JP5089946B2 - Seismic control structure of a connected building - Google Patents

Seismic control structure of a connected building Download PDF

Info

Publication number
JP5089946B2
JP5089946B2 JP2006254677A JP2006254677A JP5089946B2 JP 5089946 B2 JP5089946 B2 JP 5089946B2 JP 2006254677 A JP2006254677 A JP 2006254677A JP 2006254677 A JP2006254677 A JP 2006254677A JP 5089946 B2 JP5089946 B2 JP 5089946B2
Authority
JP
Japan
Prior art keywords
building
damper
control structure
connecting beam
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006254677A
Other languages
Japanese (ja)
Other versions
JP2008075318A (en
Inventor
章 西村
守秀 渡辺
一郎 石出
康彦 木村
勉 野平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2006254677A priority Critical patent/JP5089946B2/en
Publication of JP2008075318A publication Critical patent/JP2008075318A/en
Application granted granted Critical
Publication of JP5089946B2 publication Critical patent/JP5089946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、複数棟の建物を連結梁により相互に連結して成る連結建物の制震構造の技術分野に属する。   The present invention belongs to the technical field of a seismic control structure for a connected building formed by connecting a plurality of buildings to each other by connecting beams.

建物に鉛直方向(上下方向)の地震動が作用すると、建物の柱や杭に引張力が発生する。これに対処するには、柱や杭の断面を大きくするなど高強度な構造に構築する必要があった。また、建物が免震構造の場合は、免震層に引張力が発生する。これに対処するには、免震層において、建物重量を支持する長期荷重用の積層ゴム体と、転倒モーメントによる引っ張りに抵抗する転倒防止用の積層ゴム体とを併用した構成の技術等があるが(例えば、特許文献1、2参照)、建物の柱及び基礎に引張力が作用することには変わりなく、柱及び基礎もある程度は高強度な構造に構築する必要があった。   When vertical (vertical) earthquake motion acts on a building, tensile force is generated on the pillars and piles of the building. To cope with this, it was necessary to construct a high-strength structure such as increasing the cross section of pillars and piles. In addition, if the building has a seismic isolation structure, tensile force is generated in the seismic isolation layer. To cope with this, there is a technology that uses a laminated rubber body for long-term loads that supports the weight of the building and a laminated rubber body for preventing overturning that resists pulling due to the overturning moment in the seismic isolation layer. However (see, for example, Patent Documents 1 and 2), the tensile force acts on the pillars and foundations of the building, and the pillars and foundations need to be constructed to a certain degree of strength.

このように、鉛直方向の地震動に対応するには、一様に、建物を高強度な構造に構築しなければならず、コストが多大に嵩み、過大な引張力が作用する場合には設計不可能となる等、より経済的で安全性に優れた対策が望まれているのが実情である。しかしながら、個々の建物をそれぞれ高強度な構造に構築する技術は、コスト的にも構造力学的にも自ずと限界がある。   Thus, in order to cope with vertical ground motion, the building must be uniformly constructed with a high-strength structure, and the design is performed when the cost is very high and excessive tensile force is applied. The reality is that more economical and safer countermeasures are desired, such as being impossible. However, the technology for constructing individual buildings with high-strength structures is naturally limited in terms of cost and structural mechanics.

そこで、複数棟の建物を連結材を介して連結する連結建物に係る技術が注目される(例えば、特許文献3参照)。この特許文献3には、隣接する複数棟の建物をオイルダンパ等のエネルギー吸収機構で連結することにより、任意方向の水平面内振動に対して効果的に減衰効果を発揮する技術が開示されている。   Then, the technique which concerns on the connection building which connects the building of several buildings via a connection material attracts attention (for example, refer patent document 3). This patent document 3 discloses a technique that effectively exhibits a damping effect against vibration in a horizontal plane in an arbitrary direction by connecting adjacent buildings with an energy absorbing mechanism such as an oil damper. .

このように、連結材を使用することにより、建物に作用する鉛直方向の地震動を低減することができれば、柱や杭の断面を必要以上に大きくする必要がなくなる等、従来技術と比してコスト削減に寄与することは勿論、構造設計上、より安全性の高い建物を提供できることは明らかである。   In this way, if the vertical ground motion acting on the building can be reduced by using the connecting material, it is not necessary to enlarge the cross section of the pillars and piles more than necessary. It is obvious that it is possible to provide a safer building in terms of structural design as well as contributing to reduction.

特許第2631486号公報Japanese Patent No. 2631486 実公平6−18996号公報Japanese Utility Model Publication No. 6-18996 特開11−270188号公報JP 11-270188 A

特許第2631486号公報Japanese Patent No. 2631486 実公平6−18996号公報Japanese Utility Model Publication No. 6-18996 特開平11−270188号公報Japanese Patent Laid-Open No. 11-270188

本発明の目的は、建物を連結する連結梁の構造に工夫を施すことにより、前記建物に作用する鉛直方向の地震動を低減(抑制)することができる、経済性、安全性、及び居住性に優れた連結建物の制震構造を提供することである。   It is an object of the present invention to reduce (suppress) vertical seismic motion acting on the building by devising the structure of the connecting beam that connects the buildings, in terms of economy, safety, and comfort. It is to provide an excellent seismic control structure for connected buildings.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る連結建物の制震構造は、
複数棟の建物を連結梁により相互に連結して成る連結建物の制震構造であって、
前記連結梁は、その上下方向の固有周期が、建物の上下方向の固有周期に合わせられ、建物と共振しやすい質量と剛性を備えているとともに、その端部と建物との連結部分に、前記建物の鉛直方向の地震動に伴う連結梁の上下方向の変形によるエネルギーを吸収するダンパー部材が設けられていることを特徴とする。
As means for solving the problems of the background art, the vibration control structure for a linked building according to the invention described in claim 1 is:
It is a vibration control structure of a connected building that consists of multiple buildings connected to each other by connecting beams,
The connecting beam has a natural period in the vertical direction matched to a natural period in the vertical direction of the building, and has a mass and rigidity that easily resonates with the building. A damper member is provided that absorbs energy due to vertical deformation of the connecting beam accompanying the vertical earthquake motion of the building.

請求項2に記載した発明は、請求項1に記載した連結建物の制震構造において、連結梁は、トラス構造で構成されており、前記トラス構造の両端部における下弦材又は上弦材に相当する部位にダンパー部材が設けられていることを特徴とする。   According to a second aspect of the present invention, in the vibration control structure for a connected building according to the first aspect, the connecting beam is formed of a truss structure, and corresponds to a lower chord member or an upper chord member at both ends of the truss structure. A damper member is provided at the site.

請求項3に記載した発明は、請求項1又は2に記載した連結建物の制震構造において、連結梁は、建物の高さ方向に間隔をあけて複数設けられていることを特徴とする。   According to a third aspect of the present invention, in the vibration control structure for a connected building according to the first or second aspect, a plurality of connecting beams are provided at intervals in the height direction of the building.

請求項4に記載した発明は、請求項1〜3のいずれか一に記載した連結建物の制震構造において、ダンパー部材は、オイルダンパー、鋼材ダンパー、粘弾性ダンパー、或いは大振幅用ダンパーに小振幅ダンパーを直列状に結合して成る複合型ダンパーであることを特徴とする。   According to a fourth aspect of the present invention, in the vibration-damping structure for a connected building according to any one of the first to third aspects, the damper member is small in an oil damper, a steel damper, a viscoelastic damper, or a damper for large amplitude. It is a composite damper formed by connecting amplitude dampers in series.

請求項5に記載した発明は、請求項1〜4のいずれか一に記載した連結建物の制震構造において、複数棟の建物はそれぞれ、その基礎部が免震構造として構成されていることを特徴とする。   The invention described in claim 5 is the seismic structure of the linked building according to any one of claims 1 to 4, wherein each of the buildings of the plurality of buildings is configured as a base isolation structure. Features.

請求項1〜請求項5に係る連結建物の制震構造は、連結梁2(12)の端部と建物1との連結部分に、前記建物1の鉛直方向の地震動に伴う連結梁2(12)の上下方向の変形によるエネルギーを吸収するダンパー部材3を設け、且つ前記連結梁2は、マスダンパーとして作用する重量と剛性を備えている。よって、建物1のそれぞれの上下方向の固有周期に、連結梁2の上下方向の周期を合わせると、建物に鉛直方向の地震動が作用した場合、建物1以上に連結梁2が揺れて、連結梁2と建物1との間に設けた前記ダンパー部材3、3…がともに伸張・収縮を交互に繰り返して、建物の振動に応じて共振することができるので、その結果、前記建物1に作用する鉛直方向の地震動を吸収し、低減(抑制)することができるのである。
よって、従来技術と比して、柱、梁等から成る構造躯体を高強度に構築する必要はないので、コスト削減に寄与することができ、構造設計上、より安全性の高い建物を提供できる。よって、経済性、及び安全性に優れている。また、これに伴い、柱や梁、或いはコア架構等をスリム化できるので、眺望性、採光性に優れた居住空間を実現することができる。
The seismic structure of a connected building according to any one of claims 1 to 5 includes a connecting beam 2 (12 associated with a vertical earthquake motion of the building 1 at a connecting portion between the end of the connecting beam 2 (12) and the building 1. The damper member 3 for absorbing energy due to the deformation in the vertical direction is provided, and the connecting beam 2 has a weight and rigidity to act as a mass damper. Therefore, when the vertical period of the connecting beam 2 is adjusted to the natural period of each vertical direction of the building 1, when the vertical ground motion acts on the building, the connecting beam 2 shakes more than the building 1, and the connecting beam The damper members 3, 3... Provided between the building 2 and the building 1 can resonate according to the vibration of the building by alternately repeating expansion and contraction, and as a result, act on the building 1. It can absorb and reduce (suppress) vertical ground motion.
Therefore, it is not necessary to build a structural frame consisting of columns, beams, etc. with high strength compared to the prior art, which can contribute to cost reduction and provide a safer building in terms of structural design. . Therefore, it is excellent in economic efficiency and safety. In addition, along with this, pillars, beams, core frames, etc. can be slimmed down, so that a living space with excellent viewability and daylighting can be realized.

本発明に係る連結建物の制震構造は、上述した発明の効果を奏するべく、以下のように実施される。   The seismic control structure for a linked building according to the present invention is implemented as follows in order to achieve the above-described effects.

図1A、Bは、請求項1に記載した連結建物の制震構造を模式的に簡略化して示している。この連結建物の制震構造は、複数棟の建物1、1を連結梁2により相互に連結して成る連結建物の制震構造であって、前記連結梁2は、図2A、Bに示したように、その上下方向の固有周期が、建物1の上下方向の固有周期に合わせられ、建物1と共振しやすい質量と剛性を備えているとともに、その端部と建物1との連結部分に、前記建物1の鉛直方向の地震動に伴う連結梁2の上下方向の変形によるエネルギーを吸収するダンパー部材3が設けられている(請求項1記載の発明)。
なお、前記建物1は、高層建物で実施しているが、低層の建物でも同様に実施できる。ちなみに、図示例では、幅寸(敷地面積)は20m×20m程度、高さが140m程度の建物を想定している。
1A and 1B schematically show a seismic control structure for a linked building according to claim 1 in a simplified manner. This connected building seismic control structure is a connected building seismic control structure in which a plurality of buildings 1 and 1 are connected to each other by a connecting beam 2. The connecting beam 2 is shown in FIGS. Thus, the natural period in the vertical direction is matched to the natural period in the vertical direction of the building 1 and has mass and rigidity that easily resonates with the building 1, and at the connecting portion between the end and the building 1, A damper member 3 is provided that absorbs energy due to vertical deformation of the connecting beam 2 accompanying the vertical earthquake motion of the building 1 (invention according to claim 1).
In addition, although the said building 1 is implemented with a high-rise building, it can implement similarly in a low-rise building. Incidentally, in the illustrated example, a building having a width dimension (site area) of about 20 m × 20 m and a height of about 140 m is assumed.

図示例に係る制震構造は、二棟の建物1、1についての実施例であり、図1A、Bに示したように、二棟の建物1、1の側面同士を、平面方向に見ると、平行な1対の連結梁2、2で連結している。また、前記1対の連結梁2、2は、正面方向に見ると、建物1、1の高さ方向に所定の間隔をあけて複数(図示例では3箇所)設けて実施している(請求項3記載の発明)。なお、前記連結梁2の配置及び個数は図示例に限定されず、建物1の剛性、及び形状、或いは使用するダンパー部材3の性能に応じて適宜設計変更される。ちなみに、本実施例では、42階建ての建物1を想定し、前記連結梁2を、15階、26階、37階部分に設けている。また、前記連結梁2を設ける箇所は、当該連結梁2を利用してコンクリート床を構築し、植栽や庭園等を設ける等して居住者の憩いの空間を提供したり、設備機器の設置スペースに利用したりして、前記連結梁2をマスダンパーとして作用させるのに必要な重量と剛性を与えている。   The seismic control structure according to the illustrated example is an example of two buildings 1 and 1, and as shown in FIGS. 1A and 1B, when the side surfaces of the two buildings 1 and 1 are viewed in a planar direction. Are connected by a pair of parallel connecting beams 2 and 2. Further, when viewed in the front direction, the pair of connecting beams 2 and 2 are provided with a plurality (three in the illustrated example) at predetermined intervals in the height direction of the buildings 1 and 1 (invoice). Item 3). The arrangement and the number of the connecting beams 2 are not limited to the illustrated example, and can be appropriately changed depending on the rigidity and shape of the building 1 or the performance of the damper member 3 to be used. By the way, in this embodiment, a 42-story building 1 is assumed, and the connecting beam 2 is provided on the 15th, 26th and 37th floors. In addition, the place where the connecting beam 2 is provided is to provide a resident's rest space by constructing a concrete floor using the connecting beam 2 and providing planting, a garden, etc. For example, the weight and rigidity necessary for the connecting beam 2 to act as a mass damper are given to the space.

本実施例に係る連結梁2は、図2A、Bに示したように、トラス構造で構成されており、前記トラス構造の両端部における下弦材に相当する部位にダンパー部材3が設けられている(請求項2記載の発明)。前記トラス構造におけるダンパー部材3を除く部分は、H形鋼等の鉄骨部材4で実施されている。よって、前記ダンパー部材3は、その一端部は、建物1の側面部における柱梁接合部(或いは、鉄骨柱、鉄骨梁)に、ボルトや溶接等の接合手段で強固に剛結され、他端部は、前記鉄骨部材4の端部にやはり、ボルトや溶接等の接合手段で強固に剛結されている(図示省略)。
なお、前記連結梁2は、個々の連結梁2…に対してそれぞれ計4本のダンパー部材3を使用しているが、本数はこれに限定されず、連結梁2の構造に応じて適宜増減可能である。また、本実施例では、前記連結梁2としてトラス構造で実施しているがこれに限定されず、H形鋼材等で構成されるトラス構造でない連結梁でもほぼ同様に実施できる。以下の実施例2についても同様の技術的思想とする。
As shown in FIGS. 2A and 2B, the connecting beam 2 according to the present embodiment has a truss structure, and a damper member 3 is provided at a portion corresponding to the lower chord material at both ends of the truss structure. (Invention of Claim 2). The portion except the damper member 3 in the truss structure is implemented by a steel member 4 such as H-section steel. Therefore, one end of the damper member 3 is firmly rigidly connected to a column beam joint (or a steel column or steel beam) on the side surface of the building 1 by a joining means such as a bolt or welding. The part is also firmly rigidly connected to the end of the steel frame member 4 by a joining means such as a bolt or welding (not shown).
The connecting beam 2 uses a total of four damper members 3 for each connecting beam 2. However, the number of the connecting beams 2 is not limited to this, and the number is appropriately increased or decreased depending on the structure of the connecting beam 2. Is possible. In the present embodiment, the connecting beam 2 is implemented with a truss structure. However, the present invention is not limited to this, and a connecting beam having no truss structure composed of H-shaped steel or the like can be implemented in substantially the same manner. The same technical idea applies to Example 2 below.

また、前記連結梁2は、建物1、1の上下方向の固有周期に、連結梁2の上下方向の周期をほぼ一致させるような重量と剛性を有する構造設計で実施することが好ましい。なお、前記連結梁2の構造設計について、建物1、1の上下方向の固有周期と、連結梁2の上下方向の周期とを一致させることが最も効果的ではあるが、少なくとも、連結梁2の周期を、建物1、1と共振しやすい(揺れやすい)周期に合わせるような構造設計にしておくことに留意する。   Further, the connecting beam 2 is preferably implemented by a structural design having a weight and rigidity so that the vertical period of the connecting beam 2 substantially matches the vertical period of the buildings 1 and 1. As for the structural design of the connecting beam 2, it is most effective to match the natural period in the vertical direction of the buildings 1, 1 and the vertical period of the connecting beam 2. It should be noted that the structure is designed so that the period matches the period that tends to resonate with the buildings 1 and 1 (easy to shake).

本実施例に係るダンパー部材3は、オイルダンパーを使用しているが、オイルダンパーの他、鋼材ダンパー、粘弾性ダンパー、或いは大振幅用ダンパーに小振幅ダンパーを直列状に結合して成る複合型ダンパーを、構造設計に応じて適宜選択して適用することが好ましい(請求項4記載の発明)。   The damper member 3 according to the present embodiment uses an oil damper. In addition to the oil damper, a composite type in which a small amplitude damper is connected in series to a steel damper, a viscoelastic damper, or a large amplitude damper. It is preferable that the damper is appropriately selected and applied according to the structural design (the invention according to claim 4).

したがって、上記構成の連結建物の制震構造によれば、連結建物1、1に鉛直方向の地震動が作用すると、建物1、1は上下に揺れ、前記連結梁2は、図3A、Bに示したように、その両端部の下弦材に相当する部位に設けたダンパー部材3、3がともに伸張・収縮を交互に繰り返して建物の鉛直方向の振動に応じて共振することができるので、その結果、前記建物1に作用する鉛直方向の地震動を吸収し、低減(抑制)することができるのである。よって、従来技術と比して、柱、梁等から成る構造躯体を高強度に構築する必要はないので、コスト削減に寄与することができ、構造設計上、より安全性の高い建物を提供できる。よって、経済性、及び安全性に優れている。また、これに伴い、柱や梁、或いはコア架構等をスリム化できるので(図4B参照)、眺望性、採光性に優れた居住空間を実現することができる。   Therefore, according to the seismic control structure of the connected building having the above configuration, when vertical ground motion acts on the connected buildings 1 and 1, the buildings 1 and 1 swing up and down, and the connecting beam 2 is shown in FIGS. As described above, the damper members 3 and 3 provided at the portions corresponding to the lower chord members at both ends can resonate in response to the vibration in the vertical direction of the building by alternately repeating expansion and contraction, and as a result The vertical ground motion acting on the building 1 can be absorbed and reduced (suppressed). Therefore, it is not necessary to build a structural frame consisting of columns, beams, etc. with high strength compared to the prior art, which can contribute to cost reduction and provide a safer building in terms of structural design. . Therefore, it is excellent in economic efficiency and safety. In addition, along with this, the pillars, beams, or core frame can be slimmed (see FIG. 4B), so that it is possible to realize a living space with excellent viewability and daylighting.

なお、図示は省略するが、前記連結梁2について、本実施例では、トラス構造の両端部における下弦材に相当する部位にダンパー部材3を設けて実施しているが、これに限定されず、トラス構造の構成部材4の取り付け位置を設計変更する等により、トラス構造の両端部における上弦材に相当する部位にダンパー部材3を設けて実施することもでき、ほぼ同様の作用効果を奏する(請求項2記載の発明)。   In addition, although illustration is abbreviate | omitted, about the said connection beam 2, although the damper member 3 is provided and implemented in the site | part corresponded to the lower chord material in the both ends of a truss structure in this Example, it is not limited to this, By changing the design of the mounting position of the structural member 4 of the truss structure, the damper member 3 can be provided in the portion corresponding to the upper chord material at both ends of the truss structure, and substantially the same operational effects are obtained (claims). Item 2).

図5は、請求項1に記載した連結建物の制震構造の異なる実施例を示している。この連結建物の制震構造は、上記実施例1と比して、建物1を三棟設けて実施していることが主に相違する。
即ち、この実施例2に係る連結建物の制震構造は、三棟の建物1を連結梁12により相互に連結して成る連結建物の制震構造であって、図5に平面的に示したように、前記連結梁12は、その端部と建物1との連結部分に、前記建物1の鉛直方向の地震動に伴う連結梁12の上下方向の変形によるエネルギーを吸収するダンパー部材3が設けられていると共に、マスダンパーとして作用する重量と剛性を備えている(請求項1記載の発明)。ちなみに、図5A中の符号5は、隣接する連結梁12、12同士をバランス良く連結した補強梁を示している。
FIG. 5 shows a different embodiment of the seismic control structure for a linked building according to claim 1. The seismic control structure of this connected building is mainly different from the first embodiment in that three buildings 1 are provided.
That is, the seismic control structure of a connected building according to the second embodiment is a connected building seismic control structure in which three buildings 1 are connected to each other by a connecting beam 12, and is shown in a plan view in FIG. As described above, the connecting beam 12 is provided with a damper member 3 at the connecting portion between the end of the connecting beam 12 and the building 1 to absorb energy caused by the vertical deformation of the connecting beam 12 caused by the vertical earthquake motion of the building 1. In addition, it has a weight and rigidity to act as a mass damper (invention of claim 1). Incidentally, the code | symbol 5 in FIG. 5A has shown the reinforcement beam which connected the adjacent connection beams 12 and 12 with sufficient balance.

この実施例2に係る連結建物の制震構造は、図5に示したように、三棟の建物1を、ほぼ正三角形の頂点に相当する部位にバランスよく配設して実施している。また、前記建物1は、上記実施例1と同様に、幅寸(敷地面積)が20m×20m程度、高さが140m程度の建物1を想定している。また、この実施例2でも、42階建ての建物1を想定し、前記連結梁12を、15階、26階、37階に設けている(図1Bを参照)。なお、前記連結梁2を設ける箇所は、当該連結梁12を利用してコンクリート床を構築し、植栽や庭園等を設ける等して居住者の憩いの空間を提供したり、設備機器の設置スペースに利用したりして、前記連結梁12をマスダンパーとして作用させるのに必要な重量と剛性を与えている。また、この実施例2は、当該連結梁12及び前記補強梁5を有効利用してほぼ正六角形状の広大なコンクリート床を構築できるので、上記実施例1と比して、より広大な居住者の憩いの空間等を提供することができる。   As shown in FIG. 5, the seismic structure for a linked building according to the second embodiment is implemented by arranging three buildings 1 in a balanced manner at a portion substantially corresponding to the apex of an equilateral triangle. The building 1 is assumed to be a building 1 having a width (site area) of about 20 m × 20 m and a height of about 140 m, as in the first embodiment. Also in this second embodiment, assuming a 42-story building 1, the connecting beams 12 are provided on the 15th, 26th, and 37th floors (see FIG. 1B). In addition, the place where the connecting beam 2 is provided is a construction of a concrete floor using the connecting beam 12, providing a space for residents to relax, such as planting or gardening, or installing equipment. For example, the weight and rigidity necessary for the connecting beam 12 to act as a mass damper are given to the space. Further, in this second embodiment, a vast concrete floor having a substantially regular hexagonal shape can be constructed by effectively using the connecting beam 12 and the reinforcing beam 5, and therefore, a larger occupant compared to the first embodiment. A relaxing space can be provided.

本実施例に係る連結梁12は、上記実施例1と同様に、トラス構造で構成されており、前記トラス構造の両端部における下弦材に相当する部位にダンパー部材3が設けられている(請求項2記載の発明)。その他、前記ダンパー部材3と建物1とを連結する手法等は、上記実施例1と同様なので、その説明を割愛する。   The connecting beam 12 according to the present embodiment is configured by a truss structure as in the first embodiment, and the damper member 3 is provided at a portion corresponding to the lower chord material at both ends of the truss structure (claim). Item 2). In addition, since the method etc. which connect the said damper member 3 and the building 1 are the same as that of the said Example 1, the description is omitted.

ただし、この実施例2に係る連結梁12は、図5に示したように、三棟の建物をシンメトリック状にバランス良く連結している関係上、左右のトラス構造の長さを異ならせて実施している。その内、長尺側の連結梁12aは、図6Aに示した構成で実施され、その両端部の下弦材に相当する位置に、ダンパー部材3として、大振幅用ダンパーに小振幅ダンパーを直列状に結合して成る複合型ダンパー(所謂ブロードバンドダンパー)3で実施している。これに対して、短尺側の連結梁12bは、図6Bに示した構成で実施され、その両端部の下弦材に相当する位置に、ダンパー部材3として、オイルダンパー3で実施している。なお、前記ダンパー部材3は、その他、鋼材ダンパー、粘弾性ダンパーを構造設計に応じて適宜選択して適用できることは上記実施例1と同様である(請求項4記載の発明)。   However, as shown in FIG. 5, the connecting beam 12 according to the second embodiment is different in the length of the left and right truss structures because the three buildings are connected in a symmetrical manner in a balanced manner. We are carrying out. Among them, the long-side connecting beam 12a is implemented with the configuration shown in FIG. 6A, and a small-amplitude damper is connected in series to a large-amplitude damper as a damper member 3 at positions corresponding to lower chords at both ends. It is carried out by a composite damper (so-called broadband damper) 3 that is coupled to the above. On the other hand, the short-side connecting beam 12b is implemented by the configuration shown in FIG. 6B, and is implemented by the oil damper 3 as the damper member 3 at positions corresponding to the lower chord material at both ends thereof. In addition, the damper member 3 can be applied by appropriately selecting a steel damper and a viscoelastic damper according to the structural design in the same manner as in the first embodiment (the invention according to claim 4).

したがって、上記構成の連結建物の制震構造によれば、連結建物1、1、1に鉛直方向の地震動が作用すると、建物1、1、1は上下に揺れ、当該建物1…における隣接する建物1、1同士を連結する連結梁12は、実質上、上記実施例1と同様に、図3A、Bに示したように挙動する。即ち、前記連結梁12の両端部の下弦材に相当する部位に設けたダンパー部材3、3…がともに伸張・収縮を交互に繰り返して建物の鉛直方向の振動に応じて共振することができるので、その結果、前記建物1に作用する鉛直方向の地震動を吸収し、低減(抑制)することができるのである。また、この実施例2に係る三棟の建物を連結した連結建物の制震構造は、上記実施例1に係る二棟の建物を連結した連結建物の制震構造と比して、構造力学的にもより安定した構造架構を実現することができる。よって、従来技術と比して、柱、梁等から成る構造躯体を高強度に構築する必要はないので、コスト削減に大きく寄与することができ、構造設計上、より安全性の高い建物を提供できる。よって、経済性、及び安全性に優れている。また、これに伴い、柱や梁、或いはコア架構等をスリム化できるので(図4B参照)、眺望性、採光性に優れた居住空間を実現することができる。   Therefore, according to the seismic control structure of the connected building having the above configuration, when vertical ground motion acts on the connected buildings 1, 1, 1, the buildings 1, 1, 1 swing up and down, and adjacent buildings in the building 1. The connecting beam 12 connecting the 1 and 1 behaves substantially as shown in FIGS. 3A and 3B, as in the first embodiment. That is, the damper members 3, 3... Provided at the portions corresponding to the lower chord members at both ends of the connecting beam 12 can resonate in response to vibrations in the vertical direction of the building by alternately repeating expansion and contraction. As a result, the vertical ground motion acting on the building 1 can be absorbed and reduced (suppressed). Further, the seismic control structure of the connected building connecting the three buildings according to the second embodiment is structural mechanical compared to the control structure of the connecting building connecting the two buildings according to the first embodiment. In addition, a more stable structural frame can be realized. Therefore, it is not necessary to build a structural frame consisting of pillars, beams, etc. with high strength compared to the conventional technology, so it can greatly contribute to cost reduction and provide a safer building in terms of structural design. it can. Therefore, it is excellent in economic efficiency and safety. In addition, along with this, the pillars, beams, or core frame can be slimmed (see FIG. 4B), so that it is possible to realize a living space with excellent viewability and daylighting.

以上に実施形態を図面に基づいて説明したが、本発明は、図示例の実施形態の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。   The embodiments have been described with reference to the drawings. However, the present invention is not limited to the illustrated embodiments, and design modifications and application variations that are usually made by those skilled in the art are within the scope of the technical idea of the invention. Note that it includes the range.

例えば、本実施例1、2では、二棟又は三棟の建物を連結した連結建物の制震構造で実施しているが、これに限定されず、四棟、五棟以上の連結建物の制震構造でも、当該建物をシンメトリック状にバランスよく配設することにより、ほぼ同様に実施することができる。   For example, in the first and second embodiments, the vibration control structure of a connected building in which two or three buildings are connected is used, but the present invention is not limited to this. Even a seismic structure can be implemented in substantially the same manner by arranging the building symmetrically in a well-balanced manner.

また、上記建物1をそれぞれ、その基礎部に免震層を設け、当該免震層に積層ゴム等のアイソレーター、及び金属系や粘性系のダンパーを設置して免震構造をすれば、より安定した構造架構を実現することができる(請求項5記載の発明)。   In addition, if each building 1 is provided with a base isolation layer on its foundation and an isolator such as laminated rubber and a metal or viscous damper is installed in the base isolation layer, it will be more stable. The above-described structural frame can be realized (the invention according to claim 5).

さらに、本実施例では、建物1、1…をほぼ同様の大きさ・形状で実施しているが故に、連結部材2(12)の両端部にダンパー部材3を設けて実施しているが(請求項2記載の発明)、いずれか一方の構造重量を遙かに大きくして実施する等、建物の変形が各棟で異なる場合には、変形の大きい建物側の端部のみにダンパー部材3を設けることで事足りる場合がある(請求項1記載の発明)。   Furthermore, in the present embodiment, the buildings 1, 1... Are implemented with substantially the same size and shape, so that the damper members 3 are provided at both ends of the connecting member 2 (12). When the deformation of the building is different in each building, such as when the structural weight of any one of the inventions is significantly increased, the damper member 3 is provided only at the end of the building on which the deformation is large. In some cases, it may be sufficient to provide (the invention of claim 1).

Aは、実施例1に係る連結建物の制震構造を概略的に示した平面図であり、Bは、同立面図である。A is the top view which showed schematically the vibration control structure of the connection building which concerns on Example 1, B is the same elevation. Aは、実施例1に係る連結梁を示した正面図であり、Bは、AのB−B線断矢視断面図である。A is the front view which showed the connection beam which concerns on Example 1, B is B BB sectional view taken on the line of A. FIG. A、Bはそれぞれ、建物に鉛直方向の変形が作用した場合の連結梁の挙動を示した正面図である。A and B are front views showing the behavior of the connecting beam when vertical deformation is applied to the building. Aは、従来技術に係るコア架構を例示した平面図であり、Bは、実施例1(実施例2)に係るコア架構を例示した平面図である。FIG. 4A is a plan view illustrating a core frame according to the related art, and FIG. 4B is a plan view illustrating a core frame according to the first embodiment (second embodiment). 実施例2に係る連結建物の制震構造を示した平面図である。It is the top view which showed the vibration control structure of the connection building which concerns on Example 2. FIG. A、Bはそれぞれ、実施例2に係る連結梁におけるトラス構造を示した正面図である。A and B are front views showing a truss structure in the connecting beam according to the second embodiment.

符号の説明Explanation of symbols

1 建物
2 連結梁
3 ダンパー部材
4 H形鋼等の鉄骨部材(トラス構成部材)
5 補強梁
12(12a、12b) 連結梁
DESCRIPTION OF SYMBOLS 1 Building 2 Connection beam 3 Damper member 4 Steel members, such as H-section steel (truss component)
5 Reinforcement beam 12 (12a, 12b) Connection beam

Claims (5)

複数棟の建物を連結梁により相互に連結して成る連結建物の制震構造であって、
前記連結梁は、その上下方向の固有周期が、建物の上下方向の固有周期に合わせられ、建物と共振しやすい質量と剛性を備えているとともに、その端部と建物との連結部分に、前記建物の鉛直方向の地震動に伴う連結梁の上下方向の変形によるエネルギーを吸収するダンパー部材が設けられていることを特徴とする、連結建物の制震構造。
It is a vibration control structure of a connected building that consists of multiple buildings connected to each other by connecting beams,
The connecting beam has a natural period in the vertical direction matched to a natural period in the vertical direction of the building, and has a mass and rigidity that easily resonates with the building. A seismic control structure for a connected building, characterized in that a damper member is provided to absorb energy due to vertical deformation of the connecting beam caused by vertical ground motion of the building.
連結梁は、トラス構造で構成されており、前記トラス構造の両端部における下弦材又は上弦材に相当する部位にダンパー部材が設けられていることを特徴とする、請求項1に記載した連結建物の制震構造。   The connecting building according to claim 1, wherein the connecting beam is configured by a truss structure, and damper members are provided at portions corresponding to the lower chord member or the upper chord member at both ends of the truss structure. Seismic control structure. 連結梁は、建物の高さ方向に間隔をあけて複数設けられていることを特徴とする、請求項1又は2に記載した連結建物の制震構造。   3. The vibration control structure for a connected building according to claim 1, wherein a plurality of connecting beams are provided at intervals in the height direction of the building. ダンパー部材は、オイルダンパー、鋼材ダンパー、粘弾性ダンパー、或いは大振幅用ダンパーに小振幅ダンパーを直列状に結合して成る複合型ダンパーであることを特徴とする、請求項1〜3のいずれか一に記載した連結建物の制震構造。   4. The damper member according to claim 1, wherein the damper member is an oil damper, a steel damper, a viscoelastic damper, or a composite damper in which a small amplitude damper is connected in series to a large amplitude damper. Seismic control structure of a linked building described in 1. 複数棟の建物はそれぞれ、その基礎部が免震構造として構成されていることを特徴とする、請求項1〜4のいずれか一に記載した連結建物の制震構造。   The seismic control structure for a linked building according to any one of claims 1 to 4, wherein each of the buildings of the plurality of buildings has a base portion configured as a seismic isolation structure.
JP2006254677A 2006-09-20 2006-09-20 Seismic control structure of a connected building Active JP5089946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254677A JP5089946B2 (en) 2006-09-20 2006-09-20 Seismic control structure of a connected building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254677A JP5089946B2 (en) 2006-09-20 2006-09-20 Seismic control structure of a connected building

Publications (2)

Publication Number Publication Date
JP2008075318A JP2008075318A (en) 2008-04-03
JP5089946B2 true JP5089946B2 (en) 2012-12-05

Family

ID=39347666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254677A Active JP5089946B2 (en) 2006-09-20 2006-09-20 Seismic control structure of a connected building

Country Status (1)

Country Link
JP (1) JP5089946B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157368A (en) * 1988-12-07 1990-06-18 Mitsubishi Heavy Ind Ltd Damping device for multistoried building
JPH04277274A (en) * 1991-03-01 1992-10-02 Kawaden Co Ltd Construction with mixed construction members
JPH07300900A (en) * 1994-05-02 1995-11-14 Shimizu Corp Building having rigid frame structure
JP4545878B2 (en) * 2000-04-28 2010-09-15 株式会社竹中工務店 Separation frame connection vibration control device
JP4836340B2 (en) * 2001-03-06 2011-12-14 株式会社竹中工務店 Seismic isolation structure using a connected seismic control device
JP2006183324A (en) * 2004-12-27 2006-07-13 Ohbayashi Corp Response controlled structure

Also Published As

Publication number Publication date
JP2008075318A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4631280B2 (en) Seismic control pier
JP5596990B2 (en) Bearing wall structure of wooden building
JP4010981B2 (en) Upper extension method for existing buildings
JP2006009477A (en) Intermediate base isolating structure of existing building
JP3828695B2 (en) Seismic control wall of a three-story house
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP4964545B2 (en) Seismic control structure of a connected building
JP5940416B2 (en) building
JP4277649B2 (en) Composite damper and column beam structure
JP5777986B2 (en) Damping pillar and its structure
JP5089946B2 (en) Seismic control structure of a connected building
JP5059687B2 (en) Building seismic control structure
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
JP4485876B2 (en) Seismic walls and structures
JP2004225347A (en) Seismic control structure of structure
JP6265422B2 (en) Reinforcement structure and building
JPH10280725A (en) Damping skeleton construction
JP4971697B2 (en) Load bearing wall frame
JP2005282229A (en) Vibration-control structure of building
JP5378242B2 (en) Building frame structure
JP6275314B1 (en) Seismic reinforcement structure for bridges
KR102074040B1 (en) Steel Damper and Frame-type Damping Device usig the Damper and Reinforcing Method thereof
JP3209800U7 (en)
JP2011038362A (en) Seismic control damper
JP5142214B2 (en) Seismic reinforcement structure for viaduct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150