JP3397678B2 - Damping structure for structures - Google Patents

Damping structure for structures

Info

Publication number
JP3397678B2
JP3397678B2 JP05353898A JP5353898A JP3397678B2 JP 3397678 B2 JP3397678 B2 JP 3397678B2 JP 05353898 A JP05353898 A JP 05353898A JP 5353898 A JP5353898 A JP 5353898A JP 3397678 B2 JP3397678 B2 JP 3397678B2
Authority
JP
Japan
Prior art keywords
structures
columns
damper
damper member
kinetic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05353898A
Other languages
Japanese (ja)
Other versions
JPH11247486A (en
Inventor
洋治 島▲崎▼
渉 森尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP05353898A priority Critical patent/JP3397678B2/en
Publication of JPH11247486A publication Critical patent/JPH11247486A/en
Application granted granted Critical
Publication of JP3397678B2 publication Critical patent/JP3397678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、地震や風等で加えら
れる水平方向の外力による建築物や橋梁等の構造物の振
動を減衰させる制振構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping structure for damping the vibration of structures such as buildings and bridges due to horizontal external force applied by an earthquake or wind.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】超高
層ビルディングを含む各種建築物や長大橋の主塔や橋梁
の橋脚等の構造物は、地震や風等の水平方向の外力を受
けると変形してその内部にエネルギーを蓄え、この内部
エネルギーによって次の変形を生じ、釣合いを保とうと
する。これにより構造物は、水平方向の外力を受けると
曲げ変形や剪断変形を生じながら振動する。このとき、
構造物の横断面では曲げ応力や剪断応力が生じており、
曲げ応力は横断面端部で最大となるが、剪断応力は横断
面中立軸で最大となる。
2. Description of the Related Art Various structures including super high-rise buildings and structures such as long towers and main towers of bridges and bridge piers are deformed when an external force in the horizontal direction such as an earthquake or wind is applied. Then, energy is stored in the inside, and this internal energy causes the following deformation to try to maintain the balance. As a result, the structure vibrates while undergoing bending deformation and shearing deformation when subjected to a horizontal external force. At this time,
Bending stress and shear stress are generated in the cross section of the structure,
Bending stress is highest at the ends of the cross section, while shear stress is highest at the neutral axis of the cross section.

【0003】従って、上記の如き構造物に生ずる剪断応
力による内部エネルギーを次の変形が生ずる前に消費す
ることができれば、構造物の変形を小さくし得て構造物
の耐震性能を高めることができ、また、内部エネルギー
の全体的な減少により曲げ応力による内部エネルギーも
小さくすることができるので、構造物をより柔軟なもの
とすることができる。
Therefore, if the internal energy due to the shear stress generated in the structure as described above can be consumed before the next deformation, the deformation of the structure can be reduced and the seismic performance of the structure can be improved. Also, since the internal energy due to bending stress can be reduced due to the overall reduction of the internal energy, the structure can be made more flexible.

【0004】ところで、上記のように内部エネルギーを
小さくする制振構造としては従来、例えば、日本機械学
会〔No.95-28〕第4回「運動と振動の制御」シンポジウ
ム講演論文集中第 255頁〜第 258頁に松本幸人等が発表
した「並列構造物の曲げねじれ振動制御」が知られてお
り、この制振構造は、厚さの異なる二つの並列建築物間
に水平方向に作動するリニアアクチュエーター(リニア
モーター)を介在させてそれらの建築物同士を連結し、
それらの建築物の相互作用とリニアアクチュエーターの
作動とによりにより建築物の振動を抑制せんとするもの
である。
By the way, as a vibration damping structure for reducing the internal energy as described above, conventionally, for example, the 4th "Motion and Vibration Control" Symposium Lectures concentrated on page 255 of the Japan Society of Mechanical Engineers [No.95-28]. ~ Page 258, "Bending and torsional vibration control of parallel structures" announced by Sachito Matsumoto et al. Is known, and this damping structure is a linear motion that operates horizontally between two parallel buildings with different thickness. An actuator (linear motor) is interposed to connect those buildings together,
The vibration of the building is suppressed by the interaction of those buildings and the operation of the linear actuator.

【0005】また、上記のように内部エネルギーを小さ
くする制振構造としては従来、例えば、建設省建築研究
所監修の「建築技術」1996年10月号中第 130頁〜第 131
頁に林理が発表した「早期降伏して地震エネルギーを吸
収する極軟鋼制振壁」によるものも知られており、この
制振構造は、建築物の各階層間を極軟鋼制振壁で連結す
ることにより、階層間の水平方向の剪断応力による内部
エネルギーをその極軟鋼制振壁の水平方向の剪断変形で
消費することにて建築物の振動を抑制せんとするもので
ある。
Further, as a vibration control structure for reducing the internal energy as described above, for example, pages 130 to 131 in the October 1996 issue of “Construction Technology” supervised by the Institute of Architecture, Ministry of Construction have been used.
It is also known that Hayashi Osamu announced the "Extremely soft steel damping wall that absorbs seismic energy by premature yielding." This damping structure uses extremely soft steel damping walls between each floor of a building. By connecting them, the internal energy due to the horizontal shear stress between the floors is consumed by the horizontal shear deformation of the extremely mild steel damping wall to suppress the vibration of the building.

【0006】しかしながら、上記前者の制振構造ではリ
ニアアクチュエーターの設置および制御に多大のコスト
が嵩むという不都合があり、また上記後者の制振構造で
は構造物全体を制振するのに構造物全体の階層間に亘っ
て制振壁を設けなければならないためこれも設置に多大
のコストが嵩むという不都合があった。
However, the former vibration damping structure has a disadvantage in that the installation and control of the linear actuator is very expensive, and the latter vibration damping structure has a problem in that the entire structure is damped. Since it is necessary to provide a damping wall over the floors, this also has a disadvantage that the installation costs a lot.

【0007】それゆえこの発明は、構造物横断面の中立
軸またはその付近に剪断エネルギーの減衰性の高い部材
を配置することで鉛直方向(上下方向)の剪断応力によ
る内部エネルギーを消費するようにした、簡易な構成で
制振性能の優れた制振構造を提供することを目体として
いる。
Therefore, according to the present invention, by disposing a member having a high shear energy damping property at or near the neutral axis of the cross section of the structure, the internal energy due to the shear stress in the vertical direction (vertical direction) is consumed. The objective is to provide a vibration damping structure with a simple structure and excellent vibration damping performance.

【0008】[0008]

【課題を解決するための手段およびその作用・効果】上
記課題を解決するため、請求項1記載のこの発明の構造
物用制振構造は、並立する二つ以上の構造物の間に、水
平方向の外力による前記二つ以上の構造物の撓み変形に
伴うそれらの構造物間の上下方向の位置ずれの運動エネ
ルギーを消費するダンパー部材を配設したことを特徴と
しており、ここにおけるダンパー部材は、通常のピスト
ン式オイルダンパーでも良いが、請求項2の記載のよう
に、前記構造物間の上下方向の位置ずれにより剪断変形
して運動エネルギーを消費する部材としても良く、また
請求項3の記載のように、前記構造物間の上下方向の位
置ずれによりそれらの構造物の少なくとも一方に対し摺
動して運動エネルギーを消費する部材としても良い。
Means for Solving the Problem and Its Action / Effect In order to solve the above-mentioned problems, a structure for damping vibration of a structure according to the present invention has a horizontal structure between two or more structures standing in parallel. Characterized in that a damper member that consumes the kinetic energy of the vertical displacement between the structures due to the bending deformation of the two or more structures due to the external force in the direction is arranged, and the damper member here is A normal piston type oil damper may be used, but as described in claim 2, it may be a member that consumes kinetic energy by shearing and deforming due to vertical displacement between the structures. As described above, the member may be a member that consumes kinetic energy by sliding on at least one of the structures due to vertical displacement between the structures.

【0009】かかるこの発明の制振構造にあっては、並
立する二つ以上の構造物の間に配設されたダンパー部材
が、水平方向の外力による前記二つ以上の構造物の撓み
変形に伴うそれらの構造物間の上下方向の位置ずれの運
動エネルギーを消費し、これによって、水平方向の外力
により前記構造物に蓄えられた内部エネルギーを消費す
る。しかもこの発明の制振構造にあっては、ダンパー部
材は一個でも複数個でも良いが、ダンパー部材が各々、
構造物の高さ方向全体の位置ずれに対し作用して構造物
全体に対しエネルギー消費機能を発揮する。
In the vibration damping structure of the present invention, the damper member disposed between the two or more structures standing in parallel is bent and deformed by the external force in the horizontal direction. Along with this, the kinetic energy of the vertical displacement between the structures is consumed, thereby consuming the internal energy stored in the structures by the external force in the horizontal direction. Moreover, in the vibration damping structure of the present invention, the damper member may be one or plural, but each damper member is
It acts on the displacement of the entire structure in the height direction and exerts an energy consumption function on the entire structure.

【0010】従って、この発明の制振構造によれば、並
立する二つ以上の構造物を簡易な構成で効果的に制振し
得て、耐震や耐風性能の優れた構造物を低コストで提供
することができる。
Therefore, according to the vibration damping structure of the present invention, two or more structures standing in parallel can be effectively damped with a simple structure, and a structure excellent in earthquake resistance and wind resistance can be obtained at low cost. Can be provided.

【0011】そして請求項2記載のダンパー部材にあっ
ては、構造物間の上下方向の位置ずれの運動エネルギー
をその位置ずれにより剪断変形して熱エネルギーに変換
することで消費し、また請求項3記載のダンパー部材に
あっては、構造物間の上下方向の位置ずれの運動エネル
ギーをその位置ずれによりそれらの構造物の少なくとも
一方に対し摺動して熱エネルギーに変換することで消費
する。
In the damper member according to the second aspect, the kinetic energy of the vertical positional displacement between the structures is consumed by being shear-deformed by the positional displacement and converted into heat energy. In the damper member described in 3, the kinetic energy of the positional displacement between the structures in the vertical direction slides against at least one of the structures due to the displacement and is converted into thermal energy for consumption.

【0012】従って、これらのダンパー部材によれば、
制振構造の構成をより簡易なものとすることができる。
Therefore, according to these damper members,
The structure of the vibration damping structure can be made simpler.

【0013】さらにこの発明の制振構造においては、請
求項1の記載のように、前記二つ以上の構造物同士を上
下方向相対移動可能に連結しかつ引き寄せてそれらの構
造物に互いの接近方向の初期弾性撓み変形を与える連結
部材を設ける。かかる連結部材を設けることで、前記構
造物同士の離間方向の変形がその連結部材によって防止
されるので、前記ダンパー部材の剪断変形や摺動を確実
にもたらすことができる。
Further, in the vibration damping structure of the present invention, as described in claim 1, the two or more structures are connected so as to be movable relative to each other in the vertical direction, and are attracted to each other to approach each other. A connecting member is provided that provides initial elastic flexural deformation in the direction. By providing such a connecting member, deformation of the structures in the separating direction is prevented by the connecting member, so that shear deformation and sliding of the damper member can be surely brought about.

【0014】そして前記連結部材が、前記二つ以上の構
造物の上部同士を引き寄せて、それらの構造物に互いに
接近する方向の初期弾性撓み変形を与えておくので、前
記ダンパー部材の剪断変形や摺動をさらに確実にもたら
すことができるとともに、その初期弾性撓み変形による
内部エネルギーが水平方向の外力に抵抗するため、外力
による内部エネルギーの蓄積自体も減少させることがで
きる。
Since the connecting member draws the upper portions of the two or more structures to each other and gives them an initial elastic bending deformation in a direction of approaching each other, shearing deformation of the damper member or The sliding can be more surely brought about, and since the internal energy due to the initial elastic bending deformation resists the external force in the horizontal direction, the accumulation of the internal energy itself due to the external force can be reduced.

【0015】上記の構成は並立する二つ以上の構造物に
適用されるものであり、これに対して一つの構造物に適
用され得る請求項4記載のこの発明の構造物用制振構造
は、並立して一つの構造物を支持する二本以上の支柱の
間に、水平方向の外力による前記二本以上の支柱の撓み
変形に伴うそれらの支柱間の上下方向の位置ずれの運動
エネルギーを消費するダンパー部材を配設したことを特
徴としており、ここにおけるダンパー部材は、通常のピ
ストン式オイルダンパーでも良いが、請求項5の記載の
ように、前記支柱間の上下方向の位置ずれにより剪断変
形して運動エネルギーを消費する部材としても良く、ま
た請求項6の記載のように、前記支柱間の上下方向の位
置ずれによりそれらの支柱の少なくとも一方に対し摺動
して運動エネルギーを消費する部材としても良い。
The above structure is applied to two or more structures standing side by side, and on the other hand, the structure of the present invention can be applied to one structure. , Between two or more columns that support one structure in parallel, the kinetic energy of vertical displacement between the columns due to the bending deformation of the two or more columns due to an external force in the horizontal direction, It is characterized in that a damper member to be consumed is disposed. The damper member here may be a normal piston type oil damper, but as described in claim 5, shearing is caused by vertical displacement between the columns. It may be a member that deforms and consumes kinetic energy. Further, as described in claim 6, the kinetic energy is slid on at least one of the columns due to vertical displacement between the columns. It may be a member to consume.

【0016】かかるこの発明の制振構造にあっては、並
立して一つの構造物を支持する二本以上の支柱の間に配
設されたダンパー部材が、水平方向の外力による前記二
本以上の支柱の撓み変形に伴うそれらの支柱間の上下方
向の位置ずれの運動エネルギーを消費し、これによっ
て、水平方向の外力により前記支柱に蓄えられた内部エ
ネルギーを消費する。しかもこの発明の制振構造にあっ
ては、ダンパー部材は一個でも複数個でも良いが、ダン
パー部材が各々、支柱の高さ方向全体の位置ずれに対し
作用して構造物全体に対しエネルギー消費機能を発揮す
る。
In the vibration damping structure of the present invention, the damper member disposed between the two or more columns that stand in parallel and support one structure has the two or more damper members due to the external force in the horizontal direction. The kinetic energy of the vertical displacement between the columns due to the flexural deformation of the columns is consumed, thereby consuming the internal energy stored in the columns due to the horizontal external force. Moreover, in the vibration damping structure of the present invention, the number of the damper member may be one or plural, but each damper member acts on the positional deviation of the entire column in the height direction and the energy consuming function is provided to the entire structure. Exert.

【0017】従って、この発明の制振構造によれば、並
立して一つの構造物を支持する二本以上の支柱を簡易な
構成で効果的に制振し得て、耐震や耐風性能の優れた構
造物を低コストで、しかも単独の構造物としても提供す
ることができる。
Therefore, according to the vibration damping structure of the present invention, it is possible to effectively damp two or more struts that stand in parallel and support one structure with a simple structure, and have excellent earthquake resistance and wind resistance. The structure can be provided at low cost and as a single structure.

【0018】そして請求項5記載のダンパー部材にあっ
ては、支柱間の上下方向の位置ずれの運動エネルギーを
その位置ずれにより剪断変形して熱エネルギーに変換す
ることで消費し、また請求項6記載のダンパー部材にあ
っては、支柱間の上下方向の位置ずれの運動エネルギー
をその位置ずれによりそれらの支柱の少なくとも一方に
対し摺動して熱エネルギーに変換することで消費する。
Further, in the damper member according to the fifth aspect, the kinetic energy of the vertical positional displacement between the columns is consumed by being shear-deformed by the positional displacement and converted into heat energy. In the described damper member, the kinetic energy of the vertical displacement between the columns is consumed by sliding to at least one of the columns due to the displacement and converting it into heat energy.

【0019】従って、これらのダンパー部材によれば、
制振構造の構成をより簡易なものとすることができる。
Therefore, according to these damper members,
The structure of the vibration damping structure can be made simpler.

【0020】さらにこの発明の制振構造においては、請
求項4の記載のように、前記二本以上の支柱同士を上下
方向相対移動可能に連結しかつ引き寄せてそれらの支柱
に互いの接近方向の初期弾性撓み変形を与える連結部材
を設ける。かかる連結部材を設けることで、前記支柱同
士の離間方向の変形がその連結部材によって防止される
ので、前記ダンパー部材の剪断変形や摺動を確実にもた
らすことができる。
Further, in the vibration damping structure of the present invention, as described in claim 4, the two or more columns are connected so as to be movable relative to each other in the vertical direction, and are attracted to each other so that the columns are moved toward each other. A connecting member that provides initial elastic bending deformation is provided. By providing such a connecting member, deformation of the columns in the separating direction is prevented by the connecting member, so that shear deformation and sliding of the damper member can be surely brought about.

【0021】そして前記連結部材が、前記二本以上の支
柱同士を引き寄せて、それらの支柱に互いに接近する方
向の初期弾性撓み変形を与えておくので、前記ダンパー
部材の剪断変形や摺動をさらに確実にもたらすことがで
きるとともに、その初期弾性撓み変形による内部エネル
ギーが水平方向の外力に抵抗するため、外力による内部
エネルギーの蓄積自体も減少させることができる。
Since the connecting member draws the two or more struts together to give the struts an initial elastic flexural deformation in a direction of approaching each other, the shear deformation and sliding of the damper member are further increased. In addition to being surely provided, the internal energy due to the initial elastic bending deformation resists the external force in the horizontal direction, so that the accumulation of the internal energy itself due to the external force can be reduced.

【0022】[0022]

【発明の実施の形態】以下に、この発明の実施の形態を
実施例によって、図面に基づき詳細に説明する。ここに
図1は、並立する二つ以上の構造物としての二つの建築
物に適用したこの発明の構造物用制振構造の一実施例を
模式的に示す正面図であり、この実施例の制振構造は、
並立する二つの建築物1の側面の上端部間にダンパー部
材2を配設するとともに、それらの建築物1の側面同士
を、それらの建築物1の側面の上部に両端部をそれぞれ
埋設して結合した連結部材3により、上下方向相対移動
可能に連結してなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described in detail with reference to the drawings by way of examples. FIG. 1 is a front view schematically showing an embodiment of the structure damping structure of the present invention applied to two buildings as two or more structures standing side by side. The damping structure is
The damper member 2 is disposed between the upper ends of the side surfaces of the two buildings 1 arranged side by side, and the side surfaces of the buildings 1 are embedded in the upper ends of the side surfaces of the buildings 1 at both ends. The connected connecting member 3 is connected so as to be movable in the vertical direction.

【0023】ここにおけるダンパー部材2は、通常のピ
ストン式オイルダンパーとしても良いが、好ましくは、
例えば鉛入りゴムや、ポリマー、極軟鋼(例えば住友金
属工業株式会社が販売している商品名「SLY100」
極低降伏点鋼)等の、剪断変形で生ずる内部損失によっ
て運動エネルギーを熱エネルギーに変換して消費する部
材とするか、若しくは通常の鋼板等の、建築物1の側面
に対し摺動してその側面に対する摩擦によって運動エネ
ルギーを熱エネルギーに変換して消費する部材とする。
なお、一般に、鉛入りゴムやポリマーは、弾性的に剪断
変形しつつ内部損失によって運動エネルギーを熱エネル
ギーに変換し、極軟鋼は、塑性的に剪断変形しつつ内部
損失によって運動エネルギーを熱エネルギーに変換す
る。
The damper member 2 here may be an ordinary piston type oil damper, but is preferably
For example, rubber containing lead, polymer, and extremely mild steel (for example, product name "SLY100" sold by Sumitomo Metal Industries, Ltd.
Ultra-low yield point steel, etc.) is used as a member that converts kinetic energy into heat energy and consumes it due to internal loss caused by shear deformation, or slides against the side surface of the building 1 such as ordinary steel plate. Friction with respect to the side surface converts the kinetic energy into heat energy and consumes it.
In general, lead-containing rubber or polymer elastically shears and transforms kinetic energy into thermal energy due to internal loss, and ultra-mild steel plastically shears and transforms kinetic energy into thermal energy due to internal loss. Convert.

【0024】そして、ダンパー部材2を剪断変形で生ず
る内部損失によって運動エネルギーを熱エネルギーに変
換して消費する部材とする場合には、ダンパー部材2の
両側面が両側の建築物の側面と一体になって上下方向に
運動するように、ダンパー部材2の両側面を両側の建築
物の側面に、貼り着けや加硫接着や溶接等の手段によっ
てそれぞれ固着しておく。またダンパー部材2を、建築
物1の側面に対し摺動してその側面に対する摩擦によっ
て運動エネルギーを熱エネルギーに変換して消費する部
材とする場合には、ダンパー部材2の少なくとも一方の
側面がそれに対応する側の建築物1の側面に摺接するよ
うに、ダンパー部材2を適当な支持部材で所定位置に支
持してその摺接させる側の建築物1の側面に圧接させて
おく。
When the damper member 2 is to be a member that converts kinetic energy into heat energy and consumes it due to internal loss caused by shear deformation, both side surfaces of the damper member 2 are integrated with side surfaces of buildings on both sides. Then, both side surfaces of the damper member 2 are fixed to the side surfaces of the building on both sides by means such as sticking, vulcanizing and bonding, or welding so that the damper member 2 moves vertically. Further, when the damper member 2 is a member that slides against the side surface of the building 1 and converts kinetic energy into heat energy by friction with the side surface and consumes it, at least one side surface of the damper member 2 The damper member 2 is supported at a predetermined position by an appropriate supporting member so as to be in sliding contact with the side surface of the building 1 on the corresponding side, and is pressed against the side surface of the building 1 on the side to be slidably contacted.

【0025】また、ここにおける連結部材3は、PCケ
ーブルや高張力ケーブル等を用いて引っ張り力には強い
が曲げ力に対しては抵抗の少ない部材とする。そしてこ
の実施例では、その連結部材3によって両側の建築物1
同士を引き寄せて、それらの建築物1に互いに接近する
方向の初期弾性撓み変形を与えておく。
The connecting member 3 here is made of a PC cable, a high-tensile cable, or the like, and is a member that is strong against pulling force but has low resistance against bending force. Further, in this embodiment, the building 1 on both sides is connected by the connecting member 3.
The buildings 1 are attracted to each other and the initial elastic bending deformation in a direction of approaching each other is given to the buildings 1.

【0026】図2は、並立する構造物としての二つの超
高層ビルディングに適用したこの発明の構造物用制振構
造の他の一実施例を模式的に示す正面図であり、この実
施例の制振構造は、並立する二つの超高層ビルディング
4の側面間に上下方向に間隔をあけて複数のダンパー部
材2を配設するとともに、それらの超高層ビルディング
4の側面同士を、それらの側面に上記各ダンパー部材2
の位置で両端部をそれぞれ結合した連結部材3により、
上下方向相対移動可能に連結してなる。そしてここにお
けるダンパー部材2および連結部材3も、図1に示す実
施例におけると同様のものとする。
FIG. 2 is a front view schematically showing another embodiment of the vibration damping structure for structures according to the present invention applied to two super high-rise buildings as juxtaposed structures. The vibration damping structure has a plurality of damper members 2 arranged at intervals in the vertical direction between the side surfaces of two juxtaposed super high-rise buildings 4, and the side surfaces of these super high-rise buildings 4 are placed on the side surfaces thereof. Each of the above damper members 2
By the connecting member 3 having both ends respectively coupled at the position of
It is connected so that it can move relative to the vertical direction. The damper member 2 and the connecting member 3 here are also the same as those in the embodiment shown in FIG.

【0027】かかる二つの実施例の制振構造にあって
は、並立する二つの建築物1や超高層ビルディング4
に、地震や風等によって水平方向の外力が加わると、図
2中に超高層ビルディング4について変形程度を拡大し
て仮想線で示すように、その外力によりそれら二つの建
築物1や超高層ビルディング4に撓み変形が生じ、その
撓み変形に伴ってそれらの間に、図2中矢印で示す如く
上下方向の位置ずれが生ずるが、それら二つの建築物1
や超高層ビルディング4の間に配設されたダンパー部材
2が、それら二つの建築物1や超高層ビルディング4の
間の上下方向の位置ずれの運動エネルギーを消費し、こ
れによって、水平方向の外力によりそれら二つの建築物
1や超高層ビルディング4に蓄えられた内部エネルギー
を消費する。しかも上記実施例の制振構造にあっては、
ダンパー部材3が各々、建築物1や超高層ビルディング
4の高さ方向全体の位置ずれに対し作用してそれら建築
物1や超高層ビルディング4全体に対しエネルギー消費
機能を発揮する。
In the vibration damping structures of these two embodiments, two buildings 1 and a super high-rise building 4 standing in parallel are provided.
When an external force in the horizontal direction is applied to the super high-rise building 4 by an earthquake or wind, the degree of deformation of the super high-rise building 4 is enlarged and shown by a phantom line in FIG. 4 is deformed flexibly, and there is a vertical displacement between them due to the flexural deformation, as shown by the arrow in FIG.
The damper member 2 arranged between the two buildings 1 and the skyscraper 4 consumes the kinetic energy of the vertical displacement between the two buildings 1 and the skyscraper 4, whereby the horizontal external force is applied. Consumes the internal energy stored in these two buildings 1 and the skyscraper 4. Moreover, in the vibration damping structure of the above embodiment,
The damper members 3 each act on the positional displacement of the building 1 and the super high-rise building 4 in the entire height direction, and exert an energy consumption function for the building 1 and the super high-rise building 4 as a whole.

【0028】従って、上記実施例の制振構造によれば、
並立する二つの建築物1や超高層ビルディング4を簡易
な構成で効果的に制振し得て、耐震や耐風性能の優れた
建築物1や超高層ビルディング4を低コストで提供する
ことができる。
Therefore, according to the vibration damping structure of the above embodiment,
It is possible to effectively control two buildings 1 and a super high-rise building 4 that are lined up side by side with a simple structure, and to provide a building 1 and a super high-rise building 4 with excellent earthquake resistance and wind resistance at low cost. ..

【0029】そして上記実施例において、ダンパー部材
2を、鉛入りゴムや極軟鋼等の、構造物間の上下方向の
位置ずれの運動エネルギーをその位置ずれにより剪断変
形して熱エネルギーに変換することで消費するものや、
鋼板等の、構造物間の上下方向の位置ずれの運動エネル
ギーをその位置ずれによりそれらの構造物の少なくとも
一方に対し摺動して熱エネルギーに変換することで消費
するものにすれば、制振構造の構成をより簡易なものと
することができる。
In the above embodiment, the damper member 2 is used to convert the kinetic energy of vertical displacement between structures, such as lead-containing rubber and ultra-soft steel, into shear energy by shear deformation due to the displacement. What you consume in
If the kinetic energy of vertical displacement between structures such as steel plates is consumed by sliding to at least one of these structures due to the displacement and converting it into heat energy, the vibration control is performed. The structure can be made simpler.

【0030】また、上記実施例の制振構造によれば、二
つの建築物1や超高層ビルディング4同士を上下方向相
対移動可能に連結する連結部材3を設けていることか
ら、建築物1や超高層ビルディング4同士の離間方向の
変形がその連結部材3によって防止されるので、ダンパ
ー部材2の剪断変形や摺動を確実にもたらすことができ
る。
Further, according to the vibration damping structure of the above-mentioned embodiment, since the connecting member 3 which connects the two buildings 1 and the super high-rise buildings 4 to each other so as to be vertically movable relative to each other is provided, Since deformation of the super high-rise buildings 4 in the separating direction is prevented by the connecting member 3, shear deformation and sliding of the damper member 2 can be surely brought about.

【0031】さらに、上記実施例の制振構造によれば、
連結部材3によって二つの建築物1や超高層ビルディン
グ4の上部同士を引き寄せて、それらに互いに接近する
方向の初期弾性撓み変形を与えておくことから、ダンパ
ー部材2の剪断変形や摺動をさらに確実にもたらすこと
ができるとともに、その初期弾性撓み変形による内部エ
ネルギーが水平方向の外力に抵抗するので、外力による
内部エネルギーの蓄積自体も減少させることができる。
Further, according to the vibration damping structure of the above embodiment,
Since the upper parts of the two buildings 1 and the skyscraper 4 are drawn together by the connecting member 3 to give them an initial elastic bending deformation in a direction in which they approach each other, shear deformation and sliding of the damper member 2 are further reduced. In addition to being surely provided, the internal energy due to the initial elastic bending deformation resists the external force in the horizontal direction, so that the accumulation itself of the internal energy due to the external force can also be reduced.

【0032】図3は、一つの構造物としての長大橋の一
本の主塔に適用したこの発明の構造物用制振構造のさら
に他の一実施例を模式的に示す正面図であり、この実施
例の制振構造は、並立して上記主塔5を支持する二本の
支柱6の側面の上端部間および中間部間にそれぞれダン
パー部材2を介装するとともに、それらの支柱6の側面
同士を、それらの側面に上記各ダンパー部材2の位置で
両端部をそれぞれ結合した連結部材3により、上下方向
相対移動可能に連結してなる。そしてここにおけるダン
パー部材2および連結部材3も、図1に示す実施例にお
けると同様のものとする。
FIG. 3 is a front view schematically showing still another embodiment of the structure damping structure of the present invention applied to one main tower of a long bridge as one structure, In the vibration damping structure of this embodiment, the damper member 2 is interposed between the upper end portions and the middle portions of the side faces of the two columns 6 supporting the main tower 5 in parallel, and the columns 6 are The side surfaces are connected to each other by connecting members 3 having both end portions respectively connected to the side surfaces at the positions of the damper members 2 so as to be relatively movable in the vertical direction. The damper member 2 and the connecting member 3 here are also the same as those in the embodiment shown in FIG.

【0033】かかる実施例の制振構造によれば、長大橋
の主塔5を簡易な構成で効果的に制振し得て耐震や耐風
性能の優れた長大橋を低コストで提供することができる
等、先の実施例と同様の種々の作用効果をもたらすこと
ができる。
According to the vibration control structure of this embodiment, the main tower 5 of the long bridge can be effectively damped with a simple structure, and a long bridge excellent in earthquake resistance and wind resistance can be provided at low cost. It is possible to bring about various operational effects similar to those of the previous embodiment.

【0034】図4(a)は、一つの構造物としての一つ
の超高層ビルディングに適用したこの発明の構造物用制
振構造のさらに他の一実施例を模式的に示す正面図、ま
た同図(b)は、その実施例の制振構造の作用を示す説
明図、さらに同図(c)は、その実施例の制振構造にお
ける連結部材の配置を示す上記超高層ビルディングの平
面図、そして同図(d)は、その実施例の制振構造にお
けるダンパー部材の配置を示す上記超高層ビルディング
の横断面図であり、この実施例における超高層ビルディ
ング4は、図4(c),(d)に示すように、互いに隣
接して矩形に並立する四つの部分4a, 4b, 4cおよび4dを
有している。
FIG. 4 (a) is a front view schematically showing still another embodiment of the structure damping structure of the present invention applied to one super high-rise building as one structure, and FIG. (B) is an explanatory view showing the action of the vibration damping structure of the embodiment, and (c) is a plan view of the super high-rise building showing the arrangement of the connecting members in the vibration damping structure of the embodiment, FIG. 4D is a cross-sectional view of the super high-rise building showing the arrangement of the damper members in the vibration control structure of the embodiment. The super high-rise building 4 in this embodiment is shown in FIGS. As shown in d), it has four parts 4a, 4b, 4c and 4d which are adjacent to each other in a rectangular shape.

【0035】そしてこの実施例の制振構造は、上下方向
について見れば図4(a),(b)に示すようにその超
高層ビルディング4の上端部と中間部とのそれぞれに、
四支柱制振部7および二支柱制振部8を有しており、そ
れら四支柱制振部7および二支柱制振部8は、平面的に
見ると図4(c),(d)に示すように、四支柱制振部
7が、その超高層ビルディング4の四つの部分4a, 4b,
4cおよび4dの角部同士が集まる中心部の間隙に位置し、
また二支柱制振部8が、その超高層ビルディング4の四
つの部分4a, 4b, 4cおよび4dが二つずつ対向する間隙の
側端部と中間部とに位置している。
In the vibration damping structure of this embodiment, as seen in the vertical direction, as shown in FIGS. 4 (a) and 4 (b), the upper and middle portions of the super high-rise building 4 are
It has a four-post vibration damping section 7 and a two-post vibration damping section 8. The four-post vibration damping section 7 and the two-post vibration damping section 8 are shown in FIGS. 4 (c) and 4 (d) when viewed two-dimensionally. As shown, the four-pillar damping part 7 has four parts 4a, 4b,
Located in the central gap where the corners of 4c and 4d gather,
Further, the two-post vibration damping part 8 is located at the side end and the middle part of the gap where the four parts 4a, 4b, 4c and 4d of the super high-rise building 4 face each other two by two.

【0036】ここで、四支柱制振部7は、図5(a)の
斜視図と、その斜視図中の矢印Aおよび矢印B方向から
それぞれ見た図5(b)および(c)の側面図とに示す
ように、互いに隣接して矩形に並立されるとともに各々
H型鋼材からなる四本の支柱6の間の十字形の隙間に、
図5(d)の斜視図に示す如き断面十字形のダンパー部
材2を配置し、ボルト9によって互いに結合した断面略
L字状の四個のブラケット10によりそれら四本の支柱6
を囲繞して締め付けることにて、上記ダンパー部材2を
それら四本の支柱6で挟持してなり、そのH型鋼材から
なる支柱6の、ブラケット10で締め付ける部分には、そ
れらの支柱6のフランジが締め付けによって変形しない
ようフランジ間に補強板11を介挿してある。
Here, the four-column vibration damping section 7 is shown in the perspective view of FIG. 5 (a) and the side surfaces of FIGS. 5 (b) and 5 (c) viewed from the direction of arrow A and arrow B in the perspective view, respectively. As shown in the figure, in a cross-shaped gap between four columns 6 which are juxtaposed adjacent to each other in a rectangular shape and each of which is made of an H-shaped steel material,
As shown in the perspective view of FIG. 5D, the damper member 2 having a cruciform cross-section is arranged, and the four pillars 6 are connected by the four brackets 10 having a substantially L-shaped cross-section, which are connected to each other by the bolt 9.
The damper member 2 is sandwiched between the four columns 6 by surrounding and tightening the same, and the flanges of the columns 6 are attached to the parts of the column 6 of the H-shaped steel material to be tightened by the brackets 10. A reinforcing plate 11 is inserted between the flanges so that they will not be deformed by tightening.

【0037】ここにおけるダンパー部材2は、例えば鉛
入りゴム板等の、支柱6間の上下方向の位置ずれの運動
エネルギーをその位置ずれにより剪断変形して熱エネル
ギーに変換することで消費する部材とするか、若しくは
鋼板等の、支柱6間の上下方向の位置ずれの運動エネル
ギーをその位置ずれによりそれらの構造物の少なくとも
一方に対し摺動して熱エネルギーに変換することで消費
する部材とする。
The damper member 2 here is a member such as a lead-containing rubber plate which is consumed by shearing and deforming the kinetic energy of the vertical displacement between the columns 6 into heat energy due to the displacement. Or, the kinetic energy of the vertical displacement between the columns 6 such as a steel plate is slid against at least one of these structures due to the displacement to be converted into heat energy, which is consumed as a member. .

【0038】図6(a)は、上記支柱6が水平方向の外
力により撓み変形して上下方向に位置ずれしたときの四
支柱制振部7の、例えば上記鉛入りゴム板からなるダン
パー部材2の状態を示す側面図であり、図示のようにダ
ンパー部材2は、支柱6の上下方向の位置ずれにより剪
断変形して、その内部損失により、支柱6の上下方向の
位置ずれの運動エネルギーを熱エネルギーに変換して消
費する。
FIG. 6A shows a damper member 2 made of, for example, the above-mentioned lead-containing rubber plate of the four-column vibration damping unit 7 when the column 6 is flexibly deformed by an external force in the horizontal direction and is displaced in the vertical direction. FIG. 3 is a side view showing the state of FIG. 2, in which the damper member 2 is sheared and deformed due to the vertical displacement of the support column 6 and the kinetic energy of the vertical displacement of the support column 6 is generated due to its internal loss. It is converted into energy and consumed.

【0039】また図6(b)は、上記支柱6が水平方向
の外力により撓み変形して上下方向に位置ずれしたとき
の四支柱制振部7の、例えば上記鋼板からなるダンパー
部材2の状態を示す側面図であり、図示のようにダンパ
ー部材2は、支柱6の上下方向の位置ずれにより、互い
に対向する支柱6の少なくとも一方に対し摺動して、そ
のダンパー部材2の表面と支柱5の側面との間の摩擦に
より、支柱6の上下方向の位置ずれの運動エネルギーを
熱エネルギーに変換して消費する。
FIG. 6 (b) shows the state of the damper member 2 of the four-pillar damping part 7, for example, made of the above steel plate, when the strut 6 is flexibly deformed by an external force in the horizontal direction and is displaced in the vertical direction. FIG. 3 is a side view showing the damper member 2 slides on at least one of the columns 6 facing each other due to the vertical displacement of the column 6, and the surface of the damper member 2 and the column 5. Friction with the side surface of the column converts the kinetic energy of the vertical displacement of the column 6 into heat energy and consumes it.

【0040】この一方、二支柱制振部8は、水平かつ互
いに直角な二方向からそれぞれ見た図7(a)および
(b)の側面図と、図7(c)の横断面図とに示すよう
に、互いに隣接して並立されるとともに各々H型鋼材か
らなる二本の支柱6の間の隙間に、平板状のダンパー部
材2を配置し、ボルト9によって互いに結合した二個の
断面略コ字状のブラケット12によりそれら二本の支柱6
を囲繞して締め付けることにて、上記ダンパー部材2を
それら二本の支柱6で挟持してなり、そのH型鋼材から
なる支柱6の、ブラケット12で締め付ける部分には、そ
れらの支柱6のフランジが締め付けによって変形しない
ようにフランジ間に補強板11を介挿してある。
On the other hand, the two-pillar damping section 8 is shown in the side view of FIGS. 7 (a) and 7 (b) and the cross-sectional view of FIG. 7 (c) as viewed from two directions which are horizontal and perpendicular to each other. As shown in the figure, two flat plate-shaped damper members 2 are arranged in a space between two columns 6 which are juxtaposed adjacent to each other and each of which is made of an H-shaped steel material, and are connected to each other by bolts 9. The two brackets 6 are provided by the U-shaped bracket 12
The damper member 2 is sandwiched between the two pillars 6 by surrounding and tightening, and the flanges of the pillars 6 of the pillar 6 made of the H-shaped steel material are tightened by the bracket 12. A reinforcing plate 11 is inserted between the flanges so that they will not be deformed by tightening.

【0041】ここにおけるダンパー部材2も、例えば鉛
入りゴム板等の、支柱6間の上下方向の位置ずれの運動
エネルギーをその位置ずれにより剪断変形して熱エネル
ギーに変換することで消費する部材、若しくは鋼板等
の、支柱6間の上下方向の位置ずれの運動エネルギーを
その位置ずれによりそれらの構造物の少なくとも一方に
対し摺動して熱エネルギーに変換することで消費する部
材とする。
The damper member 2 here is also a member such as a lead-containing rubber plate that is consumed by shearing and converting the kinetic energy of the vertical displacement between the columns 6 into heat energy due to the displacement. Alternatively, the kinetic energy of vertical displacement between the columns 6 such as a steel plate is slid on at least one of the structures due to the displacement and is converted into heat energy to be consumed.

【0042】かかる二支柱制振部8にあっては、支柱6
が水平方向の外力により撓み変形して上下方向に位置ず
れすると、例えば上記鉛入りゴム板からなるダンパー部
材2を用いた場合にはそのダンパー部材2が、支柱6の
その位置ずれにより剪断変形してその内部損失により、
支柱6の上下方向の位置ずれの運動エネルギーを熱エネ
ルギーに変換して消費し、また例えば上記鋼板からなる
ダンパー部材2を用いた場合にはそのダンパー部材2
が、支柱6のその位置ずれにより、互いに対向する支柱
6の少なくとも一方に対し摺動して、そのダンパー部材
2の表面と支柱6の側面との間の摩擦により、支柱6の
上下方向の位置ずれの運動エネルギーを熱エネルギーに
変換して消費する。
In the two-pillar damping section 8, the strut 6 is
Is flexibly deformed by an external force in the horizontal direction and is displaced in the vertical direction, for example, when the damper member 2 made of the rubber plate containing lead is used, the damper member 2 is sheared and deformed due to the displacement of the column 6. Due to its internal loss,
The kinetic energy of the vertical displacement of the column 6 is converted into heat energy and consumed, and when the damper member 2 made of the above steel plate is used, the damper member 2 is used.
However, due to the displacement of the column 6, the column 6 slides against at least one of the columns 6 facing each other, and the friction between the surface of the damper member 2 and the side surface of the column 6 causes the vertical position of the column 6. The kinetic energy of the gap is converted into heat energy and consumed.

【0043】図8(a)は、上記実施例の制振構造にお
ける二支柱制振部8の他の構成例を示す斜視図、図8
(b)および(c)は、その二支柱制振部8を図8
(a)中の矢印Cおよび矢印D方向からそれぞれ見た側
面図、そして図8(d)は、その二支柱制振部8を示す
横断面図であり、この構成例の二支柱制振部8は、並立
する二本の支柱6の両側に、コ字状の極軟鋼板(例えば
先の超低降伏点鋼の板)からなるダンパー部材2を十二
枚、その凹部を二本の支柱6に嵌め合わせて各段二枚ず
つ六段に水平に配置し、長尺ボルト13で相互に繋ぎ合わ
せた複数のブラケット14でそれら極軟鋼板製のダンパー
部材2の両端部をそれぞれ挟持し、それらのブラケット
14を二本の支柱6にボルト等の図示しない手段によって
固定してなる。なお、ここでは各ダンパー部材2および
各ブラケット14にU溝を切って、そこにあらかじめ多数
のナットを装着した長尺ボルト13を嵌め合わせること
で、各段をそれぞれ別個のボルトで繋ぐ場合よりもボル
トの本数を減らして二支柱制振部8の組立作業の容易化
を図っている。
FIG. 8 (a) is a perspective view showing another example of the structure of the two-pillar damping section 8 in the damping structure of the above embodiment, FIG.
(B) and (c) show the two-pillar damping section 8 in FIG.
The side view seen from the arrow C and the arrow D direction in (a), respectively, and FIG.8 (d) are the cross-sectional views which show the two support | pillar damping part 8, and the two support | pillar damping part of this structural example. Reference numeral 8 denotes twelve damper members 2 made of a U-shaped ultra-soft steel plate (for example, a plate of ultra-low yield point steel described above) on both sides of the two pillars 6 standing side by side, and two concave portions of the damper member 2. 6 are fitted horizontally to each other in 6 stages by fitting them to 6, and both ends of the damper member 2 made of the extremely soft steel plate are respectively sandwiched by a plurality of brackets 14 connected to each other by long bolts 13. Those brackets
14 is fixed to the two columns 6 by means such as bolts (not shown). In addition, here, a U-shaped groove is cut in each damper member 2 and each bracket 14, and long bolts 13 having a large number of nuts attached in advance are fitted to the U-grooves, so that each step is connected by a separate bolt. The number of bolts is reduced to facilitate the assembling work of the two-column vibration damping unit 8.

【0044】かかる二支柱制振部8にあっては、図9
(a),(b)の上部に矢印で示すように地震や風等で
水平方向に外力が加わって、支柱6が撓み変形し、上下
方向に位置ずれすると、図9(a),(b)に示すよう
に、上記十二枚のダンパー部材2が各々塑性変形し、支
柱6の上下方向の位置ずれの運動エネルギーを熱エネル
ギーに変換して消費する。
In the case of the two-pillar damping section 8 as shown in FIG.
When an external force is applied in the horizontal direction due to an earthquake, wind, or the like on the upper part of (a) and (b), the pillar 6 is flexibly deformed and displaced in the vertical direction, as shown in FIGS. ), The twelve damper members 2 are plastically deformed, and the kinetic energy of the vertical displacement of the column 6 is converted into heat energy and consumed.

【0045】さらにこの実施例の制振構造は、図4
(a),(c)に示すように、超高層ビルディング4の
頂部に、その超高層ビルディング4の部分4a, 4b間、部
分4b, 4c間、部分4c,4d間および部分4a, 4d間をそれぞ
れ上下方向相対移動可能に連結する連結部材3を有して
おり、上記部分4a, 4d間を連結する連結部材3について
図10(a)に代表して示すように、ここにおける各連結
部材3は高張力鋼製のロッドにて構成され、その連結部
材3の各端部は支持部15を介して、上記各部分4a,4b, 4
cおよび4dのうちの対応する部分に連結されている。
Furthermore, the damping structure of this embodiment is shown in FIG.
As shown in (a) and (c), at the top of the super high-rise building 4, between the parts 4a and 4b, between the parts 4b and 4c, between the parts 4c and 4d, and between the parts 4a and 4d. Each of the connecting members 3 has a connecting member 3 which is movable relative to each other in the vertical direction, and the connecting member 3 which connects between the portions 4a and 4d is shown in FIG. Is composed of a rod made of high-strength steel, and each end of the connecting member 3 is connected to each of the above-mentioned parts 4a, 4b, 4 via the support part 15.
It is linked to the corresponding part of c and 4d.

【0046】ここで、支持部15は、図10(b)およびそ
のE−E線に沿う断面図である図10(c)に拡大して示
すように、上記各部分4a, 4b, 4cおよび4dの上端部に埋
設されたH型鋼材からなる梁16上にブラケット17を介し
て受け材18を固定し、それらブラケット17および受け材
18に連結部材3の一端部を貫通させるとともに、その貫
通させた連結部材3の端部に、受け材18の球面状の受け
面18a の半径に等しいかそれより小さい半径の球面状の
摺接面19a を持つ掛合材19を挿通し、その連結部材3の
端部のネジ部3aにナット20を螺着して、その掛合材19を
連結部材3に対し抜け止めしてなる。
Here, the supporting portion 15 has the above-mentioned respective portions 4a, 4b, 4c and 4c, as enlargedly shown in FIG. 10 (b) and FIG. 10 (c) which is a sectional view taken along the line EE. The receiving member 18 is fixed via the bracket 17 on the beam 16 made of an H-shaped steel material embedded in the upper end of the 4d, and the bracket 17 and the receiving member are fixed.
18 is made to penetrate one end of the connecting member 3, and a spherical sliding contact with a radius equal to or smaller than the radius of the spherical receiving surface 18a of the receiving member 18 is made to the end of the penetrating connecting member 3. The engaging member 19 having the surface 19a is inserted, and the nut 20 is screwed to the threaded portion 3a at the end of the connecting member 3 to prevent the engaging member 19 from coming off from the connecting member 3.

【0047】かかる支持部15は、超高層ビルディング4
の上記各部分4a, 4b, 4cおよび4d間に上下方向の位置ず
れが生ずると、掛合材19の球面状の摺接面19a が受け材
18の球面状の受け面18a に対し摺動することで、図10
(b)に仮想線で示すように、連結部材3の揺動を可能
にし、これにより連結部材3は、超高層ビルディング4
の部分4a, 4b間、部分4b, 4c間、部分4c,4d間および部
分4a, 4d間をそれぞれ上下方向相対移動可能に連結す
る。しかしてここでは、上記ナット20を締め込むことに
て、図10(d)に示すように、連結部材3により、超高
層ビルディング4の上記各部分4a, 4b, 4cおよび4dの頂
部同士を引き寄せて、部分4a, 4b, 4cおよび4dに互いに
接近する方向の初期弾性撓み変形を与えておく。
The supporting portion 15 is used for the high-rise building 4
When the vertical displacement occurs between the above-mentioned respective portions 4a, 4b, 4c and 4d of the above, the spherical sliding contact surface 19a of the hooking member 19 is received by the receiving member.
By sliding against the spherical receiving surface 18a of 18,
As indicated by the phantom line in (b), the connecting member 3 is allowed to swing, which causes the connecting member 3 to move to
The parts 4a and 4b, the parts 4b and 4c, the parts 4c and 4d, and the parts 4a and 4d are connected so as to be vertically movable relative to each other. Then, here, by tightening the nut 20, the tops of the respective parts 4a, 4b, 4c and 4d of the skyscraper 4 are pulled together by the connecting member 3 as shown in FIG. 10 (d). Thus, the parts 4a, 4b, 4c and 4d are subjected to the initial elastic bending deformation in the directions approaching each other.

【0048】上記実施例の制振構造によれば、図4
(b)に示すように超高層ビルディング4が地震や風等
の水平方向の外力によって撓んで、その四つの部分4a,
4b, 4cおよび4dが例えば部分4a, 4d間および部分4b, 4c
間でそれぞれ上下方向に互いに位置ずれすると、四支柱
制振部7および二支柱制振部8が上記の如くしてその位
置ずれの運動エネルギーを消費するので、超高層ビルデ
ィング4を簡易な構成で効果的に制振し得て、耐震や耐
風性能の優れた超高層ビルディングを低コストで提供す
ることができる等、先の実施例と同様の種々の作用効果
をもたらすことができる。なお、上記超高層ビルディン
グ4の各階層には、上記各部分4a, 4b, 4c,4dの上下方
向相対移動が可能なようにそれらの部分間の間隙を覆う
図示しない繋ぎ床材を、安全のために設けておく。
According to the vibration damping structure of the above embodiment, FIG.
As shown in (b), the skyscraper 4 is bent by horizontal external force such as an earthquake or wind, and the four parts 4a, 4a,
4b, 4c and 4d are, for example, between parts 4a and 4d and parts 4b, 4c
If the four pillar vibration damping parts 7 and the two pillar vibration damping parts 8 consume the kinetic energy of the positional deviation as described above, the super high-rise building 4 can be constructed with a simple structure. It is possible to effectively control the vibration, and to provide a super high-rise building excellent in earthquake resistance and wind resistance at a low cost, and it is possible to bring various operational effects similar to those of the above-described embodiments. It should be noted that each floor of the super high-rise building 4 is provided with a connecting floor material (not shown) that covers the gaps between the parts 4a, 4b, 4c, 4d so that the parts can be vertically moved relative to each other. It is provided for this purpose.

【0049】図11(a)は、この発明の制振構造の作用
効果の確認のために本願発明者が行った振動試験の供試
体を示す縦断面図であり、この供試体は、台21の上方
に、各々内部をアルミニウムハニカム構造として剛性を
持たせた二枚の床板(紙面と直交する方向の幅20mm×長
さ 298mm×高さ40mm、一枚当たり重量250g)22を間隔を
開けて水平に配置するとともに、図11(b)に横断面を
示す板ばね(紙面と直交する方向の幅20mm×板厚 2mm×
高さ 520mm)23を台21上に支柱の代わりに四枚立設し
て、二枚ずつのその板ばね23で上記各床板22を支持し、
また、四枚のうちの中央部の互いに隣接する二枚の板ば
ね23の上端部の間にダンパー部材として、両端面に粘着
剤(具体的には両面テープ)を設けたアルミニウムブロ
ック(紙面と直交する方向の幅20mm×厚さ10mm×高さ40
mm)24を介挿し、さらに、上記互いに隣接する二枚の板
ばね23の上部(床板22のすぐ下の部分)を連結部材とし
てのワイヤー25で上下方向相対移動可能に連結するとと
もに、そのワイヤー25で二枚の板ばね23の上部同士を引
き寄せて、それらの板ばね23に互いに接近する方向の初
期弾性撓み変形を与えてなる。そして片側の床板22に
は、加速度センサ26を設けてある。
FIG. 11 (a) is a longitudinal sectional view showing a test piece of a vibration test conducted by the inventor of the present application in order to confirm the action and effect of the damping structure of the present invention. Two floor boards (width 20 mm × length 298 mm × height 40 mm, weight 250 g per sheet in the direction orthogonal to the paper surface) 22 each of which has rigidity with aluminum honeycomb structure inside, are spaced above Leaf springs (horizontally 20 mm wide × plate thickness 2 mm × perpendicular to the paper surface)
Height 520mm) 23 stands on the base 21 instead of the pillars, and each of the above-mentioned floor plates 22 is supported by the leaf springs 23 of each two,
In addition, as a damper member between the upper ends of two leaf springs 23 adjacent to each other at the center of the four aluminum blocks, an aluminum block provided with an adhesive (specifically, double-sided tape) on both end faces (paper surface and Width 20 mm × thickness 10 mm × height 40 in the orthogonal direction
mm) 24, and further, the upper part (the part immediately below the floor plate 22) of the two leaf springs 23 adjacent to each other is connected by a wire 25 as a connecting member so as to be vertically movable, and At 25, the upper portions of the two leaf springs 23 are attracted to each other, and the leaf springs 23 are subjected to the initial elastic bending deformation in directions toward each other. An acceleration sensor 26 is provided on the floor plate 22 on one side.

【0050】図12(a)は、図11に示す供試体におい
て、上記アルミニウムブロック24の代わりに両端面に接
着剤を塗布したアルミニウムブロック(紙面と直交する
方向の幅20mm×厚さ25mm×高さ40mm)を介挿して、四枚
のうちの中央部の互いに隣接する二枚の板ばね23の上端
部同士を接着剤により剛結することで、それらの板ばね
23の撓み変形に伴う上下方向への位置ずれが生じないよ
うにするとともに、それらの板ばね23に互いに接近する
方向の初期弾性撓み変形も与えないようにした比較例の
供試体の、二枚の床板22に図では左右方向の水平な外力
を加えた場合の、時間の経過に対する加速度センサ26の
出力電圧の変化状態を示しており、同図から明らかなよ
うに、この場合には床板22の水平振動の減衰度が極めて
小さく、振動が長時間持続した。
FIG. 12 (a) shows an aluminum block (width 20 mm × thickness 25 mm × height in the direction orthogonal to the plane of the drawing) in which both ends are coated with an adhesive instead of the aluminum block 24 in the specimen shown in FIG. 40 mm), and the upper ends of two leaf springs 23 adjacent to each other at the center of the four leaf springs are rigidly connected to each other by an adhesive agent.
Two pieces of the test piece of the comparative example, which prevents the vertical displacement due to the bending deformation of 23 and does not give the initial elastic bending deformation of the leaf springs 23 in the directions approaching each other, The figure shows the state of change in the output voltage of the acceleration sensor 26 with the passage of time when a horizontal external force in the horizontal direction is applied to the floor plate 22 of the figure. The horizontal vibration has a very low attenuation, and the vibration lasted for a long time.

【0051】図12(b)は、図11に示す供試体におい
て、上記アルミニウムブロック24をその両端面に粘着剤
を設けないで介挿して、アルミニウムブロック24とその
両側の二枚の板ばね23との間の摩擦抵抗を実質的になく
す一方で、それらの板ばね23にワイヤー25で互いに接近
する方向の初期弾性撓み変形を与えておいて、二枚の床
板22に図では左右方向の水平な外力を加えた場合の、時
間の経過に対する加速度センサ26の出力電圧の変化状態
を示しており、同図から明らかなように、この場合には
床板22の水平振動の減衰度が比較的大きく、振動が比較
的短時間で収束した。
FIG. 12B shows the aluminum block 24 and the two leaf springs 23 on both sides of the aluminum block 24 which are inserted in the specimen shown in FIG. While substantially eliminating the frictional resistance between the two, the plate springs 23 are initially elastically deformed by the wires 25 in the directions approaching each other, and the two floor plates 22 are horizontally horizontal in the figure. It shows the change state of the output voltage of the acceleration sensor 26 with the passage of time when an external force is applied.As is clear from the figure, in this case, the degree of attenuation of the horizontal vibration of the floor plate 22 is relatively large. , The vibration converged in a relatively short time.

【0052】図12(c)は、図11に示す供試体そのもの
を用いて、アルミニウムブロック24とその両側の二枚の
板ばね23との間の摩擦抵抗を粘着剤で大きなものとする
とともに、それらの板ばね23にワイヤー25で互いに接近
する方向の初期弾性撓み変形を与えておいて、二枚の床
板22に図では左右方向の水平な外力を加えた場合の、時
間の経過に対する加速度センサ26の出力電圧の変化状態
を示しており、同図から明らかなように、この場合には
床板22の水平振動の減衰度が極めて大きく、振動が極め
て短時間で収束した。
FIG. 12 (c) shows that the test piece itself shown in FIG. 11 is used to increase the frictional resistance between the aluminum block 24 and the two leaf springs 23 on both sides thereof with an adhesive, and When an initial elastic bending deformation is applied to the leaf springs 23 with wires 25 in a direction approaching each other, and a horizontal external force is applied to the two floor plates 22 in the horizontal direction in the figure, the acceleration sensor with respect to the passage of time. 26 shows the change state of the output voltage, and as is clear from the figure, in this case, the attenuation of the horizontal vibration of the floor plate 22 was extremely large, and the vibration converged in an extremely short time.

【0053】これらの試験結果から、本願発明のように
並立する構造物同士あるいはその支柱同士の上下方向の
位置ずれにダンパー部材で抵抗を与えるとともに構造物
あるいはその支柱に互いに接近する方向の初期弾性撓み
変形を与えておけば、構造物を効果的に制振し得るとい
うことが確認された。そして上記(b)の結果よりも上
記(c)の結果の方が減衰度が相当大きくなったことよ
り、構造物同士あるいはその支柱同士の上下方向の位置
ずれにダンパー部材で抵抗を与えるのみでも相当な制振
効果が得られることが判明した。
From these test results, the damper member gives resistance to the vertical displacement of the structures or columns thereof arranged in parallel as in the present invention, and the initial elasticity in the direction of approaching the structures or columns thereof. It was confirmed that the structure can be effectively damped if it is flexibly deformed. Since the degree of damping of the result of (c) is considerably larger than that of the result of (b), even if the damper member only gives resistance to the vertical displacement between the structures or their columns. It turned out that a considerable damping effect can be obtained.

【0054】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、上記実
施例では高層ビルディングを四つの部分に分けてそれら
の部分間にダンパー部材を設けたが、高層ビルディング
等の構造物の内部の並立する支柱間にダンパー部材を設
けても良い。またダンパー部材の形状も、上記実施例の
ものに限られず適宜変更することができる。そしてこの
発明の制振構造は、上記実施例以外の構造物にも適用し
得ることはいうまでもない。
Although the present invention has been described above based on the illustrated example, the present invention is not limited to the above example. For example, in the above embodiment, a high-rise building is divided into four parts and a damper member is provided between those parts. Although provided, a damper member may be provided between the columns that are juxtaposed inside a structure such as a high-rise building. Further, the shape of the damper member is not limited to that of the above embodiment, and can be changed as appropriate. It goes without saying that the vibration damping structure of the present invention can be applied to structures other than the above-mentioned embodiments.

【図面の簡単な説明】[Brief description of drawings]

【図1】並立する二つ以上の構造物としての二つの建築
物に適用したこの発明の構造物用制振構造の一実施例を
模式的に示す正面図である。
FIG. 1 is a front view schematically showing an embodiment of a structure damping structure of the present invention applied to two buildings as two or more structures standing side by side.

【図2】並立する構造物としての二つの超高層ビルディ
ングに適用したこの発明の構造物用制振構造の他の一実
施例を模式的に示す正面図である。
FIG. 2 is a front view schematically showing another embodiment of the structure damping structure of the present invention applied to two super high-rise buildings as juxtaposed structures.

【図3】一つの構造物としての長大橋の一本の主塔に適
用したこの発明の構造物用制振構造のさらに他の一実施
例を模式的に示す正面図である。
FIG. 3 is a front view schematically showing still another embodiment of the structure damping structure of the present invention applied to one main tower of a long bridge as one structure.

【図4】(a)は、一つの構造物としての一つの超高層
ビルディングに適用したこの発明の構造物用制振構造の
さらに他の一実施例を模式的に示す正面図、また(b)
は、その実施例の制振構造の作用を示す説明図、さらに
(c)は、その実施例の制振構造における連結部材の配
置を示す上記超高層ビルディングの平面図、そして
(d)は、その実施例の制振構造におけるダンパー部材
の配置を示す上記超高層ビルディングの横断面図であ
る。
FIG. 4A is a front view schematically showing still another embodiment of the structure damping structure of the present invention applied to one super high-rise building as one structure, and FIG. )
Is an explanatory view showing the action of the vibration damping structure of the embodiment, further (c) is a plan view of the super high-rise building showing the arrangement of the connecting members in the vibration damping structure of the embodiment, and (d) is It is a cross-sectional view of the above-mentioned super high-rise building showing the arrangement of damper members in the vibration control structure of the embodiment.

【図5】(a)は、上記実施例における四支柱制振部を
示す斜視図、また(b)および(c)は、その四支柱制
振部の、(a)の斜視図中の矢印Aおよび矢印B方向か
らそれぞれ見た側面図、そして(d)は、その四支柱制
振部に用いるダンパー部材を示す斜視図である。
5A is a perspective view showing a four-column vibration damping section in the above embodiment, and FIGS. 5B and 5C are arrows in the four-column vibration damping section of FIG. A side view seen from the direction A and arrow B, respectively, and (d) are perspective views showing a damper member used for the four-column vibration damping section.

【図6】(a)は、上記ダンパー部材が剪断変形する場
合の上記四支柱制振部の状態を示す側面図、そして
(b)は、上記ダンパー部材が摺動する場合の上記四支
柱制振部の状態を示す側面図である。
FIG. 6 (a) is a side view showing a state of the four-pillar damping part when the damper member is sheared and deformed, and FIG. 6 (b) is a four-pillar damping part when the damper member slides. It is a side view which shows the state of a shaking part.

【図7】(a)および(b)は、上記実施例における二
支柱制振部を水平かつ互いに直角な二方向から見て示す
側面図、また(c)は、その二支柱制振部の横断面図で
ある。
7 (a) and 7 (b) are side views showing the two-pillar damping section in the above embodiment as viewed from two directions which are horizontal and at right angles to each other, and (c) is a side view of the two-pillar damping section. FIG.

【図8】(a)は、上記実施例における二支柱制振部の
他の構成例を示す斜視図、また(b)および(c)は、
その四支柱制振部の、(a)の斜視図中の矢印Cおよび
矢印D方向からそれぞれ見た側面図、そして(d)は、
その四支柱制振部の横断面図である。
FIG. 8 (a) is a perspective view showing another configuration example of the two-pillar damping section in the above embodiment, and (b) and (c) are
A side view of the four-column vibration damping part viewed from the direction of arrow C and arrow D in the perspective view of (a), and (d),
It is a cross-sectional view of the four-pillar damping section.

【図9】(a)および(b)は、図8に示す二支柱制振
部のダンパー部材が互いに異なる二方向の外力によって
剪断変形する状態を示す側面図である。
9 (a) and 9 (b) are side views showing a state in which the damper members of the two-pillar damping section shown in FIG. 8 undergo shear deformation by external forces in two different directions.

【図10】(a)は、図4に示す実施例における連結部
材の高層ビルディング頂部への設置状態を拡大して示す
説明図、(b)は、その連結部材を高層ビルディング頂
部に連結する支持部を示す断面図、(c)は、その支持
部の、(b)のE−E線に沿う断面図、そして(d)
は、上記連結部材が高層ビルディングの各部分に初期弾
性変形を与えた状態を示す側面図である。
10 (a) is an explanatory view showing in an enlarged manner the installation state of the connecting member on the top of the high-rise building in the embodiment shown in FIG. 4, and FIG. 10 (b) is a support for connecting the connecting member to the top of the high-rise building. A sectional view showing a portion, (c) is a sectional view of the supporting portion taken along the line EE of (b), and (d).
[Fig. 6] is a side view showing a state where the connecting member has given an initial elastic deformation to each part of the high-rise building.

【図11】(a)は、この発明の制振構造の作用効果の
確認のために本願発明者が行った振動試験の供試体を示
す縦断面図、(b)は、その供試体の板ばねを示す横断
面図である。
11 (a) is a vertical cross-sectional view showing a specimen of a vibration test conducted by the inventor of the present application to confirm the effect of the vibration damping structure of the present invention, and FIG. 11 (b) is a plate of the specimen. It is a cross-sectional view showing a spring.

【図12】(a)は、上記供試体を変形させた比較例の
振動試験結果、(b)は、上記供試体において粘着剤を
除いた場合の振動試験結果、そして(c)は、上記供試
体において粘着剤と初期弾性撓み変形とを両方適用した
場合の振動試験結果を示す関係線図である。
FIG. 12 (a) is a vibration test result of a comparative example obtained by deforming the specimen, FIG. 12 (b) is a vibration test result of the specimen without an adhesive, and FIG. It is a relationship diagram which shows the vibration test result at the time of applying both an adhesive agent and initial elastic bending deformation in a sample.

【符号の説明】[Explanation of symbols]

1 建築物 2 ダンパー部材 3 連結部材 4 超高層ビルディング 5 主塔 6 支柱 1 building 2 damper member 3 connecting members 4 High-rise building 5 main tower 6 props

フロントページの続き (56)参考文献 特開 平4−185934(JP,A) 特開 平7−207988(JP,A) 特開 平7−269165(JP,A) 特開 平7−26786(JP,A) 実開 昭63−62558(JP,U) (58)調査した分野(Int.Cl.7,DB名) E04H 9/02 301 E04H 9/02 E01D 11/00 E04H 12/00 Continuation of front page (56) Reference JP-A-4-185934 (JP, A) JP-A-7-207988 (JP, A) JP-A-7-269165 (JP, A) JP-A-7-26786 (JP , A) Actual development Sho 63-62558 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) E04H 9/02 301 E04H 9/02 E01D 11/00 E04H 12/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 並立する二つ以上の構造物(1)の間
に、水平方向の外力による前記二つ以上の構造物の撓み
変形に伴うそれらの構造物間の上下方向の位置ずれの運
動エネルギーを消費するダンパー部材(2)を配設する
とともに、 前記二つ以上の構造物同士を上下方向相対移動可能に連
結しかつ引き寄せてそれらの構造物に互いの接近方向の
初期弾性撓み変形を与える連結部材(3)を設け たこと
を特徴とする、構造物用制振構造。
1. A movement of a vertical displacement between two or more structures (1) arranged side by side due to a bending deformation of the two or more structures due to an external force in the horizontal direction. disposing the damper member (2) that consume energy
At the same time, the two or more structures are connected so that they can move relative to each other in the vertical direction.
Tied and pulled together to bring those structures closer to each other
A vibration damping structure for a structure, comprising a connecting member (3) which gives an initial elastic bending deformation .
【請求項2】 前記ダンパー部材(2)は前記構造物間
の上下方向の位置ずれにより剪断変形して運動エネルギ
ーを消費する部材であることを特徴とする、請求項1記
載の構造物用制振構造。
2. The damper for a structure according to claim 1, wherein the damper member (2) is a member that consumes kinetic energy by shearing due to vertical displacement between the structures. Swing structure.
【請求項3】 前記ダンパー部材(2)は前記構造物間
の上下方向の位置ずれによりそれらの構造物の少なくと
も一方に対し摺動して運動エネルギーを消費する部材で
あることを特徴とする、請求項1記載の構造物用制振構
造。
3. The damper member (2) is a member that consumes kinetic energy by sliding relative to at least one of the structures due to vertical displacement between the structures. The structure vibration damping structure according to claim 1.
【請求項4】 並立して一つの構造物を支持する二本以
上の支柱(6)の間に、水平方向の外力による前記二本
以上の支柱の撓み変形に伴うそれらの支柱間の上下方向
の位置ずれの運動エネルギーを消費するダンパー部材
(2)を配設するとともに、 前記二本以上の支柱同士を上下方向相対移動可能に連結
しかつ引き寄せてそれらの支柱に互いの接近方向の初期
弾性撓み変形を与える連結部材(3)を設けたことを特
徴とする、構造物用制振構造。
4. Between two or more columns (6) supporting upright one structure in a vertical direction between the columns due to bending deformation of the two or more columns due to horizontal external force. A damper member (2) that consumes the kinetic energy of the positional deviation is disposed , and the two or more columns are connected so as to be vertically movable relative to each other.
And pulling them closer to each other in the initial direction of approaching each other
A vibration damping structure for a structure, comprising a connecting member (3) for elastically deforming .
【請求項5】 前記ダンパー部材(2)は前記支柱間の
上下方向の位置ずれにより剪断変形して運動エネルギー
を消費する部材であることを特徴とする、請求項4記載
の構造物用制振構造。
5. The vibration damper for a structure according to claim 4, wherein the damper member (2) is a member that consumes kinetic energy by shearing due to vertical displacement between the columns. Construction.
【請求項6】 前記ダンパー部材(2)は前記支柱間の
上下方向の位置ずれによりそれらの支柱の少なくとも一
方に対し摺動して運動エネルギーを消費する部材である
ことを特徴とする、請求項4記載の構造物用制振構造。
6. The damper member (2) is a member that consumes kinetic energy by sliding on at least one of the columns due to vertical displacement between the columns. 4. The structure for damping structure according to item 4.
JP05353898A 1998-03-05 1998-03-05 Damping structure for structures Expired - Lifetime JP3397678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05353898A JP3397678B2 (en) 1998-03-05 1998-03-05 Damping structure for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05353898A JP3397678B2 (en) 1998-03-05 1998-03-05 Damping structure for structures

Publications (2)

Publication Number Publication Date
JPH11247486A JPH11247486A (en) 1999-09-14
JP3397678B2 true JP3397678B2 (en) 2003-04-21

Family

ID=12945592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05353898A Expired - Lifetime JP3397678B2 (en) 1998-03-05 1998-03-05 Damping structure for structures

Country Status (1)

Country Link
JP (1) JP3397678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545878B2 (en) * 2000-04-28 2010-09-15 株式会社竹中工務店 Separation frame connection vibration control device
JP4939593B2 (en) * 2009-11-30 2012-05-30 三菱重工鉄構エンジニアリング株式会社 Bridge main tower and bridge equipped with the same
KR100994671B1 (en) 2010-07-20 2010-11-16 (주)씨케이피풍공학연구소 Control apparatus of building using controlling air current and control method of the same

Also Published As

Publication number Publication date
JPH11247486A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
US8307585B2 (en) Frictional damper for damping movement of structures
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP4139901B2 (en) Damping structure of wooden building and damping method of wooden building
US5875589A (en) Structures having damped floors and a method of damping floors
JP4034006B2 (en) Vibration energy absorbing device for tension structure and construction method thereof
JP4631280B2 (en) Seismic control pier
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP3397678B2 (en) Damping structure for structures
JPH11343675A (en) Damping device and damping structure
JP5192655B2 (en) Building with vibration control device
Taylor Toggle brace dampers: A new concept for structural control
JP7409950B2 (en) Vibration control device
JP5305756B2 (en) Damping wall using corrugated steel
JPH03235856A (en) Earthquake-isolating steel structural beam
JP2005133533A (en) Damping wall
JP3493495B2 (en) Beam-to-column connection with energy absorption mechanism
JP2004300912A (en) Vibration control damper coping with habitability
JP2573525B2 (en) Partition wall damping structure
JPH10292845A (en) Elasto-plastic damper
JP3463085B2 (en) Seismic building
JP3714077B2 (en) Damping structure of buildings
JPH033723Y2 (en)
JP7222825B2 (en) Wooden building structural frame and joint members
JP2511319B2 (en) Steel rod damper device for seismic isolation and vibration control
JP5152908B2 (en) Damping structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term