特にこの段階の撓みでは、不静定片持ち
梁に特有な大きなエネルギ吸収機能を発揮する。従っ
て、落橋などの被害は未然に防止できる。
In the case of the embodiment of the invention described in claim 2 or 4, when the horizontal displacement of the girder reaches a certain magnitude, for example, the horizontal displacement is approached to the limit allowable in the design of the bridge. At the stage, the intermediate portion of the damper member abuts and is supported by the stopper. Therefore, from the stage where the stopper starts to work, as shown by the dotted line in FIG. 3, the damper member receives a bending load at its free end and receives a reaction force at the intermediate position of the stopper. As a result, the cantilever is deformed flexibly, and the horizontal displacement of the girder is suppressed to a small level. However, since the free end side of the damper member still undergoes a corresponding flexural deformation, the energy absorbing function is exerted to its limit. In particular, the bending at this stage exerts a large energy absorbing function peculiar to the statically indeterminate cantilever. Therefore, damage such as falling bridges can be prevented.

【0016】図1に本発明の免震方法又は免震構造の原
理図を示したように、ダンパー部材(又は桁)に設けた
ピン孔は、桁荷重に起因する変形、あるいはダンパー部
材及び桁の熱変形(熱膨張又は収縮)の影響による軸力
を伝達しない長さであるため、桁とダンパー部材との間
では常に水平力のみが伝達される。支持ピンはピン孔に
対して橋軸直角方向に通され、主に橋軸方向の振動に対
するエネルギ減衰作用に寄与する。橋軸に直角な方向の
振動に対しても、同様にダンパー部材と桁との間で水平
力のみ伝達が可能なピン連結等を行い、エネルギ減衰作
用を期待することもできる。
As shown in the principle diagram of the seismic isolation method or seismic isolation structure of the present invention in FIG. 1, the pin hole provided in the damper member (or girder) is deformed due to the girder load, or the damper member and girder. Since the length is such that the axial force due to the effect of thermal deformation (thermal expansion or contraction) of (1) is not transmitted, only horizontal force is always transmitted between the girder and the damper member. The support pin is passed through the pin hole in a direction perpendicular to the bridge axis, and mainly contributes to an energy damping action for vibration in the bridge axis direction. Even with respect to vibration in the direction perpendicular to the bridge axis, similarly, a pin connection capable of transmitting only horizontal force can be performed between the damper member and the girder to expect an energy damping action.

【0017】[0017]

【実施例】図1の原理図に基づいて実施した免震構造の
具体例を図2に示している。本実施例は、橋台A(又は
橋台Bでも同じ)と桁Cとの取り合い部分に関するもの
である。桁Cはまず橋台Aの受け面a上の可動支承1に
より水平方向の変位が可能な状態で鉛直荷重を支持され
ている。可動支承1の具体的構造としては、上述した公
知の積層ゴムのほか、鋼板上を転がる鋼球による支承、
又はオイルレスプレートを重ね合わせたすべり支承など
が選択的に採用される。
EXAMPLE A concrete example of the seismic isolation structure implemented based on the principle diagram of FIG. 1 is shown in FIG. The present embodiment relates to a connecting portion between the abutment A (or the abutment B also) and the girder C. First of all, the girder C is supported by a movable bearing 1 on the receiving surface a of the abutment A so that it can be displaced in the horizontal direction under a vertical load. As a concrete structure of the movable support 1, in addition to the above-mentioned known laminated rubber, a support by a steel ball rolling on a steel plate,
Alternatively, a sliding bearing with an oilless plate superimposed is selectively used.

【0018】次に、橋台Aを形成するコンクリート中
に、上端を開口された鋼製容器状のストッパ構造物2が
垂直な姿勢に埋め込まれ強固に固定されている。該スト
ッパ構造物2の上端の開口縁を形成する内向きの厚肉フ
ランジ部分がストッパ3として形成されている。ちなみ
に、ストッパ構造物2の埋め込み高さH(図3参照)は
4m位の大きさとされる。前記ストッパ構造物2の中空
部内にはその中心線を共有する位置に、降伏応力が低く
伸び性能に優れた、例えばLYP−100,LYP−2
35等の超低降伏点鋼(又は極低降伏点鋼)で形成した
棒状のダンパー部材4が垂直な向きに立てられ、その基
部(下端)の固定プレート5が、予め橋台Aを形成する
コンクリート中に埋設しておいた複数のアンカーボルト
6…により強固に固定され、垂直な片持ち梁に構成され
ている。かくして、このアンカー部材4は前記水平な円
環形状のストッパ3の中心部に位置し、全周に所定大き
さのクリアランスを保持して設置されている。前記クリ
アランスの大きさが、桁の水平変位が過大にならないよ
うに抑制しストッパ3が効く位置とされている。このた
めストッパ3とダンパー部材4との関係は、図5Aのよ
うに橋軸方向にのみクリアランスSを有する場合と、図
5Bのように全周に均等なクリアランスSを有する場合
とに大別される。図5Cはダンパー部材3の横断面を円
形とした場合の実施例である。ダンパー部材4は、直径
が40cm位、長さは6m位の丸棒又は角棒状をなし、前
記超低降伏点鋼のほか、所謂純鉄に近いもの、及び同様
に降伏応力が低く伸び性能に優れた性状を呈する鉛合金
又はこれらに類似の材質で形成されている。基部の固定
プレート5はSS41等の一般鋼材で形成されている。
この固定プレート5は前記アンカーボルト6のほか、ホ
ールインアンカーにより、又はストッパ構造物2の底部
へ溶接する手段などによって固定される。ストッパ構造
物2の上端開口は、ゴミや雨水の侵入を防ぐためフレキ
シブルなゴム、プラスチック等で形成したカバー9で密
閉される(図3)。
Next, in the concrete forming the abutment A, a steel container-like stopper structure 2 having an open upper end is embedded in a vertical posture and firmly fixed. An inward thick flange portion forming an opening edge at the upper end of the stopper structure 2 is formed as the stopper 3. Incidentally, the embedded height H (see FIG. 3) of the stopper structure 2 is about 4 m. Inside the hollow portion of the stopper structure 2, the center line is shared, and the yield stress is low and the elongation performance is excellent. For example, LYP-100, LYP-2.
Concrete in which a rod-shaped damper member 4 formed of ultra-low yield point steel (or ultra-low yield point steel) such as 35 is erected in a vertical direction, and a fixing plate 5 at the base (lower end) thereof forms the abutment A in advance. It is firmly fixed by a plurality of anchor bolts 6 embedded in it and is configured as a vertical cantilever. Thus, the anchor member 4 is located at the central portion of the horizontal annular stopper 3 and is installed with a predetermined amount of clearance all around. The size of the clearance is set to a position where the stopper 3 works by suppressing the horizontal displacement of the girder from becoming excessive. Therefore, the relationship between the stopper 3 and the damper member 4 is roughly classified into a case where the clearance S is provided only in the bridge axial direction as shown in FIG. 5A and a case where the clearance S is provided uniformly over the entire circumference as shown in FIG. 5B. It FIG. 5C shows an embodiment in which the damper member 3 has a circular cross section. The damper member 4 has a round bar or square bar shape with a diameter of about 40 cm and a length of about 6 m. In addition to the above-mentioned ultra-low yield point steel, one similar to so-called pure iron, and similarly low yield stress and excellent elongation performance. It is made of a lead alloy that exhibits excellent properties or a material similar thereto. The base fixing plate 5 is made of a general steel material such as SS41.
The fixing plate 5 is fixed by a hole-in anchor, by means of welding to the bottom of the stopper structure 2 or the like, in addition to the anchor bolt 6. The upper end opening of the stopper structure 2 is sealed with a cover 9 made of flexible rubber, plastic or the like to prevent dust and rainwater from entering (FIG. 3).

【0019】前記ダンパー部材4の上端部に、桁荷重又
はダンパー部材の熱変形の影響によって軸力が伝達しな
い長さの長孔に形成したピン孔7が垂直方向に長く設け
られている。このピン孔7へ橋軸直角方向へ水平に通し
た支持ピン8の両端が桁Cに固定され、もってダンパー
部材4の上部は、桁Cと水平力(特には橋軸方向への水
平力)のみ伝達し鉛直荷重は伝達しない構造で連結され
ている。ピン孔7の幅寸は支持ピン8の外径と略等し
く、橋軸方向の遊びはないものとされている。橋軸直角
方向への水平力は、桁Cが直接ダンパー部材4へ当接す
ることによって伝達されるのであるが、必要に応じてダ
ンパー部材4の上部に橋軸方向に貫通するもう1個のピ
ン孔を設け、このピン孔に橋軸方向の支持ピンを通して
橋軸直角方向の水平力も支持ピンで伝達する構成を実施
することもできる。支持ピン8には桁Cの飛び跳ねを防
ぐ働きを期待しているが、この働きを無視すると、桁を
構成する鉄骨材に、桁荷重又はダンパー部材の熱変形の
影響を受けない長さの孔を垂直方向に長く設け、基部を
橋脚又は橋台に固定した垂直な棒状のダンパー部材の上
部を前記孔に通しただけで、支持ピンを使用せずに水平
力のみ伝達可能に連結した構成を実施することもでき
る。
A pin hole 7 is formed at the upper end of the damper member 4 in the vertical direction. The pin hole 7 is a long hole that does not transmit axial force due to the influence of girder load or thermal deformation of the damper member. Both ends of a support pin 8 which is horizontally passed through the pin hole 7 in the direction perpendicular to the bridge axis are fixed to the girder C, so that the upper part of the damper member 4 and the girder C and the horizontal force (in particular, the horizontal force in the bridge axis direction). It is connected by a structure that transmits only the vertical load and not the vertical load. The width of the pin hole 7 is substantially equal to the outer diameter of the support pin 8, and there is no play in the bridge axis direction. The horizontal force in the direction perpendicular to the bridge axis is transmitted by the girder C directly contacting the damper member 4, but if necessary, another pin passing through the damper member 4 in the bridge axis direction may be provided. A structure in which a hole is provided and a horizontal force in the direction orthogonal to the bridge axis is also transmitted by the support pin through the support pin in the bridge axis direction can be implemented. Although the support pin 8 is expected to have a function of preventing the girder C from jumping, if this function is neglected, the steel frame material constituting the girder is provided with a hole having a length that is not affected by the girder load or thermal deformation of the damper member. Is vertically extended, and the base is fixed to a pier or abutment.The upper part of a vertical rod-shaped damper member is simply passed through the hole, and only horizontal force can be transmitted without using a support pin. You can also do it.

【0020】次に、図6は、垂直なダンパー部材4が桁
Cの垂直な孔を貫通させられ、その上端部に抜け止め用
のピン10又は台形ブロック11を設け、橋台B上にス
トッパ構造物2を固定して設けた実施例を示している。
本実施例の場合は、桁Cが水平変位を生じてダンパー部
材4の撓み変形が一定大きさになると、同ダンパー部材
の中間部にストッパ3が当接して働き、桁Cの水平方向
変位が過大にならないように抑制する。
Next, in FIG. 6, the vertical damper member 4 is passed through the vertical hole of the girder C, and the retaining pin 10 or the trapezoidal block 11 is provided at the upper end thereof, and the stopper structure is provided on the abutment B. The example which fixedly provided the thing 2 is shown.
In the case of the present embodiment, when the girder C is horizontally displaced and the flexural deformation of the damper member 4 becomes a certain amount, the stopper 3 abuts on the intermediate portion of the damper member to work, so that the girder C is displaced in the horizontal direction. Prevent it from becoming too large.

【0021】また、図7は、橋脚B(又は橋台A)の側
部に設けたブラケット12上にダンパー部材4の基部を
固定して垂直に立て、同じブラケット12上に固定した
ストッパ構造物2のストッパ3によってダンパー部材4
の中間部を支持せしめ過大な水平変位を抑制する実施例
を示している。次に、図8は、棒状のストッパ12が、
棒状をなすダンパー部材4の中心線に沿って軸方向に、
基部から中間部位に届く長さではめ込まれ内蔵された実
施例を示している。本実施例のストッパ12とダンパー
部材4との関係は、図5A〜Cに示したストッパとダン
パー部材の関係を内外に逆転させた関係に等しい。
FIG. 7 shows a stopper structure 2 in which the base of the damper member 4 is fixed vertically on a bracket 12 provided on the side of the pier B (or abutment A) and fixed on the same bracket 12. Damper member 4 by stopper 3
An example is shown in which an intermediate portion of the above is supported to suppress an excessive horizontal displacement. Next, in FIG. 8, the rod-shaped stopper 12 is
Axial along the center line of the rod-shaped damper member 4,
It shows an embodiment in which it is fitted and embedded in a length reaching from the base portion to the intermediate portion. The relationship between the stopper 12 and the damper member 4 in this embodiment is equal to the relationship between the stopper and the damper member shown in FIGS.

【0022】[0022]

【本発明が奏する効果】本発明に係る橋梁の免震方法及
び免震構造は、次の効果を奏する。 中小地震に対しては、桁の水平振動の長周期化と高
減衰作用により地震エネルギを低減し水平力を分散する
(免震機能)。 大地震時には、ストッパの働きにより桁の過大な水
平変位を抑制し、同時に地震エネルギの吸収能力を向上
する(ダンパーストッパとしての機能)。 免震構造がシンプルであり、大地震により著しく残
留変位が残る場合を除いてメンテナンスが楽である。 特に長大橋等の桁高の高い橋梁の免震に適してい
る。 ストッパの形状、及びダンパー部材の断面の自由度
が高く、従ってニーズに合わせた免震構造(ダンパー構
造)を設計できる。
[Effects of the Present Invention] The seismic isolation method and structure of a bridge according to the present invention have the following effects. For small and medium-sized earthquakes, seismic energy is reduced and horizontal forces are dispersed by lengthening the horizontal vibration of the girder and high damping action (seismic isolation function). In the event of a large earthquake, the stopper acts to prevent excessive horizontal displacement of the girder, and at the same time improves the seismic energy absorption capacity (function as a damper stopper). The seismic isolation structure is simple, and maintenance is easy unless there is a significant residual displacement due to a large earthquake. Especially suitable for seismic isolation of bridges with high girders such as long bridges. Since the stopper shape and the cross-section of the damper member have a high degree of freedom, a seismic isolation structure (damper structure) can be designed according to needs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の免震方法又は免震構造の原理を説明す
る斜視図である。
FIG. 1 is a perspective view illustrating the principle of a seismic isolation method or a seismic isolation structure of the present invention.

【図2】本発明の免震構造の第1実施例を示した断面図
である。
FIG. 2 is a cross-sectional view showing a first embodiment of the seismic isolation structure of the present invention.

【図3】ストッパ構造物及びストッパの働きを示した断
面図である。
FIG. 3 is a cross-sectional view showing the functions of a stopper structure and a stopper.

【図4】超低降伏点鋼の応力ーひずみ特性図である。FIG. 4 is a stress-strain characteristic diagram of ultra low yield point steel.

【図5】A〜Cはストッパとダンパー部材の関係を示し
た水平断面図である。
5A to 5C are horizontal sectional views showing the relationship between the stopper and the damper member.

【図6】本発明の免震構造の第2実施例を示した断面図
である。
FIG. 6 is a sectional view showing a second embodiment of the seismic isolation structure of the present invention.

【図7】本発明の免震構造の第3実施例を示した断面図
である。
FIG. 7 is a sectional view showing a third embodiment of the seismic isolation structure of the present invention.

【図8】ダンパー部材とストッパの異なる構成の例を示
した立面図である。
FIG. 8 is an elevational view showing an example of a configuration in which a damper member and a stopper are different.

【図9】橋梁一般の構造説明図である。FIG. 9 is a structural explanatory view of a bridge in general.

【符号の説明】[Explanation of symbols]

A 橋台 B 橋脚 C 桁 4 ダンパー部材 1 可動支承 3 ストッパ 7 ピン孔 8 ピン A Abutment B Bridge pier C Girder 4 Damper member 1 Movable bearing 3 Stopper 7 Pin hole 8 pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 久哲 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 運上 茂樹 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 向 秀毅 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 杉本 三千雄 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 平井 卓 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 鈴木 一彦 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 聖生 守雄 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisetsu Otsuka 1 Asahi, Asahi, Tsukuba, Ibaraki Prefectural civil engineering research institute (72) Inventor Shigeki Unjo, 1 Asahi, Tsukuba, Ibaraki Prefectural civil engineering research institute ( 72) Inventor Hideki Mukai, Asahi 1 Tsukuba, Ibaraki Prefecture, Asahi, Civil Engineering Research Institute, Ministry of Construction (72) Inventor Michio Sugimoto 8-21-1, Ginza, Chuo-ku, Tokyo Stockholder, Takenaka Civil Engineering (72) Inventor, Takashi Hirai Takenaka Civil Engineering Co., Ltd., 8-21-21 Ginza, Chuo-ku, Tokyo (72) Inventor Kazuhiko Suzuki Inventor Takenaka Civil Engineering Co., Ltd. 8-2-1-21, Ginza, Chuo-ku, Tokyo (72) Morio Seisei Tokyo 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 橋梁の桁とこれを支持する橋脚又は橋台
との間における免震方法であって、 降伏応力が低く伸び性能に優れた超低降伏点鋼などで形
成した棒状のダンパー部材の基部を橋脚又は橋台に固定
して垂直に立て、該ダンパー部材の上部を水平力のみ伝
達し鉛直荷重は伝達しない構造で桁と連結すること、 前記桁の鉛直荷重は橋脚又は橋台に設置した可動支承で
支持させること、をそれぞれ特徴とする、橋梁の免震方
法。
1. A seismic isolation method between a bridge girder and a pier or abutment supporting the bridge girder, comprising a rod-shaped damper member made of ultra-low yield point steel or the like having low yield stress and excellent elongation performance. The base is fixed to the pier or abutment and stands vertically, and the upper part of the damper member is connected to the girder with a structure that transmits only horizontal force but not vertical load. The vertical load of the girder is movable on the pier or abutment. A seismic isolation method for bridges, characterized in that they are supported by bearings.
【請求項2】 橋梁の桁とこれを支持する橋脚又は橋台
との間における免震方法であって、 降伏応力が低く伸び性能に優れた超低降伏点鋼などで形
成した棒状のダンパー部材の基部を橋脚又は橋台に固定
して垂直に立て、該ダンパー部材の上部を水平力のみ伝
達し鉛直荷重は伝達しない構造で桁と連結すること、 前記ダンパー部材の撓み変形が一定大きさになると当該
ダンパー部材の垂直方向の中間部位を支持するストッパ
を設けること、 前記桁の鉛直荷重は橋脚又は橋台に設置した可動支承で
支持させること、をそれぞれ特徴とする、橋梁の免震方
法。
2. A seismic isolation method between a bridge girder and a bridge pier or abutment supporting the bridge girder, comprising a rod-shaped damper member formed of ultra-low yield point steel or the like having low yield stress and excellent elongation performance. The base is fixed to a bridge pier or abutment and is erected vertically, and the upper part of the damper member is connected to the girder in a structure that transmits only horizontal force and not vertical load. When the flexural deformation of the damper member becomes constant, A method for seismic isolation of a bridge, characterized in that a stopper for supporting an intermediate portion in the vertical direction of the damper member is provided, and that the vertical load of the girder is supported by a movable bearing installed on a pier or abutment.
【請求項3】 橋梁の桁とこれを支持する橋脚又は橋台
との間における免震構造であって、 降伏応力が低く伸び性能に優れた超低降伏点鋼などで形
成した棒状のダンパー部材がその基部を橋脚又は橋台に
固定して垂直に立てられ、該ダンパー部材の上部が水平
力のみ伝達し鉛直荷重は伝達しない構造で桁と連結され
ていること、 前記桁はその鉛直荷重を支持し水平方向の動きは拘束し
ない可動支承で橋脚又は橋台上に支持されていること、
をそれぞれ特徴とする、橋梁の免震構造。
3. A seismic isolation structure between a bridge girder and a bridge pier or abutment supporting the bridge girder, wherein a bar-shaped damper member formed of ultra-low yield point steel or the like having low yield stress and excellent elongation performance is provided. The base is fixed vertically to a bridge pier or abutment and is erected vertically, and the upper part of the damper member is connected to the girder in a structure that transmits only horizontal force and not vertical load, and the girder supports the vertical load. Being supported on a pier or abutment by a movable bearing that does not restrain horizontal movement,
A seismic isolation structure for the bridge, featuring
【請求項4】 橋梁の桁とこれを支持する橋脚又は橋台
との間における免震構造であって、 降伏応力が低く伸び性能に優れた超低降伏点鋼などで形
成した棒状のダンパー部材がその基部を橋脚又は橋台に
固定して垂直に立てられ、該ダンパー部材の上部は水平
力のみ伝達し鉛直荷重は伝達しない構造で桁と連結され
ていること、 前記ダンパー部材の垂直方向の中間部位に、当該ダンパ
ー部材の撓み変形が一定大きさになると支持するストッ
パが、橋脚又は橋台に固定して設置されていること、 前記桁はその鉛直荷重を支持し水平方向の動きは拘束し
ない可動支承で橋脚又は橋台上に支持されていること、
をそれぞれ特徴とする、橋梁の免震構造。
4. A seismic isolation structure between a bridge girder and a bridge pier or abutment supporting the bridge girder, wherein a bar-shaped damper member made of ultra-low yield point steel or the like having low yield stress and excellent elongation performance is provided. The base is fixed vertically to a bridge pier or abutment and is erected vertically, and the upper part of the damper member is connected to the girder in a structure that transmits only horizontal force and not vertical load. In addition, a stopper that supports when the flexural deformation of the damper member becomes a certain amount is fixedly installed on the pier or abutment, and the girder supports the vertical load and does not restrain the horizontal movement of the movable support. Supported on the pier or abutment with
A seismic isolation structure for the bridge, featuring
【請求項5】 請求項1又は2に記載したダンパー部材
は、超低降伏点鋼、又は極低降伏点鋼、又は鉛合金、又
は純鉄若しくはこれらに類似の材質で形成されているこ
とを特徴とする、橋梁の免震方法。
5. The damper member according to claim 1 or 2 is formed of ultra-low yield point steel, ultra-low yield point steel, lead alloy, pure iron, or a material similar thereto. The characteristic method of seismic isolation of bridges.
【請求項6】 請求項3又は4に記載したダンパー部材
は、超低降伏点鋼、又は極低降伏点鋼、又は鉛合金、又
は純鉄若しくはこれらに類似の材質で形成されているこ
とを特徴とする、橋梁の免震構造。
6. The damper member according to claim 3 or 4 is formed of ultra-low yield point steel, ultra-low yield point steel, lead alloy, pure iron, or a material similar thereto. The characteristic is the seismic isolation structure of the bridge.
【請求項7】 請求項3又は4に記載した、ダンパー部
材の上部と桁との連結構造は、桁又はダンパー部材に桁
荷重若しくはダンパー部材の熱変形の影響を受けない長
さのピン孔が垂直方向に長く設けられ、前記ピン孔に水
平力のみ伝達する支持ピンを水平方向に通して連結され
ていることを特徴とする、橋梁の免震構造。
7. The connection structure between the upper portion of the damper member and the girder according to claim 3 or 4, wherein the girder or the damper member has a pin hole having a length that is not affected by the girder load or thermal deformation of the damper member. A seismic isolation structure for a bridge, characterized in that it is vertically long and is connected to a support pin that transmits only a horizontal force through the pin hole in the horizontal direction.
【請求項8】 請求項3又は4に記載した、ダンパー部
材の上部と桁との連結構造は、桁に桁荷重若しくはダン
パー部材の熱変形の影響を受けない長さの孔が垂直方向
に長く設けられ、前記孔にダンパー部材の上部が通され
水平力のみ伝達可能に連結されていることを特徴とす
る、橋梁の免震構造。
8. The connection structure of the upper part of the damper member and the girder described in claim 3 or 4, wherein the girder has a hole having a length long in the vertical direction which is not affected by a girder load or thermal deformation of the damper member. A seismic isolation structure for a bridge, characterized in that an upper part of a damper member is provided through the hole and connected so that only a horizontal force can be transmitted.
【請求項9】 請求項2又は4に記載したストッパは、
ダンパー部材の中間部位の外周を包囲する水平な構造部
材、又はダンパー部材の内部の軸方向に基部から中間部
位に届く長さで同心配置に収納された棒状の構造部材で
構成されていることを特徴とする、橋梁の免震構造。
9. The stopper according to claim 2 or 4,
It is composed of a horizontal structural member that surrounds the outer periphery of the intermediate portion of the damper member, or a rod-shaped structural member that is housed in a concentric arrangement with a length that reaches the intermediate portion from the base in the axial direction inside the damper member. The characteristic is the seismic isolation structure of the bridge.
【請求項10】 請求項9に記載した、ダンパー部材の
中間部位の外周を包囲する水平なストッパは、橋脚又は
橋台を形成するコンクリート中に埋め込まれ固定されて
いることを特徴とする、橋梁の免震構造。
10. The bridge according to claim 9, wherein the horizontal stopper surrounding the outer periphery of the intermediate portion of the damper member is embedded and fixed in concrete forming a bridge pier or abutment. Seismic isolation structure.
JP20087495A 1995-08-07 1995-08-07 Vibration isolation method of bridge and construction of vibration isolation Withdrawn JPH0949209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20087495A JPH0949209A (en) 1995-08-07 1995-08-07 Vibration isolation method of bridge and construction of vibration isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20087495A JPH0949209A (en) 1995-08-07 1995-08-07 Vibration isolation method of bridge and construction of vibration isolation

Publications (1)

Publication Number Publication Date
JPH0949209A true JPH0949209A (en) 1997-02-18

Family

ID=16431679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20087495A Withdrawn JPH0949209A (en) 1995-08-07 1995-08-07 Vibration isolation method of bridge and construction of vibration isolation

Country Status (1)

Country Link
JP (1) JPH0949209A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529140B1 (en) * 2002-05-06 2005-11-15 박영희 The method of construction and a structure for simple composite girder
JP2009203767A (en) * 2008-02-29 2009-09-10 Railway Technical Res Inst Aseismatic reinforcing method and reinforcing structure for structure
WO2011059072A1 (en) * 2009-11-12 2011-05-19 中部電力株式会社 Construction method for improving earthquake resistance of existing sluice gate pillars provided to dam, and earthquake-proof bridge for dam
JP2013220920A (en) * 2012-04-18 2013-10-28 Takenaka Komuten Co Ltd Runway girder support structure
JP2014190092A (en) * 2013-03-27 2014-10-06 Okumura Corp Bridge fall prevention device and its installation method
JP2019108658A (en) * 2017-12-15 2019-07-04 有限会社鼻崎技術事務所 Connection structure
JP2019108657A (en) * 2017-12-15 2019-07-04 シバタ工業株式会社 Connection structure
NO20180212A1 (en) * 2018-02-09 2019-08-12 Seawalk As Flexible joints between barges
CN110777640A (en) * 2019-11-07 2020-02-11 湘潭大学 Suspension cavity structure high-energy-consumption bridge anti-seismic stop block

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529140B1 (en) * 2002-05-06 2005-11-15 박영희 The method of construction and a structure for simple composite girder
JP2009203767A (en) * 2008-02-29 2009-09-10 Railway Technical Res Inst Aseismatic reinforcing method and reinforcing structure for structure
WO2011059072A1 (en) * 2009-11-12 2011-05-19 中部電力株式会社 Construction method for improving earthquake resistance of existing sluice gate pillars provided to dam, and earthquake-proof bridge for dam
JP2011106095A (en) * 2009-11-12 2011-06-02 Chubu Electric Power Co Inc Earthquake resistance improving structure for existing sluice column, and coupled aseismatic structure
JP2013220920A (en) * 2012-04-18 2013-10-28 Takenaka Komuten Co Ltd Runway girder support structure
JP2014190092A (en) * 2013-03-27 2014-10-06 Okumura Corp Bridge fall prevention device and its installation method
JP2019108658A (en) * 2017-12-15 2019-07-04 有限会社鼻崎技術事務所 Connection structure
JP2019108657A (en) * 2017-12-15 2019-07-04 シバタ工業株式会社 Connection structure
NO20180212A1 (en) * 2018-02-09 2019-08-12 Seawalk As Flexible joints between barges
CN110777640A (en) * 2019-11-07 2020-02-11 湘潭大学 Suspension cavity structure high-energy-consumption bridge anti-seismic stop block

Similar Documents

Publication Publication Date Title
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
JP5007380B2 (en) Seismic isolation / damping mechanism
US5349794A (en) Wall for damping vibration
JPH0949209A (en) Vibration isolation method of bridge and construction of vibration isolation
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP3755886B1 (en) Bearing structure of fixed bearings in bridges and seismic reinforcement method for existing bridges
JP5590994B2 (en) Seismic construction method and structure using elastoplastic brace
WO2020240260A1 (en) Seesaw structural systems for seismic low-rise buildings
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP7081745B2 (en) Seismic isolation structure
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
KR20050082943A (en) Shape memory alloy rubber bearing
JP2010043415A (en) Seismic control device
JP2003090145A (en) Support method and support structure to cope with pull- out force in base isolation structure
JP3690460B2 (en) Damping damper and damping structure
JPH10292845A (en) Elasto-plastic damper
JP4971697B2 (en) Load bearing wall frame
JP2002004632A (en) Base isolation column base structure
JP4188347B2 (en) Seismic isolation structure
JP3845140B2 (en) Structure isolation device
JP4316404B2 (en) Seismic isolation device
JP2511319B2 (en) Steel rod damper device for seismic isolation and vibration control
JP6848932B2 (en) Seismic isolation damper and seismic isolation structure using the seismic isolation damper
CN213654405U (en) Anti-seismic steel structure of green building
JP2002309801A (en) Energy absorption device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105