JP6508819B2 - Vibration control structure for bridge and setting method of vibration control structure for bridge - Google Patents

Vibration control structure for bridge and setting method of vibration control structure for bridge Download PDF

Info

Publication number
JP6508819B2
JP6508819B2 JP2015024159A JP2015024159A JP6508819B2 JP 6508819 B2 JP6508819 B2 JP 6508819B2 JP 2015024159 A JP2015024159 A JP 2015024159A JP 2015024159 A JP2015024159 A JP 2015024159A JP 6508819 B2 JP6508819 B2 JP 6508819B2
Authority
JP
Japan
Prior art keywords
bridge
bridge girder
damping
damper
vibration control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015024159A
Other languages
Japanese (ja)
Other versions
JP2016148147A (en
Inventor
賢太郎 蔵治
賢太郎 蔵治
裕二 右高
裕二 右高
磯田 和彦
和彦 磯田
敏裕 若原
敏裕 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2015024159A priority Critical patent/JP6508819B2/en
Publication of JP2016148147A publication Critical patent/JP2016148147A/en
Application granted granted Critical
Publication of JP6508819B2 publication Critical patent/JP6508819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、橋梁に対する連結制振構造及び橋梁に対する連結制振構造の設定方法に関する。   The present invention relates to a connection damping structure for a bridge and a setting method of the connection damping structure for a bridge.

従来、高架橋などの橋梁を制振構造とする技術として、制振ダンパーを橋桁間に設置する制振技術が知られている(例えば、特許文献1、2参照)。
特許文献1、2では、橋脚上部において桁−桁の間をダンパーで連結する形態が図示され、構造物を長周期化したり橋梁全体の震動を制御して耐震性を高めたりすることができるとしているが、具体的なダンパー諸元の設定や効果に関する記載がない。当然ながら、双方の橋桁が同じ揺れとなる場合にはダンパーで連結しても制振効果はなく、橋梁構造の振動特性とダンパー量との関係が重要となっている。
BACKGROUND ART Conventionally, as a technology for making a bridge such as a viaduct into a vibration control structure, a vibration control technology in which a vibration control damper is installed between bridge girder is known (see, for example, Patent Documents 1 and 2).
In patent documents 1 and 2, the form which connects between girder-girders with a damper is illustrated in the bridge pier upper part, and it is possible to lengthen a structure or to control the vibration of the whole bridge to improve earthquake resistance. However, there is no description on specific damper settings and effects. As a matter of course, when both bridge girders have the same vibration, there is no damping effect even if they are connected by dampers, and the relationship between the vibration characteristics of the bridge structure and the amount of dampers is important.

特開2004−332478号公報Unexamined-Japanese-Patent No. 2004-332478 特開平10−183530号公報JP 10-183530 A

しかしながら、従来の橋梁の隣接する橋桁同士を連結する制振技術では、適用可能となるのは隣接する橋桁が異なる振動特性を有する場合、すなわち固有振動数が異なる場合のみであり、固有振動数が同じ場合には一緒に揺れてしまい制振効果を発揮することができないという問題があった。
また、実在する隣接橋梁間の振動特性が大幅に異なる場合は少なく、連結制振による応答低減効果は限定的なものとなることから、その点で改善の余地があった。
However, in the damping technology that connects adjacent bridge beams of a conventional bridge, it becomes possible to apply only when adjacent bridge beams have different vibration characteristics, that is, when the natural frequency is different, and the natural frequency is In the same case, there is a problem that they shake together and can not exert a damping effect.
In addition, there are few cases where the vibration characteristics between the existing adjacent bridges differ significantly, and the response reduction effect by the connection vibration control is limited, so there is room for improvement in that respect.

本発明は、上述する問題点に鑑みてなされたもので、隣接する橋桁同士が同じ振動特性を有する場合(固有振動数が同じ場合)においても、より効果的に適用することができる橋梁に対する連結制振構造及び橋梁に対する連結制振構造の設定方法を提供することを目的とする。   The present invention has been made in view of the problems described above, and can be applied more effectively to bridges that are applied more effectively even when adjacent bridge girders have the same vibration characteristics (in the case where the natural frequency is the same). It is an object of the present invention to provide a method of setting a vibration control structure and a connection vibration control structure for a bridge.

上記目的を達成するため、本発明に係る橋梁に対する連結制振構造は、隣り合う一方の第1橋桁部に一端側を、他方の第2橋桁部に他端側をそれぞれ接続して制振ダンパーを設置して構成されるとともに、前記橋桁部のそれぞれと下部構造との間において、複数の支承を設置するとともに、これら支承のうち少なくとも一方と並列配置されるように制振装置を設置して構成され、前記制振装置として、ばね部材又は慣性質量ダンパーが設けられ、前記第1橋桁部及び前記第2橋桁部の周波数伝達関数において応答倍率のピーク値が最小となるようにダンパー緒元が設定されていることを特徴としている。 In order to achieve the above object, in the connection damping structure for a bridge according to the present invention, one end side is connected to one adjacent first bridge girder part and the other end side is connected to the other second bridge girder part. And installing a plurality of bearings between each of the bridge girder parts and the lower structure, and installing a damping device in parallel with at least one of the bearings. A spring member or an inertia mass damper is provided as the vibration damping device, and a damper material has a peak value of the response magnification in the frequency transfer function of the first bridge girder portion and the second bridge girder portion is minimized. It is characterized by being set .

また、本発明の橋梁に対する連結制振構造の設定方法は、上述した橋梁に対する連結制振構造の設定方法であって、前記第1橋桁部の固有振動数が、前記第2橋桁部の固有振動数よりも大きい場合において、前記第2橋桁部側の支承のみと並列に前記慣性質量ダンパーが配置される構成と、前記第1橋桁部側の支承のみと並列に前記ばね部材が配置される構成と、前記第2橋桁部側の支承のみと並列に前記慣性質量ダンパーが配置されるとともに、前記第1橋桁部側の支承のみと並列に前記ばね部材が配置される構成と、のいずれか1つが選択的に設けられることを特徴としている。 Further, the method of setting a connection vibration control structure for a bridge according to the present invention is the method for setting a connection vibration control structure for a bridge described above, wherein the natural frequency of the first bridge girder is the natural vibration of the second bridge girder. When the number is larger than the number, the inertia mass damper is disposed in parallel with only the support on the second bridge girder side, and the spring member is disposed in parallel with only the support on the first bridge girder side. And the inertia mass damper is disposed in parallel with only the support on the second bridge girder side, and the spring member is disposed in parallel with only the support on the first bridge girder side. It is characterized in that one is selectively provided.

本発明では、隣接する双方の橋桁部の振動特性が同じ場合、すなわち固有振動数が同じ場合であっても、双方の振動特性(固有振動数)を変えることができ、大きな応答低減効果を得ることができる。そのため、従来のように、制振ダンパーだけによる制振のように、隣接する双方の橋桁部の振動特性が同じ場合に制振効果が得られないという課題を効果的に解決することができる。   In the present invention, when the vibration characteristics of both adjacent bridge girder parts are the same, that is, even when the natural frequency is the same, both vibration characteristics (natural frequency) can be changed, and a large response reduction effect can be obtained. be able to. Therefore, it is possible to effectively solve the problem that the vibration control effect can not be obtained when the vibration characteristics of both adjacent bridge girder parts are the same as in the conventional case, as in the case of the vibration control using only the vibration control damper.

また、本発明では、制振装置としてばね部材に加えて慣性質量ダンパーを追加し、すなわちばね部材と慣性質量ダンパーを併用して双方の振動特性を変えた場合には、双方の最大応答加速度や最大応答変位が大きく低減される。また、橋脚部に生じる応力についても大幅に低減され、基礎に作用するせん断力も同様に低減することができる。しかも、制振装置としてばね部材と慣性質量ダンパーを併用する場合には、ばね部材のみを追加した場合よりもさらに揺れの収束が早くなる。   Furthermore, in the present invention, in addition to the spring member as an damping device, an inertial mass damper is added, that is, when both of the vibration characteristics are changed by using both the spring member and the inertial mass damper Maximum response displacement is greatly reduced. In addition, the stress generated in the bridge is also greatly reduced, and the shear force acting on the foundation can be reduced as well. In addition, in the case where the spring member and the inertia mass damper are used in combination as the damping device, the convergence of the swaying becomes faster than when only the spring member is added.

また、支承部を交換する必要がなく、単に制振機構を付加するだけなので、橋梁を工事中も継続的に使用することができる。
また、制振ダンパーを隣接する橋桁部間を連結するように設けるとともに、制振装置を支承と並列に配置するだけの比較的簡単な作業なので、施工に当たり特別な技能は必要とされず、新設だけでなく既存橋梁の制振改修にも適用できる利点がある。
In addition, since it is not necessary to replace the bearing but merely to add a damping mechanism, the bridge can be used continuously even during construction.
In addition, since vibration damping dampers are provided so as to connect adjacent bridge girder parts, and because the vibration control device is a relatively simple task of arranging in parallel with the bearing, no special skills are required for construction, and new construction is required. Not only is there an advantage that it can be applied to damping improvement of existing bridges.

本発明の橋梁に対する連結制振構造及び橋梁に対する連結制振構造の設定方法によれば、隣接する橋桁同士が同じ振動特性を有する場合(固有振動数が同じ場合)においても、より効果的に適用することができる。   According to the connection vibration control structure for a bridge and the setting method of the connection vibration control structure for a bridge of the present invention, even when adjacent bridge beams have the same vibration characteristics (in the case where the natural frequency is the same), more effective application can do.

本発明の実施の形態よる橋梁に対する連結制振構造(a)及びこの振動解析モデル(b)を示す図である。It is a figure which shows the connection damping structure (a) with respect to the bridge by embodiment of this invention, and this vibration-analysis model (b). 橋梁の制振構造の慣性質量ダンパーの一例を示す断面図である。It is sectional drawing which shows an example of the inertial mass damper of the damping structure of a bridge. 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と加速度応答倍率の関係を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the relationship between vibration frequency ratio and acceleration response magnification. 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と加速度応答倍率の関係を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the relationship between vibration frequency ratio and acceleration response magnification. 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と変位応答倍率の関係を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the relationship between excitation frequency ratio and displacement response magnification. 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と変位応答倍率の関係を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the relationship between excitation frequency ratio and displacement response magnification. 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と変位応答倍率の関係を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the relationship between excitation frequency ratio and displacement response magnification. 橋梁に対する連結制振構造を設けた橋梁の耐震性能を確認するシミュレーションで用いた入力地震動の波形を示す図である。It is a figure which shows the waveform of the input earthquake motion used by simulation which confirms the seismic performance of the bridge which provided the connection damping structure with respect to a bridge. 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、一方の橋桁部(質点1)の時刻歴加速度応答波形を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history acceleration response waveform of one bridge girder part (mass point 1). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、一方の橋桁部(質点1)の時刻歴加速度応答波形を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history acceleration response waveform of one bridge girder part (mass point 1). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、他方の橋桁部(質点2)の時刻歴加速度応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history acceleration response waveform of the other bridge girder part (mass point 2). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、他方の橋桁部(質点2)の時刻歴加速度応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history acceleration response waveform of the other bridge girder part (mass point 2). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、一方の支承部(質点1)の時刻歴変位応答波形を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history displacement response waveform of one bearing part (mass point 1). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、一方の支承部(質点1)の時刻歴変位応答波形を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history displacement response waveform of one bearing part (mass point 1). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、他方の支承部(質点2)の時刻歴変位応答波形を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history displacement response waveform of the other bearing (mass point 2). 連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、他方の支承部(質点2)の時刻歴変位応答波形を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure, and is a figure which shows the time history displacement response waveform of the other bearing (mass point 2). 橋梁に対する連結制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、隣り合う橋桁部の時刻歴相対変位(桁間相対変位)を示す図である。It is a result of the simulation performed in order to confirm the aseismatic performance of the bridge which provided the connection vibration control structure to the bridge, and is a figure showing time history relative displacement (relative displacement between beams) of adjacent bridge girder parts. 橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、橋脚部の時刻歴せん断力応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge which provided damping structure of the bridge, and is a figure showing time history shear force response waveform of a bridge leg. 橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、橋脚部の時刻歴せん断力応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge which provided damping structure of the bridge, and is a figure showing time history shear force response waveform of a bridge leg.

以下、本発明の実施の形態による橋梁に対する連結制振構造及び橋梁に対する連結制振構造の設定方法について、図面に基づいて説明する。   Hereinafter, a connection damping structure for a bridge and a method of setting the connection damping structure for a bridge according to an embodiment of the present invention will be described based on the drawings.

図1(a)に示すように、本実施の形態による高架橋に対する連結制振構造Aは、例えば多径間連続桁形式の高架橋などの橋梁1において、上部構造1Aにおける隣接する橋桁部(橋桁)2、3同士に架け渡すように、言い換えれば一端側を橋軸O1方向に隣り合う一方の橋桁部2に、他端側を他方の橋桁部3に接続してダンパー軸が略橋軸O1方向に沿うように、制振ダンパー4を配設して構成されている。
そして、本実施の形態の連結制振構造Aでは、橋桁部2、3のそれぞれと下部構造1Bとの間において、支承5(5A、5B)を設置するとともに、これら支承5A、5Bのうち少なくとも一方(本実施の形態では両方)と並列配置されるように制振装置6(6A、6B)を設置して構成されている。
As shown in FIG. 1 (a), the connection vibration control structure A for the elevated bridge according to the present embodiment is, for example, a bridge girder portion (bridge girder) in the upper structure 1A in the bridge 1 such as elevated bridge of multi-span continuous girder type. In order to bridge 2 and 3 each other, in other words, one end side is connected to one bridge girder part 2 adjacent in the bridge axis O1 direction and the other end side is connected to the other bridge girder part 3 so that the damper shaft is almost in the bridge axis O1 direction The vibration control damper 4 is disposed along the line.
And in connection damping structure A of this embodiment, while installing supporters 5 (5A and 5B) between each of bridge girder parts 2 and 3 and lower structure 1B, at least one of these bearings 5A and 5B is installed. Damping device 6 (6A, 6B) is installed and configured to be arranged in parallel with one side (both in the present embodiment).

本実施の形態では、制振ダンパー4がオイルダンパー等の粘性ダンパーであるものとして説明を行うが、本発明に係る制振ダンパーとしては、相対速度に比例した反力を生じるオイルダンパー等の粘性ダンパーの他、例えば、隣接する橋桁部2、3同士の間の相対加速度に比例した反力を生じる慣性質量ダンパー、相対変位に比例した反力を生じるばね部材や弾塑性ダンパーなども勿論適用可能である。   In the present embodiment, although the damping damper 4 is described as a viscous damper such as an oil damper, the damping damper according to the present invention is a viscosity of an oil damper or the like that generates a reaction force proportional to relative speed. Other than the damper, for example, an inertial mass damper that generates a reaction force proportional to relative acceleration between adjacent bridge girder parts 2 and 3, a spring member that generates a reaction force proportional to relative displacement, or an elastic-plastic damper is of course applicable. It is.

また、支承5A、5Bに並列に配して構成される制振装置6は、橋桁部2、3(上部構造1A)の連続部下の橋脚部7(下部構造1B)を対象とするため、橋脚部7を挟んで橋軸O1方向の一方の側(図1(a)で紙面左側)の制振装置としてばね部材6Aが設けられ、他方の側(図1(a)で紙面右側)の制振装置として慣性質量ダンパー6Bが適用されている。つまり、本実施の形態では、制振装置として、ばね部材6Aと慣性質量ダンパー6Bとが併用されている。   In addition, since the vibration damping device 6 arranged in parallel to the supports 5A and 5B is targeted to the bridge leg 7 (lower structure 1B) under the continuous part of the bridge girder parts 2 and 3 (upper structure 1A), A spring member 6A is provided as a damping device on one side in the direction of the bridge axis O1 (left side in FIG. 1A) sandwiching the portion 7, and control on the other side (right side in FIG. 1A). An inertial mass damper 6B is applied as a vibration device. That is, in the present embodiment, the spring member 6A and the inertia mass damper 6B are used in combination as the damping device.

なお、本実施の形態では、ばね部材6Aと慣性質量ダンパー6Bとが併用する構成としているが、制振装置6の設定方法として両者6A、6Bを併用することに制限されることはない。例えば、橋桁部2、3の固有振動数が第1橋桁部2≧第2橋桁部3の関係とする場合において、慣性質量ダンパー6Bを固有振動数の大きくない側の第2橋脚部3の第2支承5Bのみと並列に配置する構成や、ばね部材6Aを固有振動数の小さくない側の第1橋桁部2の第1支承5Aのみと並列に配置する構成とすることができる。   In the present embodiment, the spring member 6A and the inertia mass damper 6B are used in combination, but the method of setting the damping device 6 is not limited to using both 6A and 6B in combination. For example, in the case where the natural frequencies of the bridge girder parts 2 and 3 satisfy the relation of first bridge girder part 2 ≧ second bridge girder part 3, the inertia mass damper 6B is used as the second bridge leg 3 of the second natural side A configuration in which only the two bearings 5B are disposed in parallel or a configuration in which the spring members 6A are disposed in parallel with only the first bearings 5A of the first bridge girder part 2 on which the natural frequency is not small can be adopted.

ここで、本実施の形態の他方の側に設けられる慣性質量ダンパー6Bの一例を図2に示す。   Here, an example of the inertial mass damper 6B provided on the other side of the present embodiment is shown in FIG.

この慣性質量ダンパー6Bは、中心軸線O2を慣性質量ダンパーB2の軸線O2と同軸上に配して設けられたボールねじ10と、ボールねじ10に螺着して配設されたボールナット11と、ボールナット11に取り付けられ、ボールナット11の回転に従動して回転する回転錘12とを備えて構成されている。   The inertial mass damper 6B includes a ball screw 10 provided coaxially with the central axis O2 of the inertial mass damper B2, and a ball nut 11 provided by screwing on the ball screw 10. It comprises a rotating weight 12 attached to the ball nut 11 and rotated following the rotation of the ball nut 11.

ボールねじ10は、その一端10aに、橋梁1の上部構造1A又は下部構造1Bに接続するためのボールジョイントやクレビスなどの連結部材13が取り付けられている。   At one end 10 a of the ball screw 10, a connecting member 13 such as a ball joint or a clevis for connecting to the upper structure 1 A or the lower structure 1 B of the bridge 1 is attached.

また、ボールねじ10に螺着したボールナット11は、軸受け14に支持されている。軸受け14は、軸線O2周りに回転不能に且つ軸線O2方向に移動不能に固設される円環状の外輪14aと、外輪14aの内孔内に配されて軸線O2周りに回転可能に支持された円環状の内輪14bとを備えて形成されている。そして、ボールねじ10が軸受け14の内輪14bの中心孔に挿通して配設されるとともに、ボールナット11が軸受け14の内輪14bに固設されている。これにより、ボールナット11は、軸線O2周りに回転可能に、且つ軸線O2方向に移動不能に配設されている。   Further, the ball nut 11 screwed to the ball screw 10 is supported by the bearing 14. The bearing 14 is an annular outer ring 14a fixed non-rotatably around the axis O2 and immovable in the direction of the axis O2, and is disposed in the inner hole of the outer ring 14a and rotatably supported around the axis O2 It is formed to have an annular inner ring 14b. The ball screw 10 is inserted through the center hole of the inner ring 14 b of the bearing 14, and the ball nut 11 is fixed to the inner ring 14 b of the bearing 14. Thus, the ball nut 11 is disposed rotatably around the axis O2 and immovable in the direction of the axis O2.

さらに、ボールナット11に回転錘12が一体に固定して設けられている。回転錘12は例えば略円筒状に形成され、ボールねじ10を内部に挿通し、ボールねじ10と互いの軸線O2を同軸上に配した状態でボールナット11に固着して配設されている。   Further, a rotary weight 12 is integrally fixed to the ball nut 11. The rotary weight 12 is formed, for example, in a substantially cylindrical shape, and the ball screw 10 is inserted inside, and the ball screw 10 and the axis line O2 of each other are coaxially disposed and fixed to the ball nut 11.

また、慣性質量ダンパー6Bの他端側、すなわちボールねじ10の他端10b側には、円筒状に形成された筒体15が設けられている。
この筒体15は、所定長さの高軸剛性かつ高曲げ剛性の中空円筒体であって、その他端(図中左側の端部)15aに内部を閉塞させるように円板状の接続板17が固着され、この接続板17に、慣性質量ダンパー6Bの他端を、橋梁1の下部構造1B又は上部構造1Aに接続するためのボールジョイントやクレビスなどの連結部材18が取り付けられている。また、筒体15は、その一端側(図中右側の端部)15bが軸受け14に固着され、ボールねじ10の他端10b側が内部に挿入されている。
Further, on the other end side of the inertia mass damper 6B, that is, on the other end 10b side of the ball screw 10, a cylindrical body 15 formed in a cylindrical shape is provided.
The cylindrical body 15 is a hollow cylindrical body having a predetermined length, high-axis rigidity and high bending rigidity, and a disc-shaped connecting plate 17 so as to close the inside to the other end (end on the left side in the drawing) 15a. A connecting member 18 such as a ball joint or clevis for connecting the other end of the inertial mass damper 6B to the lower structure 1B or the upper structure 1A of the bridge 1 is attached to the connection plate 17. Further, one end side (the end on the right side in the drawing) 15b of the cylindrical body 15 is fixed to the bearing 14, and the other end 10b side of the ball screw 10 is inserted inside.

そして、上記構成からなる慣性質量ダンパー6Bにおいては、地震などが発生し、橋梁1に振動エネルギーが作用して下部構造1Bと上部構造1Aに相対的な変位が生じると(入力されると)、この変位差に応じてボールねじ10が軸線O2方向に進退し、軸受け14の内輪14bに支持されたボールナット11が回転するとともに回転錘12が回転する。なお、このとき、ボールねじ10は、軸線O2方向に進退するとともに筒体15の内孔に挿入・出する。
これにより、回転錘12の実際の質量の数千倍もの慣性質量効果が得られ、オイルダンパーなどの従来の制振装置を設置した場合と比較し、応答変位が大幅に低減することになる。
Then, in the inertial mass damper 6B configured as described above, when an earthquake or the like occurs and vibrational energy acts on the bridge 1 and relative displacement occurs in the lower structure 1B and the upper structure 1A (when input), The ball screw 10 advances and retracts in the direction of the axis O2 according to the displacement difference, and the ball nut 11 supported by the inner ring 14b of the bearing 14 rotates and the rotary weight 12 rotates. At this time, the ball screw 10 advances and retracts in the direction of the axis O2, and is inserted into and released from the inner hole of the cylindrical body 15.
As a result, an inertial mass effect that is several thousand times as large as the actual mass of the rotary weight 12 is obtained, and the response displacement is significantly reduced as compared with the case where a conventional damping device such as an oil damper is installed.

なお、慣性質量ダンパー6Bは、両端に作用する相対変位で回転錘12を回転させ、錘質量の数千倍もの大きな慣性質量効果を得るものであるため、作用する相対加速度に比例した反力が得られる。このような機構のため静的な剛性をもたず、橋梁1の上部構造1Aの温度による伸縮(低速)にはほとんど反力を生じさせずに追従することになる。   In addition, since the inertial mass damper 6B rotates the rotary weight 12 with relative displacement acting on both ends to obtain an inertial mass effect as large as several thousand times of mass mass, reaction force proportional to the acting relative acceleration is can get. Due to such a mechanism, there is no static rigidity, and expansion and contraction (low speed) due to the temperature of the upper structure 1A of the bridge 1 is followed with almost no reaction force.

ここで、図1(b)は、本実施形態の橋梁に対する連結制振構造Aの振動解析モデルを示している。この図1(b)では、隣り合う一方の第1橋桁部2の質量をm、他方の第2橋桁部3の質量をm、一方の第1橋桁部2を下部構造1Bの橋脚部7に支持する一方の第1支承5Aの水平剛性をk、他方の第2支承5Bの水平剛性をkとしている。
また、橋脚部7の水平剛性をk、橋脚部7の振動特性を等価な1質点系にモデル化したときの質量をmとしている。さらに、隣接する橋桁部2、3同士の間の連結に設置する制振ダンパー4の減衰係数をCとしている。
Here, FIG. 1 (b) shows a vibration analysis model of the connection vibration control structure A for the bridge of this embodiment. In this FIG. 1 (b), the mass of one adjacent first bridge girder part 2 is m 1 , the mass of the other second bridge girder part 3 is m 2 , and one of the first bridge girder parts 2 is a bridge leg of lower structure 1B. The horizontal rigidity of one of the first bearings 5A to be supported at 7 is k 1 , and the horizontal rigidity of the other second bearing 5B is k 2 .
Further, the horizontal rigidity of the bridge portion 7 is k 0 , and the mass when the vibration characteristics of the bridge portion 7 are modeled into an equivalent one mass point system is m 0 . Furthermore, and the damping coefficient of the damping damper 4 installed in connection between the adjacent bridge girder portion 2 adjacent the C d.

図1(b)に示す振動解析モデルにおいて、一般的な橋梁ではゴム支承部の剛性k、kに比して橋脚部7の剛性kは十分大きく(k、k<<k)、周波数伝達関数を用いた緒元に設定においては、kを剛体とみなして、支承下部(橋脚頂部)に地震動が入力されるものとして検討する。すなわち、質量mに加速度加振x01(上に・・)=x(上に・・)が作用するものとして検討する。さらに具体的には、第1橋桁部2及び第2橋桁部3の周波数伝達関数において応答倍率のピーク値が最小となるようにダンパー緒元を設定する。
このように設定した最適諸元の制振ダンパー4の有無による周波数伝達関数の変化を確認した上で、時刻歴応答解析により制振効果を把握し評価する。
In the vibration analysis model shown in FIG. 1 (b), the rigidity k 0 of the bridge base 7 is sufficiently large (k 1 , k 2 << k) in the general bridge as compared with the rigidity k 1 and k 2 of the rubber bearing. 0 ) In setting based on frequency transfer function, consider k 0 as a rigid body and consider that seismic motion is input to the lower part of the bearing (the top of the bridge pier). That is, it is considered that the acceleration excitation x 01 (····) = x 0 (···) acts on the mass m 0 . More specifically, in the frequency transfer function of the first bridge girder 2 and the second bridge girder 3, the damper load is set so as to minimize the peak value of the response magnification.
After confirming the change of the frequency transfer function by the presence or absence of the damping damper 4 of the optimum specifications set in this way, the vibration control effect is grasped and evaluated by time history response analysis.

質点m、mの加速度応答倍率は、以下のようにして求める。ここで、各質点の絶対変位x、各支承5A、5Bの剛性k、第2支承5Bと並列に設ける慣性質量ダンパー6Bの慣性質量Ψ、第1支承5Aと並列に設けるばね部材6Aのばね剛性k、橋桁部2、3間を連結する制振ダンパー4の減衰係数C、入力加速度をx(上に・・)とすると、(1)式、(2)式、(3)式、及び(4)式が得られる。 The acceleration response magnifications of the mass points m 1 and m 2 are determined as follows. Here, absolute displacement x i of each mass point, rigidity k i of each support 5A, 5B, inertia mass Ψ d of inertia mass damper 6B provided in parallel with second support 5B, spring member 6A provided in parallel with first support 5A the spring stiffness k a of the damping coefficient C d of the damping damper 4 for connecting the bridge girder portions 2 and 3, when the input acceleration and x 0 (· · above), (1), (2), ( 3) Formula and (4) Formula are obtained.

Figure 0006508819
Figure 0006508819

Figure 0006508819
Figure 0006508819

Figure 0006508819
Figure 0006508819

そして、(4)式は(5)〜(7)式で表記されるため、質点m、mの加速度応答倍率は(9)式、及び(10)式の絶対値として求めることができる。 Then, (4) can be obtained (5) to be denoted by - (7), acceleration response magnification of the mass point m 1, m 2 is (9), and as (10) an absolute value of the expression .

Figure 0006508819
Figure 0006508819

Figure 0006508819
Figure 0006508819

Figure 0006508819
Figure 0006508819

このように設定した最適諸元のダンパーの有無による伝達関数の変化を確認したうえで、時刻歴応答解析により制振効果を把握する。なお、本解析において、下部構造1Bとなる橋脚部7の構造減衰を1次固有振動数に対して5%とし、ゴム支承部からなる支承5A、5Bの減衰については無視する。   After confirming the change of the transfer function according to the presence or absence of the damper of the optimum specifications set in this way, the damping effect is grasped by time history response analysis. In the present analysis, the structural damping of the bridge leg 7 to be the lower structure 1B is set to 5% with respect to the primary natural frequency, and the damping of the bearings 5A and 5B made of a rubber bearing is neglected.

ここで、本実施形態の橋梁に対する連結制振構造Aを設けた場合の橋梁1の耐震性能をシミュレーションした結果(試設計)について、図1(a)、(b)等を用いて説明する。   Here, the simulation results (trial design) of the seismic performance of the bridge 1 when the connection vibration control structure A for the bridge of the present embodiment is provided will be described using FIGS. 1A and 1B and the like.

本シミュレーションでは、制振ダンパー4を設けない非制振のCase1と、桁−桁間に制振ダンパー(オイルダンパー)4を設置した本実施形態のCase2、3の3ケースについてシミュレーションを行い、互いのシミュレーション結果を比較した。
具体的に、Case1は、非制振であるので、双方の橋桁部2、3の固有振動数が同じとなって一緒に揺れ、制振装置が効かない構造のものである。Case2(制振aという)は、第1橋桁部2にばね部材6Aのばね剛性kを追加し、桁−桁間に制振ダンパー4であるオイルダンパーCを設置した制振構造である。Case3(制振bという)は、第1橋桁部2にばね部材6Aのばね剛性kを追加し、第2橋桁部3に慣性質量ダンパーΨaを追加し、桁−桁間にオイルダンパーCを設置した制振構造である。
In this simulation, the simulation is performed on the three cases, Case 2 of the present embodiment in which the damping damper (oil damper) 4 is installed between the non-damping Case 1 without the damping damper 4 and the beam-girder. The simulation results of were compared.
Concretely, since Case1 is non-vibration control, the natural frequency of both bridge girder parts 2 and 3 becomes the same, shakes together, and it is a thing of the structure where a damping device does not work. Case2 (referred damping a) is a first bridge beam 2 by adding the spring stiffness k a spring member 6A, digit - is installed vibration damping structure of the oil damper C d is a damping damper 4 between the digits . Case3 (referred damping b) it is the first bridge beam 2 by adding the spring stiffness k a of the spring member 6A, the second bridge beam 3 Add the inertial mass damper [psi, digits - oil between digits damper C d It is a vibration control structure in which

Case1は、双方の橋桁部2、3の固有振動数が同じで連結制振にならない場合であり、制振補強をする前の構造を表している。このCase1では、質点m、mの応答は同じとなる。
Case2、3はいずれも連結部のみに粘性減衰を設け、支承5A、5Bと並列にばね又は慣性質量を設けて双方の橋桁部2、3の固有振動数を乖離させたものである。
Case 1 is a case where the natural frequency of both bridge girder parts 2 and 3 is the same and does not become connection damping, and represents the structure before performing damping reinforcement. In Case 1, responses of the mass points m 1 and m 2 are the same.
In both cases 2 and 3, viscous damping is provided only at the connection part, and springs or inertia masses are provided in parallel with the bearings 5A and 5B to make the natural frequencies of the bridge girder parts 2 and 3 deviate from each other.

また、隣り合う一方の第1橋桁部2のスパンが20m、他方の第2橋桁部3のスパンが30mの3径間の橋梁1をモデル化した。表1に示すように、この橋梁1の諸元は、スパン20mの橋桁部質量m=1052ton、スパン30mの橋梁部質量m=1578ton、支承部剛性k=k=73.5kN/mm(双方の橋桁部2、3を受ける支承剛性は同じとする)であり、時刻歴応答解析では橋脚部質量m=319ton、下部工剛性k=954kN/mmとしてモデル化した。
表1に、各Caseでの振動諸元を示す。
Moreover, the span of 20 m of spans of one adjacent 1st bridge girder part 2 and the span of the other 2nd bridge girder part 3 modeled the bridge 1 between 3 spans of 30 m. As shown in Table 1, the specifications of this bridge 1 are bridge girder mass m 1 = 1052 ton with 20 m span, bridge mass m 2 = 1578 t for 30 m span, and bearing rigidity k 1 = k 2 = 73.5 kN / The bearing stiffness for receiving both bridge girder parts 2 and 3 is assumed to be the same, and in time history response analysis, it is modeled as a bridge base mass m 0 = 319 ton and a substructure rigidity k 0 = 954 kN / mm.
Table 1 shows the vibration specification in each case.

Figure 0006508819
Figure 0006508819

次に、周波数伝達関数を用い、制振ダンパー4の有無(Case1、Case2、Case3)による振動特性の違いを周波数領域で検討した結果について説明する。
なお、構造減衰hはh=0.01としている。
Next, the result of having examined the difference in the vibrational characteristic by the presence or absence (Case1, Case2, Case3) of the damping damper 4 using a frequency transfer function in a frequency domain is demonstrated.
The structural attenuation h is h = 0.01.

図3及び図4は、地表面加速度x(上に「・・」)に対する桁加速度(x(上に「・・」),x(上に「・・」))の比率を加振振動数毎の応答倍率として示した結果である。ここで、図3は質点mの応答、図4は質点mの応答を示している。
なお、加振振動数比ξは、ω=√(k/m)に対する加振角振動数ω=2πf(fは加振振動数)の比率であり、X(上に「・・」)は加速度x(上に「・・」)のフーリエ変換である。図3及び図4は、横軸に入力振動数(加振振動数比)ξ(ω/ω)、縦軸に応答倍率(X(上に「・・」)/X(上に「・・」)、X(上に「・・」)/X(上に「・・」))を示している。
3 and 4 add the ratio of the digit acceleration (x 2 (“••••••”), x 1 (“•••••”)) to the ground surface acceleration x 0 (“•••••••••••••••••••” It is the result shown as a response magnification for each vibration frequency. Here, FIG. 3 is the response of the mass point m 1, FIG. 4 shows the response of the mass point m 2.
In addition, excitation frequency ratio ξ is a ratio of excitation angular frequency ω = 2πf (f is excitation frequency) to ω 0 = √ (k 2 / m 2 ), and X i (above ") Is the Fourier transform of the acceleration x i (" .. "above). 3 and 4, the horizontal axis input frequency (vibration frequency ratio) ξ (ω / ω 0) , the response magnification vertical axis (X 2 ( "..." above) / X 0 (above “••”, X 1 (“••” above) / X 0 (“••” above) are shown.

この図3及び図4から、本実施の形態の制振(Case2、3)を行うことにより共振時の応答倍率が大幅に低減することが確認された。また、下部構造(下部工)の反力は概ね橋桁部2、3の加速度に比例することになり、下部構造の反力も同様に低減する。
とくに、慣性質量ダンパー6Bとばね部材6Aを併用したCase3では、最大応答倍率が2.5以下と極めて小さくなり、ほとんど共振しない特性となることが確認された。さらに、高振動数域(横軸の加振振動数比ξが大きい領域)では、応答倍率が1よりも十分に小さくなっており、固有振動数を超える高振動数域での加速度低減効果を期待することができる。そして、Case1における質点m、mは、固有振動数が同じであるため、応答倍率も同じとなる。
From FIGS. 3 and 4, it is confirmed that the response magnification at resonance is significantly reduced by performing the damping (Cases 2 and 3) of the present embodiment. Further, the reaction force of the lower structure (substructure) is approximately proportional to the acceleration of the bridge girder portions 2 and 3, and the reaction force of the lower structure is similarly reduced.
In particular, in Case 3 in which the inertial mass damper 6B and the spring member 6A were used in combination, it was confirmed that the maximum response magnification was extremely small at 2.5 or less, and the characteristics hardly resonated. Furthermore, in the high frequency range (the range where the vibration frequency ratio 横 in the horizontal axis is large), the response magnification is sufficiently smaller than 1 and the acceleration reduction effect in the high frequency range exceeding the natural frequency is You can expect. And since mass points m 1 and m 2 in Case 1 have the same natural frequency, the response magnification is also the same.

図5及び図6は、地表面変位xに対する各部変位(x,x,相対変位|x−x|)の比率を応答倍率として示した結果である。
図5及び図6から、制振(Case2、3)によって共振域での応答倍率が大幅に低下し、双方とも変位が抑制される(双方の橋桁変位=質点m、mの変位、双方の支承部変位がいずれも抑制される)ことが確認された。とくに、Case3では、前述の加速度の場合と同様に最大応答倍率が2.5以下と極めて小さくなり、ほとんど共振しない特性となることが確認された。
5 and 6, each unit displacement for the ground surface displacement x 0 (x 1, x 2 , relative displacement | x 2 -x 1 |) is the result of the ratio of the response factor.
From FIG. 5 and FIG. 6, the response magnification in the resonance region is greatly reduced by damping (Cases 2 and 3), and both displacements are suppressed (both bridge girder displacement = displacement of mass points m 1 and m 2 , both It is confirmed that the bearing displacement of In particular, in Case 3, as in the case of the above-mentioned acceleration, it was confirmed that the maximum response magnification was extremely small at 2.5 or less, and the characteristics hardly resonated.

また、相対変位も応答変位と同程度に抑制されることから、地震時に橋桁部2、3同士が衝突したり、離間しすぎて落橋したりするおそれが小さくなる。Case3では、相対変位の最大応答倍率がCase2の3割程度と小さく、共振域以外での応答倍率が1以下となっていることから、地震動によらず過大な相対変位が生じるおそれは小さいものとなる。   Further, the relative displacement is also suppressed to the same extent as the response displacement, so the possibility of the bridge girder parts 2 and 3 colliding with each other at the time of an earthquake or of falling apart due to excessive separation is reduced. In Case 3, since the maximum response magnification of relative displacement is as small as about 30% of Case 2 and the response magnification outside of the resonance region is 1 or less, there is little possibility that excessive relative displacement will occur regardless of earthquake motion Become.

図7は、図5及び図6の縦軸(応答倍率)を5倍に拡大した図であって、Case3の支承5Aは図5及び図6と同じものを相対変位と比較するために図示している。なお、図7に示す縦軸は、相対変位では|(X−X)/X|、第1支承5Bでは、|(X−X)/X|、第2支承5Bでは、|(X−X)/X|をそれぞれ表している。 FIG. 7 is an enlarged view of the vertical axis (response magnification) of FIGS. 5 and 6 by 5 times, and the bearing 5A of Case 3 is illustrated to compare the same as FIGS. 5 and 6 with relative displacement. ing. The vertical axis shown in FIG. 7 is | (X 1 −X 2 ) / X 0 | for relative displacement, | (X 1 −X 0 ) / X 0 | for the first bearing 5B, and for the second bearing 5B. , | (X 2 −X 0 ) / X 0 |.

次に、時刻歴解析を用い、制振ダンパー4の有無(Case1、Case2、Case3)による応答の違いを検討した結果について説明する。   Next, the result of having examined the difference of the response by the existence (Case1, Case2, Case3) of damping damper 4 using time history analysis is explained.

ここでは、公益社団法人日本道路協会:道路橋示方書に示されたレベル2地震動で2種地盤に対応するII−II−3地震波(最大加速度736gal)を入力し、時刻歴波形で応答結果を比較した。
なお、この入力地震動の波形は図8に示す通りである。
Here, Japan Road Association: II-II-3 seismic waves (maximum acceleration 736 gal) corresponding to the two grounds with level 2 earthquake motion shown in the road bridge specification, and the response results in time history waveform Compared.
The waveform of this input earthquake motion is as shown in FIG.

図9、図10はそれぞれ、Case2、3における一方の橋桁部(質点1)2の加速度、図11、図12はそれぞれ、Case2、3における他方の橋桁部(質点2)3の加速度を示している。
図9〜図12に示すように、双方の振動特性が等しいCase1は、橋桁部2、3の両方の揺れが同じになるので連結部に相対変位が生じず、連結制振の効果がないことを確認することができる。そのため、質点1、2の応答加速度は同じとなる。
9 and 10 show the acceleration of one bridge girder (mass point 1) 2 in Case 2 and 3 respectively, and FIGS. 11 and 12 show the acceleration of the other bridge girder (mass point 2) 3 in Case 2 and 3 respectively. There is.
As shown in FIG. 9 to FIG. 12, in Case 1 where both vibration characteristics are equal, there is no relative displacement in the connecting part because the swinging of both of the bridge girder parts 2 and 3 is the same and there is no effect of connection damping Can be confirmed. Therefore, the response accelerations of the mass points 1 and 2 are the same.

支承5Aと並列にばね部材6Aを付加したCase2では、制振により最大応答加速度はほとんど低減しないが、隣り合う橋桁部2、3同士を連結した連結部に制振ダンパー4による減衰を付与したことによって大きな揺れの継続時間が大幅に低減することが確認された。
一方、連結部だけでなく支承5A、5Bと並列に制振装置を付加したCase3では、最大応答加速度が1/2〜1/3に大きく低減され、揺れもCase2よりも急速に収束することがわかる。とくに、慣性質量ダンパー6Bを設置した第2橋桁部3(質点2)の加速度が大きく低減していることが確認された。
In Case 2 in which the spring member 6A is added in parallel to the bearing 5A, the maximum response acceleration is hardly reduced by damping, but damping by the damping damper 4 is applied to the connection portion connecting adjacent bridge girder parts 2 and 3 to each other. It has been confirmed that the duration of the big shaking is significantly reduced.
On the other hand, in Case 3 where vibration damping devices are added not only at the connection part but also in parallel with the bearings 5A and 5B, the maximum response acceleration is greatly reduced to 1/2 to 1/3, and the sway converges more rapidly than Case 2. Recognize. In particular, it was confirmed that the acceleration of the second bridge girder portion 3 (mass point 2) in which the inertia mass damper 6B was installed was greatly reduced.

また、質点1、2の加速度応答波形を比較すると、Case2はピークがほぼ同時刻にあるが、Case3はピークの発生時刻がずれており、加速度に桁部質量を乗じたものが橋脚部7に地震力として作用することを考慮すると、Case3は橋脚部7の応力を低減する制振効果が高いといえる。   Also, when comparing the acceleration response waveforms of the mass points 1 and 2, in Case 2 the peaks are almost at the same time, but in Case 3 the occurrence time of the peaks is deviated and Considering that it acts as a seismic force, Case 3 can be said to have a high damping effect to reduce the stress of the bridge 7.

次に、図13、図14はそれぞれ、Case2、3における一方の第1支承(質点1)5Aの変位、図15、図16はそれぞれ、Case2、3における他方の第2支承(質点2)5Bの変位を示している。
図13〜図16に示すように、双方の振動特性が等しいCase1は、橋桁部2、3の両方の揺れが同じになるので連結部に相対変位が生じず、連結制振の効果がないことを確認することができる。そのため、質点1、2の支承部応答変位は同じとなる。
Next, FIGS. 13 and 14 show the displacement of one first bearing (mass point 1) 5A in Case 2 and 3 respectively, and FIGS. 15 and 16 show the other second bearing (mass point 2) 5B in Case 2 and 3 respectively. Shows the displacement of the
As shown in FIG. 13 to FIG. 16, in Case 1 where both vibration characteristics are equal, there is no relative displacement in the connecting part because the swinging of both of the bridge girder parts 2 and 3 is the same, and there is no effect of connection damping. Can be confirmed. Therefore, the bearing response displacements of the mass points 1 and 2 are the same.

支承5Aと並列にばね部材6Aを付加したCase2では、制振により質量の大きい質点2の最大応答変位はほとんど低減しないが、隣り合う橋桁部2、3同士を連結した連結部に制振ダンパー4による減衰を付与したことによって大きな揺れの継続時間が大幅に低減することが確認された。
一方、連結部だけでなく支承5A、5Bと並列に制振装置を付加したCase3では、最大応答変位が1/2〜1/3に大きく低減され、揺れもCase2よりも急速に収束することがわかる。そして、支承5A,5Bと並列にばね部材6Aを追加した固有振動数が高い第1橋桁部2(質点1)の応答変位が大幅に低減されていることが確認された。
In Case 2 in which the spring member 6A is added in parallel to the support 5A, the maximum response displacement of the mass point 2 with a large mass is hardly reduced by damping, but the damping damper 4 is connected to the connecting portion connecting adjacent bridge girder parts 2 and 3 to each other. It was confirmed that the duration of the large shaking was significantly reduced by applying the damping due to.
On the other hand, in Case 3 where vibration damping devices are added not only at the connection part but also in parallel with the bearings 5A and 5B, the maximum response displacement is greatly reduced to 1/2 to 1/3, and the sway converges more rapidly than Case 2. Recognize. And it was confirmed that the response displacement of the 1st bridge girder part 2 (mass point 1) with high natural frequency which added spring member 6A parallel to bearing 5A, 5B is reduced sharply.

また、質点1、2の変位応答波形を比較すると、Case2はピークがほぼ同時刻にあるが、Case3はピークの発生時刻がずれており、慣性質量ダンパー6Bを付加したことによる橋桁部2、3間の振動特性の差異が大きくなったためと考えられる。   Also, comparing the displacement response waveforms of the mass points 1 and 2, in Case 2 the peaks are at almost the same time, but in Case 3 the occurrence time of the peaks is shifted, and bridge girder parts 2 and 3 due to the addition of inertial mass damper 6B. This is considered to be because the difference in the vibration characteristics between them has become large.

図17は、Case2、3における桁間の相対変位を示している。
図17に示すように、桁間の相対変位は200〜300mmであり、揺れの収束も早くなることが確認された。
制振ダンパー4の反力は、Case2で2900kNであり、オイルダンパーを5台並列配置すれば1台当り600kNで済み、免震用に使用されている製品で十分対応できる範囲である。また、Case3で5500kNであり、オイルダンパーを7台並列配置すれば1台当り800kNで済み、免震用に使用されている製品で十分対応できる範囲である。
FIG. 17 shows the relative displacement between digits in Cases 2 and 3.
As shown in FIG. 17, it was confirmed that the relative displacement between the girders was 200 to 300 mm, and the convergence of the shaking was also quick.
The reaction force of the vibration control damper 4 is 2900 kN in Case 2 and 600 kN per unit is sufficient if five oil dampers are arranged in parallel, which is a range sufficient for products used for seismic isolation. In addition, it is 5500kN in Case 3 and 800kN per unit is sufficient if seven oil dampers are arranged in parallel, which is a range that can be sufficiently coped with by products used for seismic isolation.

一方、Case3での慣性質量ダンパー6Bの反力は、16300kNであり、3径間にある桁のうち2台の両端に合計18台設置すれば1台当り910kNで済み、ばね部材6Aの反力は、4710kNであり、3径間にある桁のうち2台の両端に合計12台設置すれば1台当り400kNで済み、現状の製品で十分対応できる範囲である。   On the other hand, the reaction force of the inertia mass damper 6B in Case 3 is 16300 kN, and if a total of 18 units are installed at both ends of two of the three-gauge beams, 910 kN per unit is sufficient, and the reaction force of the spring member 6A Is 4710 kN, and if a total of 12 units are installed at the two ends of the girder having three diameters, a total of only 400 kN can be used per unit, which is a range that can be sufficiently coped with by the current products.

次に、図18、図19は、Case2、3における橋脚部7の時間(sec)に対するせん断力Nを示している。
図18及び図19に示すように、橋脚部7のせん断力については、Case2では最大応答値は制振によりほとんど変化しないものの、揺れの収束が早くなることが確認された。
一方、Case3では、最大応力値が制振により4割に低減するとともに、Case2よりもさらに揺れの収束が早くなっていることが確認された。
Next, FIGS. 18 and 19 show the shear force N with respect to the time (sec) of the bridge 7 in Case 2 and 3. FIG.
As shown in FIG. 18 and FIG. 19, it was confirmed that in Case 2 the maximum response value hardly changes due to the damping in Case 2, but the convergence of the shaking becomes faster.
On the other hand, in Case 3, it was confirmed that the maximum stress value was reduced to 40% due to vibration control, and that the convergence of shaking was even faster than in Case 2.

したがって、本実施の形態の橋梁に対する連結制振構造Aにおいては、隣接する橋桁部2、3間を制振ダンパー4により連結し、橋梁1の下部構造1Bと上部構造1Aの橋桁部2、3とのそれぞれの間に支障5A、5Bと並列に制振装置6(ばね部材6A、慣性質量ダンパー6B)を追加して配置した構成とすることで、隣接する双方の橋桁部2、3の振動特性が同じ場合であっても、双方の振動特性(固有振動数)を変えることができ、大きな応答低減効果を得ることができる。そのため、従来のように、制振ダンパー4だけによる制振のように、隣接する双方の橋桁部2、3の振動特性が同じ場合に制振効果が得られないという課題を効果的に解決することができる。   Therefore, in the connection vibration control structure A for the bridge according to the present embodiment, the adjacent bridge girder portions 2 and 3 are connected by the vibration control damper 4, and the bridge girder portions 2 and 3 of the lower structure 1B and the upper structure 1A of the bridge 1 are connected. The vibration control device 6 (spring member 6A, inertia mass damper 6B) is additionally disposed in parallel with the obstacles 5A and 5B between them, so that vibration of the adjacent bridge girder parts 2 and 3 is generated. Even if the characteristics are the same, both vibration characteristics (natural frequency) can be changed, and a large response reduction effect can be obtained. Therefore, it solves the problem that the vibration control effect can not be obtained when the vibration characteristics of both adjacent bridge girder portions 2 and 3 are the same as in the conventional case, as in the case of the vibration control by the vibration control damper 4 alone. be able to.

また、制振装置6として、ばね部材6Aを追加して双方の振動特性を変えた場合には、追加した側の橋桁の最大応答加速度や最大応答変位が低減されるが、ばね部材6Aを追加しなかった側(質量にばね剛性を乗じた値の大きい側)の応答はあまり低減されない。また、橋脚部7に生じる応力については、ばね部材6A及び慣性質量ダンパー6Bの双方を設ける場合に比べて小さいが制振効果としては得られる。なお、いずれにおいても、制振により揺れの収束が早くなる利点がある。   In addition, when the spring member 6A is added as the vibration control device 6 and both vibration characteristics are changed, the maximum response acceleration and the maximum response displacement of the added bridge girder are reduced, but the spring member 6A is added The response of the non-doing side (the side of the mass multiplied by the spring stiffness) is not significantly reduced. Further, the stress generated in the bridge leg portion 7 is smaller than in the case where both the spring member 6A and the inertial mass damper 6B are provided, but can be obtained as a damping effect. In either case, there is an advantage that the convergence of the swaying becomes faster due to the vibration control.

また、本実施の形態では、制振装置として、ばね部材6Aに加えて慣性質量ダンパー6Bを追加、すなわちばね部材6Aと慣性質量ダンパー6Bを併用して双方の振動特性を変えた場合には、双方の最大応答加速度や最大応答変位が大きく低減される。また、橋脚に生じる応力についても大幅に低減され、基礎に作用するせん断力も同様に低減することができる。なお、いずれについても、上記のCase2(ばね部材6Aのみを追加した場合)よりもさらに揺れの収束が早くなる。   Further, in the present embodiment, as the vibration damping device, in addition to the spring member 6A, an inertial mass damper 6B is added, that is, when both of the vibration characteristics are changed by using both the spring member 6A and the inertial mass damper 6B. Both maximum response accelerations and maximum response displacements are greatly reduced. In addition, the stress generated in the bridge pier can be greatly reduced, and the shear force acting on the foundation can be reduced as well. In any case, the convergence of the shaking is faster than in Case 2 above (when only the spring member 6A is added).

また、支承部5A、5Bを交換する必要がなく、単に制振機構を付加するだけなので、橋梁1を工事中も継続的に使用することができる。   Moreover, since it is not necessary to exchange bearing part 5A, 5B, it is only adding a damping mechanism, and it can use bridge 1 continuously also during construction.

また、制振ダンパー4を隣接する橋桁部2、3間を連結するように設けるとともに、制振装置6を支承5と並列に配置するだけの比較的簡単な作業なので、施工に当たり特別な技能は必要とされず、新設だけでなく既設橋梁1の制振改修にも適用できる。   In addition, since the damping damper 4 is provided so as to connect the adjacent bridge girder parts 2 and 3 and the damping device 6 is arranged relatively in parallel to the bearing 5, it is a relatively simple operation. It is not required and can be applied not only to new construction but also to damping improvement of the existing bridge 1.

以上、本発明に係る橋梁に対する連結制振構造及び橋梁に対する連結制振構造の設定方法の一実施形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one embodiment of the connection damping structure with respect to the bridge concerning this invention and the setting method of the connection damping structure with respect to the bridge was described, this invention is not limited to said embodiment, The meaning is given. It can change suitably in the range which does not deviate.

1 橋梁
1A 上部構造
1B 下部構造
2 一方の第1橋桁部(橋桁)
3 他方の第2橋桁部(橋桁)
4 制振ダンパー
5、5A、5B 支承部
6 制振装置
6A ばね部材
6B 慣性質量ダンパー
7 橋脚部
A 橋梁に対する連結制振構造
O1 橋軸
1 Bridge 1A Upper structure 1B Lower structure 2 One bridge girder part (bridge girder)
3 The other second bridge girder (bridge girder)
4 Damping damper 5, 5A, 5B Bearing part 6 Damping device 6A Spring member 6B Inertia mass damper 7 Abutment part A Connection damping structure to bridge O1 Bridge shaft

Claims (2)

隣り合う一方の第1橋桁部に一端側を、他方の第2橋桁部に他端側をそれぞれ接続して制振ダンパーを設置して構成されるとともに、
前記橋桁部のそれぞれと下部構造との間において、複数の支承を設置するとともに、これら支承のうち少なくとも一方と並列配置されるように制振装置を設置して構成され、
前記制振装置として、ばね部材又は慣性質量ダンパーが設けられ、前記第1橋桁部及び前記第2橋桁部の周波数伝達関数において応答倍率のピーク値が最小となるようにダンパー緒元が設定されていることを特徴とする橋梁に対する連結制振構造。
A damping damper is installed by connecting one end side to one adjacent first bridge girder part and the other end side to the other second bridge girder part,
A plurality of bearings are installed between each of the bridge girder parts and the lower structure, and a damping device is installed so as to be arranged in parallel with at least one of the bearings,
A spring member or an inertial mass damper is provided as the damping device, and a damper factor is set so that the peak value of the response magnification is minimized in the frequency transfer function of the first bridge girder and the second bridge girder. Vibration control structure for bridges that is characterized by
請求項1記載の橋梁に対する連結制振構造の設定方法であって、
前記第1橋桁部の固有振動数が、前記第2橋桁部の固有振動数よりも大きい場合において、
前記第2橋桁部側の支承のみと並列に前記慣性質量ダンパーが配置される構成と、
前記第1橋桁部側の支承のみと並列に前記ばね部材が配置される構成と、
前記第2橋桁部側の支承のみと並列に前記慣性質量ダンパーが配置されるとともに、前記第1橋桁部側の支承のみと並列に前記ばね部材が配置される構成と、
のいずれか1つが選択的に設けられることを特徴とする橋梁に対する連結制振構造の設定方法。
It is a setting method of the connection vibration control structure with respect to the bridge of Claim 1, Comprising:
In the case where the natural frequency of the first bridge girder is larger than the natural frequency of the second bridge girder,
A configuration in which the inertia mass damper is disposed in parallel with only the bearing on the second bridge girder side;
The spring member is disposed in parallel with only the bearing on the first bridge girder side,
The inertial mass damper is disposed in parallel with only the support on the second bridge girder side, and the spring member is disposed in parallel with only the support on the first bridge girder side.
A method of setting a connection vibration control structure for a bridge, wherein any one of the two is selectively provided.
JP2015024159A 2015-02-10 2015-02-10 Vibration control structure for bridge and setting method of vibration control structure for bridge Active JP6508819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024159A JP6508819B2 (en) 2015-02-10 2015-02-10 Vibration control structure for bridge and setting method of vibration control structure for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024159A JP6508819B2 (en) 2015-02-10 2015-02-10 Vibration control structure for bridge and setting method of vibration control structure for bridge

Publications (2)

Publication Number Publication Date
JP2016148147A JP2016148147A (en) 2016-08-18
JP6508819B2 true JP6508819B2 (en) 2019-05-08

Family

ID=56691558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024159A Active JP6508819B2 (en) 2015-02-10 2015-02-10 Vibration control structure for bridge and setting method of vibration control structure for bridge

Country Status (1)

Country Link
JP (1) JP6508819B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109235247A (en) * 2018-10-31 2019-01-18 贵州理工学院 A kind of vibration isolation type bridge
JP7272858B2 (en) * 2019-05-15 2023-05-12 清水建設株式会社 Damping mechanism
CN112049890B (en) * 2020-09-08 2021-10-08 河北振创电子科技有限公司 Bridge girder falling prevention device capable of balancing transverse bending moment
CN112853939B (en) * 2021-03-25 2023-04-07 深圳大学 Bridge self-adaptive wind vibration suppression device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160413A (en) * 1982-03-16 1983-09-22 三菱電機株式会社 Vibration control apparatus
JPH0477616A (en) * 1990-07-20 1992-03-11 Hitachi Ltd Abnormality diagnosing apparatus
JP3046929B2 (en) * 1995-06-16 2000-05-29 三菱重工業株式会社 Bridge seismic isolation structure
US6233884B1 (en) * 1997-10-20 2001-05-22 Steven B. Tipping Method and apparatus to control seismic forces, accelerations, and displacements of structures
KR100397141B1 (en) * 2000-04-12 2003-09-13 재단법인서울대학교산학협력재단 Seismic Load Transmitting System with Dual Curvatures Impacting Surface For Multi-span Continuous Bridges
JP2004332478A (en) * 2003-05-12 2004-11-25 Chuo Fukken Consultants Co Ltd Earthquake resistant structure for bridge
JP2005194692A (en) * 2003-12-26 2005-07-21 Tokyu Construction Co Ltd Floating slab structure
JP4968682B2 (en) * 2006-10-23 2012-07-04 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP5689699B2 (en) * 2011-01-28 2015-03-25 悟 川上 Fall bridge prevention device
JP5757197B2 (en) * 2011-08-24 2015-07-29 清水建設株式会社 Damping structure

Also Published As

Publication number Publication date
JP2016148147A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6508819B2 (en) Vibration control structure for bridge and setting method of vibration control structure for bridge
JP6440243B2 (en) Setting method of bridge damping structure
US9580876B2 (en) Device for damping vibrations in cables of a suspension system of a civil engineering structure
DK180725B1 (en) Damper and damper system for damping relative lateral movement between a tensioned cable and a support structure
JP6440244B2 (en) Setting method of bridge damping structure
JP5403372B2 (en) Truss beam structure
JP6440245B2 (en) Connection damping structure for bridge and setting method of connection damping structure for bridge
JP5601488B2 (en) Suspension damping structure
JP3718683B2 (en) Vibration isolation connection device and structure vibration isolation connection mechanism
JPH10183530A (en) Reinforcing method for bridge
JP6895737B2 (en) Installation structure of building oil damper
Nielsen et al. Seismic isolation with a new friction-viscoelastic damping system
JP3747282B2 (en) Hybrid seismic isolation device
JP6289929B2 (en) Structure damping device and specification setting method thereof
JP4842722B2 (en) Seismic isolation structures for girder bridges and aerial structures
Tian et al. Seismic performance of curved viaducts with shock absorber devices of different stiffness in great earthquakes
JP2011141026A (en) Tmd mechanism
JP4788134B2 (en) Damping structure of structure
JP5327647B2 (en) Damping structure
JP2020186744A (en) Vibration control device and vibration control structure
Pastia et al. Seismic Protection of a Realistic Bridge Structure using Passive Friction Devices
Fikri et al. Passive vibration control analysis of a mosque structure using diagonal bracing damper and toggle bracing damper
KR101975572B1 (en) Seismic control apparatus for reducing the lateral responses of apartment houses
Dutta et al. Vibration control of seismically excited adjacent buildings prone to pounding by use of friction dampers
Paknahad et al. Evaluation of restrainer effects on bridge response subjected to dynamic loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6508819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250