JP4545878B2 - Separation frame connection vibration control device - Google Patents

Separation frame connection vibration control device Download PDF

Info

Publication number
JP4545878B2
JP4545878B2 JP2000129850A JP2000129850A JP4545878B2 JP 4545878 B2 JP4545878 B2 JP 4545878B2 JP 2000129850 A JP2000129850 A JP 2000129850A JP 2000129850 A JP2000129850 A JP 2000129850A JP 4545878 B2 JP4545878 B2 JP 4545878B2
Authority
JP
Japan
Prior art keywords
deformation
frame
damper
separated
frames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000129850A
Other languages
Japanese (ja)
Other versions
JP2001311321A (en
Inventor
雅彦 東野
弘樹 濱口
長仁 木林
千佐子 松尾
忠男 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2000129850A priority Critical patent/JP4545878B2/en
Publication of JP2001311321A publication Critical patent/JP2001311321A/en
Application granted granted Critical
Publication of JP4545878B2 publication Critical patent/JP4545878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、高層建物を、鉛直方向に分離して並立する少なくとも2棟の架構で構成する場合(以下、これを分離架構と言う。)に、前記建物の分離架構を連結して振動制御を行う連結制振装置の技術分野に属する。
【0002】
【従来の技術】
従来一般の制振ダンパーは、建物の架構全体が剪断変形することを前提として減衰性能を発揮させるものであり、高層建物の卓越する曲げ変形に対しては制振効果を十分に発揮できない。
【0003】
そこで従来、曲げ剪断変形する高層建物の振動制御は、建物の頂部にマスダンパーを設置する方法が一般的に実施されてきた。同方法は高層建物の曲げと剪断を同時に制御可能であるが、建物の耐震安全性の改善を図るためには非現実的な大きさのマス重量が必要となるので、専ら強風時の振動制御をして居住性の改善を図るために使用されてきたのが実情である。
【0004】
(1) 一方、特公平4−49632号公報、特開平10−77698号公報、特開平11−200661号公報、特開平11−77698号公報等には、2棟以上の分離架構間を鉛直方向へ等間隔に設置した複数のダンパーにより連結する連結制振装置が開示されている。
【0005】
(2) また、特開平5−9979号公報等には、2棟以上の分離架構の頂部間を、アトリウムや渡り廊下等を連結手段に用い、一方の接合端部にダンパーを設けて連結する連結制振装置が開示されている。
【0006】
【本発明が解決しようとする課題】
上記従来技術(1)の連結制振装置は、分離架構間の振動特性の違いを利用してダンパーに減衰性能を発揮させ、大きな制振効果を得るべく構成されている。
しかしながら、建物が高層になるに従い、同建物を構成する分離架構間の振動特性の違いは小さくなり、地震時における分離架構間の変形(変位差)も小さくなるので、建物の制振性能は低下してしまう。
【0007】
上記従来技術(2)の連結制振装置は、基本概念としては上記従来技術(1)の連結制振装置と同様であるが、分離架構において、地震時に最も大きな変形が期待される頂部間のみを連結した構成とされている。しかしながら、この場合にも、建物が高層になるに従い、建物を構成する架構間の振動特性の違いは小さくなり、地震時における分離架構の頂部間の変形(変位差)も小さくなるので、やはり建物の制振性能の低下は避さけられない。
【0008】
そこで、本発明の目的は、高層建物を鉛直方向に分離して並立する少なくとも2棟の分離架構で構成する場合に、この分離架構の振動制御を、両架構間の隣接部分を水平方向への変形を拘束し上下方向への変形は許容するように連結し、地震時において架構全体に働く大きな曲げ変形を、同分離架構の頂部間の大きな上下方向への変形に変換させ、さらにこの分離架構の頂部間の上下方向の変形を従来一般のダンパーの変形に変換し、もって当該ダンパーに大きな減衰性能を発揮させることができ、建物全体として大きな制振効果が得られ、建物の耐震安全性の改善を図れるようにした、分離架構の連結制振装置を提供することである。
【0009】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1に記載した発明に係る分離架構の連結制振装置は、
鉛直方向に分離され少なくとも2棟に並立された分離架構の連結制振装置であって、
前記分離架構の頂部間を連結して両架構間に発生する上下変形を、ダンパーの変形に変換して減衰するダンパー付きハットトラスと、分離架構の隣接部分を連結して当該架構間の水平方向への変形を拘束し上下方向への変形は許容する連結機構との組合せで構成されており
前記ダンパー付きハットトラスは、分離架構の内側頂部とヒンジ接合により連結され、同分離架構の外側頂部との間には、軸変形を利用して減衰するダンパー機構が、取付け部材を介して、その両端をヒンジ接合により連結して組み込まれていることを特徴とする。
【0011】
請求項記載の発明に係る分離架構の連結制振装置
鉛直方向に分離され少なくとも2棟に並立された分離架構の連結制振装置であって、
前記分離架構の頂部間を連結して両架構間に発生する上下変形を、ダンパーの変形に変換して減衰するダンパー付きハットトラスと、分離架構の隣接部分を連結して当該架構間の水平方向への変形を拘束し上下方向への変形は許容する連結機構との組合せで構成されており、
前記ダンパー付きハットトラスは、分離架構の内側頂部回転減衰機構により連結され、同分離架構の外側頂部との間に、軸変形及び曲げ変形を利用して減衰するダンパー機構が、取付け部材を介して接合し組み込まれていることを特徴とする。
【0012】
請求項記載の発明に係る分離架構の連結制振装置
鉛直方向に分離され少なくとも2棟に並立された分離架構の連結制振装置であって、
前記分離架構の頂部間を連結して両架構間に発生する上下変形を、ダンパーの変形に変換して減衰するダンパー付きハットトラスと、分離架構の隣接部分を連結して当該架構間の水平方向への変形を拘束し上下方向への変形は許容する連結機構との組合せで構成されており、
前記ダンパー付きハットトラスは、分離架構間に発生する上下変形を平行運動に変換する平行リンク機構として設置され、同平行リンク機構の上下の水平リンク間に、その平行運動を利用して減衰する粘性体壁ダンパー機構が組み込まれていることを特徴とする。
【0013】
請求項記載の発明は、請求項1〜のいずれか一に記載した分離架構の連結制振装置において、
連結機構は、分離架構の隣接部分の構成部材同士が連結部材でピン連結された構成であることを特徴とする。
【0014】
請求項記載の発明は、請求項1〜のいずれか一に記載した分離架構の連結制振装置において、
連結機構は、分離架構の隣接部分の躯体中にH形連結部材がその各フランジ部を跨る配置で鉛直方向に内蔵され、同躯体とH形連結部材との当接面及び可動域に粘弾性体が介在された構成であることを特徴とする。
【0015】
請求項記載の発明は、請求項1〜のいずれか一に記載した分離架構の連結制振装置において、
連結機構は、分離架構の隣接部分の鉛直部材同士が共通の管状部材で取り囲まれ、前記両鉛直部材と管状部材とが滑り材を介して滑動自在に当接された構成であることを特徴とする。
【0016】
【発明の実施形態及び実施例】
請求項1〜に記載した発明に係る分離架構の連結制振装置は、高層建物を鉛直方向に分離して並立する少なくとも2棟の分離架構で構成する場合に、当該分離架構を連結して制振制御を行う連結制振装置として好適に実施される。
【0017】
具体的には、図1〜図8に本発明の連結制振装置の各実施形態を示したように、分離架構1、2の頂部間を連結して当該架構1、2間に発生する上下変形を、従来一般のダンパー機構5又は9、若しくは14の変形に変換して減衰するダンパー付きハットトラス3と、分離架構1、2の隣接部分を連結して当該架構1、2間の水平方向への変形を拘束し上下方向への変形は許容する連結機構4との組合せで構成されている。
【0018】
本発明の連結制振装置の原理は、連結機構4が分離架構1、2間の水平方向への変形を拘束し上下方向への変形は許容するので、地震時には前記両架構1、2の頂部間で、図2又は図5に示した如く、架構全体に働く曲げ変形が大きな上下方向への変形に変換される。さらにダンパー機構5又は9、若しくは14がハットトラス3へそれぞれの変形作動形式に対応して機能的に組み込まれていることから、同ダンパー機構5又は9、若しくは14には大きな減衰性能を発揮させることができ、建物全体として大きな制振効果が得られ、当該建物の耐震安全性が図れるのである。
【0019】
先ず、本発明の連結制振装置の上記した2つの構成要素のうちのダンパー付きハットトラス3についてその詳細を説明する。
図1に例示したダンパー付きハットトラス3は、分離架構1、2の内側頂部ピン6、6によるヒンジ接合で連結して設置されている。さらに同ハットトラス3と分離架構1、2の外側頂部との間は、分離架構1、2間に発生する上下変形を軸変形に変換し、その軸変形を利用して減衰する、例えばオイルダンパー、ビンガムダンパー等のシリンダーとピストンから成るダンパー機構5が、取付け部材3aと3aを介して、その両端をピン7、7によるヒンジ接合されて組み込まれている。
【0020】
したがって、地震時の水平力により分離架構1、2の頂部に曲げ剪断変形に伴う上下変形が発生すると、図2に示したように、ハットトラス3と各架構1、2間に設けられたダンパー機構5に、変換された軸変形を生ずる。よって、その軸変形によってダンパー機構5が作動して減衰性能が発揮される。
【0021】
図3に例示したダンパー付きハットトラス3は、分離架構1、2の内側頂部極低降伏点鋼や鉛等を用いた回転減衰機構8により連結して設置されている。さらに同ハットトラスと分離架構1、2の外側頂部との間に、同分離架構1、2間に発生する上下変形を軸変形及び曲げ変形に変換し、その軸変形及び曲げ変形を利用して減衰する、極低降伏点鋼や鉛等を用いたダンパー機構9が、取付け部材3aと3aを介して一連に接合し組み込まれている。
【0022】
したがって、地震時の水平力により分離架構1、2の頂部に曲げ剪断変形に伴う上下変形が発生すると、上記図1の実施形態と同様、図2に示したように架構1、2間が変形し、ハットトラス3と各架構1、2間に設けられたダンパー機構9に、変換された軸変形及び曲げ変形を生ずる。よって、その軸変形及び曲げ変形によってダンパー機構9が作動して減衰性能が発揮される。同実施形態におけるハットトラス3は、図1の実施形態におけるピン6、6による接合に対応して回転減衰機構8、8により接合されており、この回転減衰機構8、8も架構1、2間の上下変形を回転変形に変換してある程度の減衰性能を発揮する。
【0023】
図4に例示したダンパー付きハットトラス3は、分離架構1、2間に発生する上下変形を平行運動に変換する平行リンク機構として設置されている。即ち、前記架構1、2の延長部材10、10と同平行リンク機構の上下の水平リンク11、12とがピン13で連結され、平行四辺形を形成している。前記上下の平行運動をする水平リンク11、12の間に、両者の相対的な平行運動を利用して減衰するダンパー機構として、図示例の場合は粘性体壁ダンパー14が組み込まれている。粘性体壁ダンパー14における外側の壁型容器14aは下側の水平リンク12へ固定され、内側の抵抗板14bの上端は上側の水平リンク11へ固定されている。
【0024】
したがって、地震時の水平力により分離架構1、2の頂部に曲げ剪断変形に伴う上下変形が発生すると、図5に示したように、ハットトラス3として設置した平行リンク機構の上下の水平リンク11、12の間に、変換された水平変形を生ずる。よって、上下の水平リンク11、12の間の相対的な水平変形によって粘性体壁ダンパー14が作動して減衰性能が発揮される。
【0025】
次に、本発明の連結制振装置のもう1つの構成要素である連結機構4の詳細について説明する。
【0026】
図6A、Bに例示した連結機構4は、分離架構1、2の隣接部分の柱(鉛直部材)1A、2Aが、取付け部材15、15を介して連結部材16の端部をピン17、17で接合して連結された構成である。
【0027】
したがって、地震時の水平力により分離架構1、2間に曲げ剪断変形が生ずると、取付け部材15、15と連結部材16との間のピン17、17の部分で架構1、2間の水平方向への変形は拘束され、上下方向への変形はその回転(折れ曲がり)によって許容される。
【0028】
図7A、Bに例示した連結機構4は、分離架構1、2の隣接部分の柱(躯体)1A、2A中にH形鋼(H形連結部材)18がその各フランジ部18a、18aを跨る配置で鉛直方向に内蔵され、同柱1A、2AとH形鋼18との当接面及び上下の可動域に粘弾性体19が介在された構成である。
【0029】
したがって、地震時の水平力により分離架構1、2間に曲げ剪断変形が生ずると、H形鋼18の各フランジ部が柱1A、2Aの内部で係止して架構1、2間の水平方向への変形が拘束され、上下方向への変形は柱1A、2A内部で粘弾性体19により粘性抵抗を受け、ある程度の減衰性能を発揮しながら許容される。
【0030】
図8A、Bに例示した連結機構4は、分離架構1、2の隣接部分の柱(鉛直部材)1A、2A同士が、共通の鋼管(管状部材)20で取り囲まれている。同実施形態では、前記両柱1A、2Aと鋼管20とは、PTFE樹脂等の滑り材21とステンレス板等の相手材22とを介して滑動自在に当接されている。
【0031】
したがって、地震時の水平力により分離架構1、2間に曲げ剪断変形が生ずると、鋼管20によって両柱1A、2Aが押さえつけられ、架構1、2間の水平方向への変形は拘束されるが、滑り材21と相手材22の働きによって上下方向への変形は許容される。
【0032】
最後に図9A〜Cは、分離架構の地震応答解析した結果(地震時における建物各階での最大応答加速度、最大層剪断力、最大転倒モーメント)を示す。(a)は連結制振装置なしの場合で、(b)、(c)、(d)は本発明の連結制振装置を備えた場合のものである。但し、(b)、(c)、(d)の順で組み込まれたダンパーの減衰性能を大きくしてある。これらのグラフからも明らかなように、従来の応答特性(a)に比べ、本発明の応答特性(b)、(c)、(d)は、地震応答を20〜30%低減できることが理解される。
【0033】
【本発明が奏する効果】
請求項1〜に記載した発明に係る分離架構の連結制振装置によれば、高層建物を鉛直方向に分離して並立する少なくとも2棟の分離架構で構成する場合に、この分離架構の振動制御を、連結機構により両架構間の隣接部分を水平方向への変形を拘束し上下方向への変形は許容するように連結し、地震時において架構全体に働く大きな曲げ変形を、同分離架構の頂部間の大きな上下方向への変形に変換させ、さらにこの分離架構の頂部間の上下方向の変形を、ダンパー付きハットトラスにより従来一般のダンパーの変形に変換して、当該ダンパーに大きな減衰性能を発揮させることができるので、建物全体として大きな制振効果が得られ、当該建物の耐震安全性の改善を図れる。
【図面の簡単な説明】
【図1】本発明の連結制振装置を備えた分離架構において、特にダンパー付きハットトラスの第1実施形態を示した立面図である。
【図2】図1の分離架構の地震時における変形状態を示した図である。
【図3】本発明の連結制振装置を備えた分離架構において、特にダンパー付きハットトラスの第2実施形態を示した立面図である。
【図4】本発明の連結制振装置を備えた分離架構において、特にダンパー付きハットトラスの第3実施形態を示した立面図である。
【図5】図4の分離架構の地震時における変形状態を示した図である。
【図6】Aは本発明の連結制振装置を備えた分離架構において、特に連結機構の第1実施形態を示した正面図、BはAのa−a線矢視図である。
【図7】Aは本発明の連結制振装置を備えた分離架構において、特に連結機構の第2実施形態を示した正面図、BはAのb−b線矢視図である。
【図8】Aは本発明の連結制振装置を備えた分離架構において、特に連結機構の第3実施形態を示した正面図、BはAのc−c線矢視図である。
【図9】A〜Cは本発明の連結制振装置を備えた分離架構と備えない分離架構の地震応答解析の結果を示す特性図である。
【符号の説明】
1、2 架構
3 ハットトラス
4 連結機構
5、9、14 ダンパー
6、7 ピン
3a、3a’ 取付け部材
8 回転減衰機構
10 延長部材
11、12 水平リンク
13 ピン
15 取付け部材
16 連結部材
17 ピン
1A、2A 柱(鉛直部材)
18 H形鋼(H形連結部材)
18a フランジ部
19 粘弾性体
20 鋼管(管状部材)
21 滑り材
22 相手材
[0001]
BACKGROUND OF THE INVENTION
In the present invention, when a high-rise building is composed of at least two frames that are separated in a vertical direction and are juxtaposed (hereinafter referred to as a separated frame), vibration control is performed by connecting the separated frames of the building. It belongs to the technical field of connected vibration control devices.
[0002]
[Prior art]
Conventional vibration damping dampers generally exhibit damping performance on the premise that the entire building frame undergoes shear deformation, and cannot sufficiently exhibit vibration damping effects against the outstanding bending deformation of high-rise buildings.
[0003]
Therefore, conventionally, a vibration damper of a high-rise building that undergoes bending shear deformation has generally been implemented by a method of installing a mass damper at the top of the building. Although this method can control bending and shearing of high-rise buildings at the same time, it requires an unrealistic mass weight to improve the seismic safety of the building. In fact, it has been used to improve comfortability.
[0004]
(1) On the other hand, in Japanese Patent Publication No. 4-49632, Japanese Patent Application Laid-Open No. 10-77698, Japanese Patent Application Laid-Open No. 11-200661, Japanese Patent Application Laid-Open No. 11-77698, etc. There is disclosed a coupled vibration damping device that is coupled by a plurality of dampers installed at equal intervals.
[0005]
(2) Further, in Japanese Patent Application Laid-Open No. Hei 5-9979, etc., the connection between the tops of two or more separated frames using an atrium, a passageway, or the like as a connecting means and providing a damper at one joint end A vibration damping device is disclosed.
[0006]
[Problems to be solved by the present invention]
The connection damping device of the above-described prior art (1) is configured to obtain a great damping effect by causing the damper to exhibit the damping performance by utilizing the difference in the vibration characteristics between the separated frames.
However, as the building becomes taller, the difference in vibration characteristics between the separated frames that make up the building becomes smaller, and the deformation (displacement difference) between the separated frames during an earthquake also becomes smaller. Resulting in.
[0007]
The conventional vibration damping device of the prior art (2) is similar in concept to the conventional vibration damping device of the prior art (1), but in the separated frame, only between the top portions where the greatest deformation is expected during an earthquake. It is set as the structure which connected. However, in this case, as the building becomes taller, the difference in vibration characteristics between the frames that make up the building becomes smaller, and the deformation (displacement difference) between the tops of the separated frames during an earthquake also becomes smaller. The reduction in vibration control performance is inevitable.
[0008]
Therefore, the object of the present invention is to control the vibration of the separated frame in the horizontal direction when the high-rise building is composed of at least two separated frames that are separated from each other in the vertical direction. The deformation is constrained and connected so as to allow vertical deformation, and the large bending deformation acting on the entire frame in the event of an earthquake is converted into large vertical deformation between the tops of the separation frame. The deformation in the vertical direction between the tops of the doors can be converted into the deformation of conventional dampers, so that the dampers can exert a great damping performance, resulting in a great vibration control effect for the entire building, and the seismic safety of the building It is an object of the present invention to provide a coupled vibration control device for a separated frame that can be improved.
[0009]
[Means for Solving the Problems]
As a means for solving the above-described problem, a separated frame connecting vibration damping device according to the invention described in claim 1 is:
It is a connected vibration control device for a separated frame separated in a vertical direction and juxtaposed in at least two buildings,
Connecting the top of the separation frame and converting the vertical deformation generated between the two frames into a damper deformation to damp the damper and connecting the adjacent part of the separation frame to the horizontal direction between the frames It is composed of a combination with a coupling mechanism that restrains deformation in the vertical direction and allows deformation in the vertical direction.
The hat truss with a damper is connected to the inner top portion of the separation frame by a hinge joint, and a damper mechanism that attenuates using axial deformation is provided between the outer top portion of the separation frame via an attachment member. It is characterized in that both ends are connected by hinge joining.
[0011]
Coupling the vibration damping device of the separation Frames according to a second aspect of the present invention,
It is a connected vibration control device for a separated frame separated in a vertical direction and juxtaposed in at least two buildings,
Connecting the top of the separation frame and converting the vertical deformation generated between the two frames into a damper deformation to damp the damper and connecting the adjacent part of the separation frame to the horizontal direction between the frames It is composed of a combination with a coupling mechanism that restrains deformation in the vertical direction and allows deformation in the vertical direction.
The damper with hat truss is consolidated by the rotation damping mechanism with the inner top of the separation Frames, between the outer top of the separation Frame is a damper mechanism for damping utilizing axial deformation and bending deformation, attachment It is characterized by being joined and incorporated through a member .
[0012]
Coupling the vibration damping device of the separation Frames according to the invention of claim 3, wherein,
It is a connected vibration control device for a separated frame separated in a vertical direction and juxtaposed in at least two buildings,
Connecting the top of the separation frame and converting the vertical deformation generated between the two frames into a damper deformation to damp the damper and connecting the adjacent part of the separation frame to the horizontal direction between the frames It is composed of a combination with a coupling mechanism that restrains deformation in the vertical direction and allows deformation in the vertical direction.
The hat truss with a damper is installed as a parallel link mechanism that converts the vertical deformation generated between the separated frames into a parallel motion, and the viscosity that attenuates using the parallel motion between the upper and lower horizontal links of the parallel link mechanism. A body wall damper mechanism is incorporated.
[0013]
According to a fourth aspect of the present invention, in the coupled vibration damping device for a separated frame according to any one of the first to third aspects,
The connecting mechanism is characterized in that constituent members of adjacent portions of the separation frame are pin-connected by a connecting member.
[0014]
The invention according to claim 5 is the coupled vibration damping device for the separated frame according to any one of claims 1 to 3 ,
The coupling mechanism has an H-shaped coupling member built in the vertical direction in the frame of the adjacent part of the separation frame so as to straddle each flange portion, and is viscoelastic on the contact surface and the movable range of the same frame and the H-shaped coupling member. It is characterized in that the body is interposed.
[0015]
The invention according to claim 6 is the coupled vibration damping device for the separated frame according to any one of claims 1 to 3 ,
The connecting mechanism is characterized in that the vertical members adjacent to each other of the separation frame are surrounded by a common tubular member, and the both vertical members and the tubular member are slidably contacted via a sliding member. To do.
[0016]
Embodiments and Examples of the Invention
When the coupled vibration control device for a separated frame according to the inventions described in claims 1 to 6 is composed of at least two separated frames that are separated from each other in a vertical direction, the separated frames are coupled. It is suitably implemented as a connected vibration damping device that performs vibration damping control.
[0017]
Specifically, as shown in each embodiment of the coupled vibration damping device of the present invention in FIGS. 1 to 8, the top and bottom generated between the frames 1 and 2 by connecting the tops of the separated frames 1 and 2. A horizontal direction between the frames 1 and 2 by connecting a hat truss 3 with a damper that transforms the deformation into a deformation of a conventional damper mechanism 5 or 9 or 14 and attenuating the damper and an adjacent portion of the separation frames 1 and 2 It is configured by a combination with the coupling mechanism 4 that restrains the deformation to the vertical direction and allows the vertical deformation.
[0018]
The principle of the coupled vibration damping device of the present invention is that the coupling mechanism 4 constrains deformation in the horizontal direction between the separating frames 1 and 2 and allows deformation in the vertical direction. In the meantime, as shown in FIG. 2 or 5, the bending deformation acting on the entire frame is converted into a large vertical deformation. Furthermore, since the damper mechanism 5 or 9 or 14 is functionally incorporated in the hat truss 3 corresponding to the respective deformation operation types, the damper mechanism 5 or 9 or 14 exhibits a large damping performance. As a result, the building as a whole has a great damping effect, and the building can be seismically safe.
[0019]
First, the details of the hat truss 3 with a damper among the above-described two components of the coupled vibration damping device of the present invention will be described.
Damper with hat Truss 3 illustrated in FIG. 1 is installed by connecting with by that hinged to the inner top and pins 6,6 of separation Frames 1 and 2. Furthermore between the hat truss 3 and the outer top of the separation Frames 1 and 2, it converts the vertical deformation generated between separating Frames 1 and 2 in the axial deformation, attenuated by utilizing the axial deformation, for example, oil dampers , the damper mechanism 5 consisting of a cylinder and a piston, such as Bingham damper, through the mounting member 3a and 3a, that is built is hingedly joined to the opposite ends by pins 7,7.
[0020]
Therefore, when vertical deformation accompanying bending shear deformation occurs at the top of the separated frames 1 and 2 due to the horizontal force at the time of the earthquake, as shown in FIG. 2, the damper provided between the hat truss 3 and each frame 1 and 2 The mechanism 5 undergoes a transformed axial deformation. Therefore, the damper mechanism 5 is actuated by the axial deformation, and the damping performance is exhibited.
[0021]
Damper with hat Truss 3 illustrated in FIG. 3 is installed in conjunction with the rotation damping mechanism 8 with the inner top and low yield point steels, lead, etc. separation Frames 1 and 2. Furthermore, between the hat truss and the outer top of the separating frames 1 and 2, the vertical deformation generated between the separating frames 1 and 2 is converted into axial deformation and bending deformation, and the axial deformation and bending deformation are utilized. A damper mechanism 9 using ultra-low yield point steel, lead, or the like that is damped is joined and incorporated in series via attachment members 3a and 3a .
[0022]
Therefore, when vertical deformation caused by bending shear deformation occurs at the top of the separated frames 1 and 2 due to the horizontal force at the time of the earthquake, the frame 1 and 2 are deformed as shown in FIG. 2 as in the embodiment of FIG. Then, the converted shaft deformation and bending deformation are generated in the damper mechanism 9 provided between the hat truss 3 and each of the frames 1 and 2. Therefore, the damper mechanism 9 operates by the axial deformation and bending deformation, and the damping performance is exhibited. The hat truss 3 in the same embodiment is joined by the rotation damping mechanisms 8 and 8 corresponding to the joining by the pins 6 and 6 in the embodiment of FIG. Converts the vertical deformation of the material into rotational deformation and exhibits a certain level of damping performance.
[0023]
The hat truss 3 with a damper illustrated in FIG. 4 is installed as a parallel link mechanism that converts vertical deformation generated between the separation frames 1 and 2 into parallel motion. That is, the extension members 10 and 10 of the frames 1 and 2 and the upper and lower horizontal links 11 and 12 of the parallel link mechanism are connected by the pins 13 to form a parallelogram. In the case of the illustrated example, a viscous wall damper 14 is incorporated between the horizontal links 11 and 12 that perform parallel movement in the vertical direction as a damper mechanism that damps using the relative parallel movement of both. Outer-walled container 14a in the viscous body wall damper 14 is fixed to the horizontal link 12 of the lower, upper end of the inner resistive plate 14b is that is fixed to the upper horizontal link 11.
[0024]
Therefore, when vertical deformation accompanying bending shear deformation occurs at the tops of the separating frames 1 and 2 due to the horizontal force at the time of the earthquake, the vertical horizontal links 11 of the parallel link mechanism installed as the hat truss 3 as shown in FIG. , 12 produces a transformed horizontal deformation. Accordingly, the viscous wall damper 14 is actuated by the relative horizontal deformation between the upper and lower horizontal links 11 and 12, and the damping performance is exhibited.
[0025]
Next, the detail of the connection mechanism 4 which is another component of the connection damping device of this invention is demonstrated.
[0026]
In the connecting mechanism 4 illustrated in FIGS. 6A and 6B, the columns (vertical members) 1 </ b> A and 2 </ b> A of the adjacent portions of the separation frames 1 and 2 are connected to the end portions of the connecting member 16 via the mounting members 15 and 15. in Ru configuration der coupled by bonding.
[0027]
Therefore, when a bending shear deformation occurs between the separated frames 1 and 2 due to the horizontal force at the time of the earthquake, the horizontal direction between the frames 1 and 2 at the portions of the pins 17 and 17 between the mounting members 15 and 15 and the connecting member 16. Deformation is restricted, and deformation in the vertical direction is allowed by its rotation (bending).
[0028]
7A and 7B, in the connecting mechanism 4 illustrated in FIGS. 7A and 7B, the H-shaped steel (H-shaped connecting member) 18 straddles the flange portions 18a and 18a in the pillars (casings) 1A and 2A of the adjacent portions of the separating frames 1 and 2. It incorporated vertically in the arrangement, the pillar 1A, Ru configuration der viscoelastic body 19 in a movable range of the contact surface and the vertical is interposed between 2A and H-beam 18.
[0029]
Therefore, when bending shear deformation occurs between the separated frames 1 and 2 due to the horizontal force at the time of the earthquake, each flange portion of the H-shaped steel 18 is locked inside the columns 1A and 2A, and the horizontal direction between the frames 1 and 2 Deformation in the vertical direction is restricted, and deformation in the vertical direction is allowed while receiving a viscous resistance by the viscoelastic body 19 inside the columns 1A and 2A and exhibiting a certain level of damping performance.
[0030]
In the coupling mechanism 4 illustrated in FIGS. 8A and 8B, columns (vertical members) 1 </ b> A and 2 </ b> A of adjacent portions of the separation frames 1 and 2 are surrounded by a common steel pipe (tubular member) 20. In the embodiment, the two pillars 1A, 2A and the steel pipe 20, that is slidably contact via the mating member 22 of the sliding member 21 and the stainless steel plate such as PTFE resin.
[0031]
Therefore, when bending shear deformation occurs between the separated frames 1 and 2 due to the horizontal force at the time of the earthquake, both the pillars 1A and 2A are pressed down by the steel pipe 20, and the horizontal deformation between the frames 1 and 2 is restrained. The deformation in the vertical direction is allowed by the action of the sliding material 21 and the mating material 22.
[0032]
Finally, FIGS. 9A to 9C show the results of the seismic response analysis of the separated frame (maximum response acceleration, maximum layer shear force, maximum tipping moment at each floor of the building during the earthquake). (A) is a case without a connection damping device, (b), (c), (d) is a case with the connection damping device of the present invention. However, the damping performance of the damper incorporated in the order of (b), (c), and (d) is increased. As is clear from these graphs, it is understood that the response characteristics (b), (c), and (d) of the present invention can reduce the seismic response by 20 to 30% compared to the conventional response characteristics (a). The
[0033]
[Effects of the present invention]
According to the coupled vibration control device for a separated frame according to any one of claims 1 to 6 , when the high-rise building is composed of at least two separated frames arranged side by side in the vertical direction, the vibration of the separated frame The control unit connects the adjacent parts between the two frames with the connecting mechanism so as to constrain the deformation in the horizontal direction and allow the deformation in the vertical direction. It is converted into a large vertical deformation between the tops, and the vertical deformation between the tops of this separation frame is converted into a conventional damper deformation with a hat truss with a damper, giving the damper a great damping performance. Since it can be demonstrated, a great vibration control effect can be obtained for the entire building, and the seismic safety of the building can be improved.
[Brief description of the drawings]
FIG. 1 is an elevational view showing a first embodiment of a hat truss with a damper in a separating frame provided with a coupled vibration damping device of the present invention.
FIG. 2 is a diagram showing a deformation state of the separation frame of FIG. 1 during an earthquake.
FIG. 3 is an elevational view showing a second embodiment of a hat truss with a damper, in particular, in a separated frame equipped with a coupled vibration damping device of the present invention.
FIG. 4 is an elevational view showing a third embodiment of a hat truss with a damper, in particular, in a separated frame equipped with a coupled vibration damping device of the present invention.
FIG. 5 is a diagram showing a deformation state of the separation frame of FIG. 4 during an earthquake.
FIG. 6A is a front view showing a first embodiment of a connecting mechanism in a separated frame equipped with a connecting vibration damping device of the present invention, and FIG.
FIG. 7A is a front view showing a second embodiment of the connecting mechanism in the separation frame provided with the connecting vibration damping device of the present invention, and B is a view taken along line bb of A. FIG.
FIG. 8A is a front view showing a third embodiment of a connecting mechanism in a separation frame provided with a connecting vibration damping device of the present invention, and B is a view taken along the line cc of FIG.
FIGS. 9A to 9C are characteristic diagrams showing the results of seismic response analysis of the separated frame with and without the coupled vibration damping device of the present invention.
[Explanation of symbols]
1, 2 Frame 3 Hat truss 4 Connection mechanism 5, 9, 14 Damper 6, 7 Pin 3a, 3a 'Mounting member 8 Rotation damping mechanism 10 Extension member 11, 12 Horizontal link 13 Pin 15 Mounting member 16 Connection member 17 Pin 1A, 2A pillar (vertical member)
18 H-shaped steel (H-shaped connecting member)
18a Flange part 19 Viscoelastic body 20 Steel pipe (tubular member)
21 sliding material 22 mating material

Claims (6)

鉛直方向に分離され少なくとも2棟に並立された分離架構の連結制振装置であって、
前記分離架構の頂部間を連結して両架構間に発生する上下変形を、ダンパーの変形に変換して減衰するダンパー付きハットトラスと、分離架構の隣接部分を連結して当該架構間の水平方向への変形を拘束し上下方向への変形は許容する連結機構との組合せで構成されており
前記ダンパー付きハットトラスは、分離架構の内側頂部とヒンジ接合により連結され、同分離架構の外側頂部との間には、軸変形を利用して減衰するダンパー機構が、取付け部材を介して、その両端をヒンジ接合により連結して組み込まれていることを特徴とする、分離架構の連結制振装置。
It is a connected vibration control device for a separated frame separated in a vertical direction and juxtaposed in at least two buildings,
Connecting the top of the separation frame and converting the vertical deformation generated between the two frames into a damper deformation to damp the damper and connecting the adjacent part of the separation frame to the horizontal direction between the frames It is composed of a combination with a coupling mechanism that restrains deformation in the vertical direction and allows deformation in the vertical direction.
The hat truss with a damper is connected to the inner top portion of the separation frame by a hinge joint. A connection damping device for a separated frame, wherein both ends are connected by hinge joints and incorporated.
鉛直方向に分離され少なくとも2棟に並立された分離架構の連結制振装置であって、It is a connected vibration control device for a separated frame separated in a vertical direction and juxtaposed in at least two buildings,
前記分離架構の頂部間を連結して両架構間に発生する上下変形を、ダンパーの変形に変換して減衰するダンパー付きハットトラスと、分離架構の隣接部分を連結して当該架構間の水平方向への変形を拘束し上下方向への変形は許容する連結機構との組合せで構成されており、  Connecting the top of the separation frame and converting the vertical deformation generated between the two frames into a damper deformation to damp the damper and connecting the adjacent part of the separation frame to the horizontal direction between the frames It is composed of a combination with a coupling mechanism that restrains deformation in the vertical direction and allows deformation in the vertical direction.
前記ダンパー付きハットトラスは、分離架構の内側頂部と回転減衰機構により連結され、同分離架構の外側頂部との間には、軸変形及び曲げ変形を利用して減衰するダンパー機構が、取付け部材を介して接合し組み込まれていることを特徴とする、分離架構の連結制振装置。The hat truss with a damper is connected to the inner top portion of the separation frame by a rotation damping mechanism, and a damper mechanism that attenuates using axial deformation and bending deformation is provided between the outer top portion of the separation frame and an attachment member. A joint vibration control device for a separated frame, characterized in that it is joined and assembled via a joint.
鉛直方向に分離され少なくとも2棟に並立された分離架構の連結制振装置であって、It is a connected vibration control device for a separated frame separated in a vertical direction and juxtaposed in at least two buildings,
前記分離架構の頂部間を連結して両架構間に発生する上下変形を、ダンパーの変形に変換して減衰するダンパー付きハットトラスと、分離架構の隣接部分を連結して当該架構間の水平方向への変形を拘束し上下方向への変形は許容する連結機構との組合せで構成されており、  Connecting the top of the separation frame and converting the vertical deformation generated between the two frames into a damper deformation to damp the damper and connecting the adjacent part of the separation frame to the horizontal direction between the frames It is composed of a combination with a coupling mechanism that restrains deformation in the vertical direction and allows deformation in the vertical direction.
前記ダンパー付きハットトラスは、分離架構間に発生する上下変形を平行運動に変換する平行リンク機構として設置され、同平行リンク機構の上下の水平リンク間に、その平行運動を利用して減衰する粘性体壁ダンパー機構が組み込まれていることを特徴とする、分離架構の連結制振装置。The hat truss with a damper is installed as a parallel link mechanism that converts the vertical deformation generated between the separated frames into a parallel motion, and the viscosity that attenuates using the parallel motion between the upper and lower horizontal links of the parallel link mechanism. A coupled vibration control device for a separated frame, wherein a body wall damper mechanism is incorporated.
連結機構は、分離架構の隣接部分の構成部材同士が連結部材でピン連結された構成であることを特徴とする、請求項1〜3のいずれか一に記載した分離架構の連結制振装置。  The connection vibration damping device for a separation frame according to any one of claims 1 to 3, wherein the connection mechanism has a configuration in which constituent members of adjacent portions of the separation frame are pin-connected by a connection member. 連結機構は、分離架構の隣接部分の躯体中にH形連結部材がその各フランジ部を跨る配置で鉛直方向に内蔵され、同躯体とH形連結部材との当接面及び可動域に粘弾性体が介在された構成であることを特徴とする、請求項1〜3のいずれか一に記載した分離架構の連結制振装置。  The coupling mechanism has an H-shaped coupling member built in the vertical direction in the frame of the adjacent part of the separation frame so as to straddle each flange portion, and is viscoelastic on the contact surface and the movable range of the same frame and the H-shaped coupling member. The connected vibration damping device for a separated frame according to any one of claims 1 to 3, wherein a body is interposed. 連結機構は、分離架構の隣接部分の鉛直部材同士が共通の管状部材で取り囲まれ、前記両鉛直部材と管状部材とが滑り材を介して滑動自在に当接された構成であることを特徴とする、請求項1〜3のいずれか一に記載した分離架構の連結制振装置。  The connecting mechanism is characterized in that the vertical members adjacent to each other of the separation frame are surrounded by a common tubular member, and the both vertical members and the tubular member are slidably contacted via a sliding member. The connected vibration control device for a separated frame according to any one of claims 1 to 3.
JP2000129850A 2000-04-28 2000-04-28 Separation frame connection vibration control device Expired - Fee Related JP4545878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000129850A JP4545878B2 (en) 2000-04-28 2000-04-28 Separation frame connection vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000129850A JP4545878B2 (en) 2000-04-28 2000-04-28 Separation frame connection vibration control device

Publications (2)

Publication Number Publication Date
JP2001311321A JP2001311321A (en) 2001-11-09
JP4545878B2 true JP4545878B2 (en) 2010-09-15

Family

ID=18639058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000129850A Expired - Fee Related JP4545878B2 (en) 2000-04-28 2000-04-28 Separation frame connection vibration control device

Country Status (1)

Country Link
JP (1) JP4545878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574598B1 (en) 2012-10-05 2015-12-04 가부시키가이샤 도요다 지도숏키 Goods storage rack

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057121A (en) * 2006-08-29 2008-03-13 Takenaka Komuten Co Ltd Vibration isolation structure of building
JP5089946B2 (en) * 2006-09-20 2012-12-05 株式会社竹中工務店 Seismic control structure of a connected building
JP4964545B2 (en) * 2006-09-20 2012-07-04 株式会社竹中工務店 Seismic control structure of a connected building

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269165A (en) * 1994-03-31 1995-10-17 Ohbayashi Corp Vibration control structure
JPH10280725A (en) * 1997-04-08 1998-10-20 Shimizu Corp Damping skeleton construction
JPH11247486A (en) * 1998-03-05 1999-09-14 Tokai Univ Vibration control construction for structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297725A (en) * 1997-04-24 1998-11-10 Takenaka Komuten Co Ltd Vibration control method of racklike storage shelves and connector for vibration control
JPH11280299A (en) * 1998-03-31 1999-10-12 Shimizu Corp Vibration control building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269165A (en) * 1994-03-31 1995-10-17 Ohbayashi Corp Vibration control structure
JPH10280725A (en) * 1997-04-08 1998-10-20 Shimizu Corp Damping skeleton construction
JPH11247486A (en) * 1998-03-05 1999-09-14 Tokai Univ Vibration control construction for structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574598B1 (en) 2012-10-05 2015-12-04 가부시키가이샤 도요다 지도숏키 Goods storage rack

Also Published As

Publication number Publication date
JP2001311321A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
US6405493B1 (en) Motion-magnifying seismic shock-absorbing construction
US6397528B1 (en) Coupled truss systems with damping for seismic protection of buildings
Chakraborty et al. Design of re-centering spring for flat sliding base isolation system: Theory and a numerical study
JP4545878B2 (en) Separation frame connection vibration control device
JP3931289B2 (en) Vibration control device
TW201510323A (en) Damping device
JPH09221852A (en) Vibration control device for building
JP2013007236A (en) Vibration control damper for wooden building
US20040154258A1 (en) Building structure configured to exhibit a prescribed load-deflection relationship when a force is applied thereto
Nielsen et al. Seismic isolation with a new friction-viscoelastic damping system
JPS6231735A (en) Two-node pendulum type vibration absorber
JPH0449632B2 (en)
JP3205311U (en) Damping structure and damping panel
CN211774738U (en) Shape memory alloy negative stiffness damping device
Mayes et al. Comparative performance of buckling-restrained braces and moment frames
JP2004060397A (en) Vibration control device
JPS63114772A (en) Axial tension damper
JPH1082203A (en) Vibration damper for building
GB2286579A (en) Elevator having roller guide arrangements
JP3671311B2 (en) Damping and reinforcing structure for existing buildings
JP3228180B2 (en) Damping structure
JP3957255B2 (en) Vibration control rack
JPH11200662A (en) Vibration control structure
JP3100130B2 (en) Damping brace
JPH09324557A (en) Vibration-control structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees