JP3012930B1 - Sparc融合タンパク質含有医薬組成物 - Google Patents
Sparc融合タンパク質含有医薬組成物Info
- Publication number
- JP3012930B1 JP3012930B1 JP11049708A JP4970899A JP3012930B1 JP 3012930 B1 JP3012930 B1 JP 3012930B1 JP 11049708 A JP11049708 A JP 11049708A JP 4970899 A JP4970899 A JP 4970899A JP 3012930 B1 JP3012930 B1 JP 3012930B1
- Authority
- JP
- Japan
- Prior art keywords
- sparc
- leu
- glu
- asp
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
【要約】
【解決手段】 SPARCとチオレドキシンとを融合させて
なるSPARC融合タンパク質を有効成分とする医薬組成
物。 【効果】 本発明によれば、増殖、接着、移動、興奮と
いったような神経細胞や神経シナプスに起こるあらゆる
変化の機構の研究に、また、その変化に起因する状態や
疾患、代表的には創傷治癒や動脈硬化症などの脳内の血
管新生により改善されうる疾患、てんかん等の神経系疾
患の予防治療に利用できる医薬組成物が提供される。
なるSPARC融合タンパク質を有効成分とする医薬組成
物。 【効果】 本発明によれば、増殖、接着、移動、興奮と
いったような神経細胞や神経シナプスに起こるあらゆる
変化の機構の研究に、また、その変化に起因する状態や
疾患、代表的には創傷治癒や動脈硬化症などの脳内の血
管新生により改善されうる疾患、てんかん等の神経系疾
患の予防治療に利用できる医薬組成物が提供される。
Description
【0001】
【発明の属する技術分野】本発明はSPARC融合タンパク
質含有医薬組成物、詳しくは、神経細胞の細胞接着を抑
制し、細胞遊走を起こさせるための、または、神経突起
縮退を促進することにより神経可塑性を惹起するため
の、医薬組成物に関する。
質含有医薬組成物、詳しくは、神経細胞の細胞接着を抑
制し、細胞遊走を起こさせるための、または、神経突起
縮退を促進することにより神経可塑性を惹起するため
の、医薬組成物に関する。
【0002】
【従来技術】SPARC (secreted protein acidic and ric
h in cysteine ;「酸性およびシステインに富む分泌タ
ンパク質」) は、骨中に存在する主要な非コラーゲン性
タンパク質であるオステオネクチン(osteonectin)とし
て最初に報告され(Termine,J.D. et al., Cell, 26 :
99-105, 1981)、コラーゲンやハイドロキシアパタイト
への強い結合性を有し、Ca2+結合能を持つことから機能
性骨特異タンパク質として注目された。このSPARCは、
接着性培養細胞の増殖に伴い細胞外分泌される分子量43
kD蛋白として報告されていたものより遺伝子配列が決定
されたが(Sage.H. et al., J.Biol.Chem., 259, 3993-4
007, 1984) 、後に別のグループによって基底膜から単
離されたBM-40 (Mann, K. et al., FEBS Lett., 218 :
162-172,1987)とも一致することがわかった。SPARCはそ
の後、種々の培養細胞からの分泌が観察され、特に正常
線維芽細胞や血管内皮細胞からの分泌が顕著である(Lan
e.T.F.& Sage, E.H., FASEB J., 8 : 163-173, 1994)。
h in cysteine ;「酸性およびシステインに富む分泌タ
ンパク質」) は、骨中に存在する主要な非コラーゲン性
タンパク質であるオステオネクチン(osteonectin)とし
て最初に報告され(Termine,J.D. et al., Cell, 26 :
99-105, 1981)、コラーゲンやハイドロキシアパタイト
への強い結合性を有し、Ca2+結合能を持つことから機能
性骨特異タンパク質として注目された。このSPARCは、
接着性培養細胞の増殖に伴い細胞外分泌される分子量43
kD蛋白として報告されていたものより遺伝子配列が決定
されたが(Sage.H. et al., J.Biol.Chem., 259, 3993-4
007, 1984) 、後に別のグループによって基底膜から単
離されたBM-40 (Mann, K. et al., FEBS Lett., 218 :
162-172,1987)とも一致することがわかった。SPARCはそ
の後、種々の培養細胞からの分泌が観察され、特に正常
線維芽細胞や血管内皮細胞からの分泌が顕著である(Lan
e.T.F.& Sage, E.H., FASEB J., 8 : 163-173, 1994)。
【0003】SPARCの機能としては、SPARCの細胞培養系
への添加によって細胞外マトリックス分子への細胞接着
が濃度依存的に阻害されることが知られており、トロン
ボスポンジンやテネイシンとともに"anti-adhesive pro
tein" と呼ばれる(Sage, E.H. & Bornstein, P., J.Bio
l.Chem., 266 : 14831-14834, 1991) 。この作用はイン
テグリンと細胞接着リガンドとの結合を競合的に阻害す
るのではなく、SPARC細胞表面受容体との結合により、
細胞内シグナル伝達を介してビンキュリン等の細胞骨格
系に作用し、focal adhesion plaque を分解することに
よると報告されている(Murphy-Ullrich, J.E.et al.,
J.Cell.Biochem., 57 : 341-350, 1995)。また、SPARC
の最も着目すべき機能としては、ECM (extracellular m
atrix ;細胞外マトリックス) 産生を低下させ、ECM 分
解性プロテアーゼ産生を亢進するとともに(Lane.T.F.&
Sage, E.H., FASEB J., 8 : 163-173, 1994)、血管新生
部位において高発現し、内皮細胞のフィブロネクチンや
トロンボスポンジンの分泌量を減少させることである。
従って、SPARCはこれらの作用の連動によりECM 再構成
を行い、特に血管内皮での細胞増殖制御や細胞間透過性
上昇を促し、細胞増殖作用や血管新生活性の発現に必須
であると考えられている。しかしながら、血管新生に関
連する上記の諸機能はいずれも血管内皮細胞で確認され
ているだけであり、神経細胞についてはこれまで報告は
ない。
への添加によって細胞外マトリックス分子への細胞接着
が濃度依存的に阻害されることが知られており、トロン
ボスポンジンやテネイシンとともに"anti-adhesive pro
tein" と呼ばれる(Sage, E.H. & Bornstein, P., J.Bio
l.Chem., 266 : 14831-14834, 1991) 。この作用はイン
テグリンと細胞接着リガンドとの結合を競合的に阻害す
るのではなく、SPARC細胞表面受容体との結合により、
細胞内シグナル伝達を介してビンキュリン等の細胞骨格
系に作用し、focal adhesion plaque を分解することに
よると報告されている(Murphy-Ullrich, J.E.et al.,
J.Cell.Biochem., 57 : 341-350, 1995)。また、SPARC
の最も着目すべき機能としては、ECM (extracellular m
atrix ;細胞外マトリックス) 産生を低下させ、ECM 分
解性プロテアーゼ産生を亢進するとともに(Lane.T.F.&
Sage, E.H., FASEB J., 8 : 163-173, 1994)、血管新生
部位において高発現し、内皮細胞のフィブロネクチンや
トロンボスポンジンの分泌量を減少させることである。
従って、SPARCはこれらの作用の連動によりECM 再構成
を行い、特に血管内皮での細胞増殖制御や細胞間透過性
上昇を促し、細胞増殖作用や血管新生活性の発現に必須
であると考えられている。しかしながら、血管新生に関
連する上記の諸機能はいずれも血管内皮細胞で確認され
ているだけであり、神経細胞についてはこれまで報告は
ない。
【0004】一方、モルヒネをはじめとする麻薬性鎮痛
薬はいずれもオピオイドμ受容体と強い親和力があり、
薬理作用は質的にはほぼ同一で、鎮痛作用、精神作用
(陶酔感)、鎮静作用、呼吸抑制作用、催吐作用、心血
管作用などを有することから、鎮痛薬として術後疼痛、
末期癌の疼痛、心筋梗塞的疼痛に用いたり、急性肺水腫
や急性左室不全に伴う呼吸困難に用いられている。しか
しながら、モルヒネは疼痛に著効を示すものの、慢性疾
患への使用は耐性や依存性の発現が問題になるので、上
記の特定の疾患に用いられるのみである。すなわち、モ
ルヒネはその繰り返し投与により、耐性、身体的および
精神的依存が形成されやすく、投与間隔が短いほど短時
間で形成されるという問題がある。例えば、身体的依存
形成後、突然の休薬や拮抗薬であるナロキソン投与によ
り、振戦、不安、不眠、痙攣、発汗、鼻汁、流涙、発
熱、血圧上昇、頻脈、散瞳、下痢、腹痛、嘔吐など多彩
な禁断症状が発現する。また、上記の耐性・依存性は月
及び年単位で持続されることから、神経シナプス機能に
長期にわたる変化が生じていると考えられる。しかしな
がら、現在までにこのようなモルヒネなどの向精神薬の
投与によりもたらされる神経シナプス機能の長期変化を
誘導する物質は明らかにされていない。
薬はいずれもオピオイドμ受容体と強い親和力があり、
薬理作用は質的にはほぼ同一で、鎮痛作用、精神作用
(陶酔感)、鎮静作用、呼吸抑制作用、催吐作用、心血
管作用などを有することから、鎮痛薬として術後疼痛、
末期癌の疼痛、心筋梗塞的疼痛に用いたり、急性肺水腫
や急性左室不全に伴う呼吸困難に用いられている。しか
しながら、モルヒネは疼痛に著効を示すものの、慢性疾
患への使用は耐性や依存性の発現が問題になるので、上
記の特定の疾患に用いられるのみである。すなわち、モ
ルヒネはその繰り返し投与により、耐性、身体的および
精神的依存が形成されやすく、投与間隔が短いほど短時
間で形成されるという問題がある。例えば、身体的依存
形成後、突然の休薬や拮抗薬であるナロキソン投与によ
り、振戦、不安、不眠、痙攣、発汗、鼻汁、流涙、発
熱、血圧上昇、頻脈、散瞳、下痢、腹痛、嘔吐など多彩
な禁断症状が発現する。また、上記の耐性・依存性は月
及び年単位で持続されることから、神経シナプス機能に
長期にわたる変化が生じていると考えられる。しかしな
がら、現在までにこのようなモルヒネなどの向精神薬の
投与によりもたらされる神経シナプス機能の長期変化を
誘導する物質は明らかにされていない。
【0005】
【発明が解決しようとする課題】本発明は、増殖、接
着、移動、興奮といったような神経細胞や神経シナプス
に起こるあらゆる変化に関与する物質を探索解明すると
ともに、該物質をそれら神経系の機構の研究や、関連す
る神経系疾患の予防治療に利用できる医薬組成物として
提供することを目的とする。
着、移動、興奮といったような神経細胞や神経シナプス
に起こるあらゆる変化に関与する物質を探索解明すると
ともに、該物質をそれら神経系の機構の研究や、関連す
る神経系疾患の予防治療に利用できる医薬組成物として
提供することを目的とする。
【0006】
【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、モルヒネの慢性投
与時に扁桃体において特異的に上昇する遺伝子群を単離
同定したところ、その一つがSPARC遺伝子であることを
解明した。そこで、該事実に着目してSPARC融合タンパ
ク質を作成してモルヒネと共に投与したところ、脳内で
モルヒネ自発運動量が増強すること、すなわち神経シナ
プス機能が変化していることを見い出すとともに、SPAR
C融合タンパク質が、神経細胞に対して抗細胞接着活性
および球形化活性を発揮することをも確認し、本発明を
完成させるに至った。
を解決すべく鋭意研究を重ねた結果、モルヒネの慢性投
与時に扁桃体において特異的に上昇する遺伝子群を単離
同定したところ、その一つがSPARC遺伝子であることを
解明した。そこで、該事実に着目してSPARC融合タンパ
ク質を作成してモルヒネと共に投与したところ、脳内で
モルヒネ自発運動量が増強すること、すなわち神経シナ
プス機能が変化していることを見い出すとともに、SPAR
C融合タンパク質が、神経細胞に対して抗細胞接着活性
および球形化活性を発揮することをも確認し、本発明を
完成させるに至った。
【0007】すなわち、本発明は、以下の(a)または(b)
に示すタンパク質を有効成分とする医薬組成物である。 (a) 配列表の配列番号1に示すアミノ酸配列を有する
タンパク質 (b) 配列表の配列番号1に示すアミノ酸配列において
1若しくは数個のアミノ酸が欠失、置換若しくは付加さ
れたアミノ酸配列を有し、かつSPARCの生理学的活性を
有するタンパク質 以下、本発明を詳細に説明する。
に示すタンパク質を有効成分とする医薬組成物である。 (a) 配列表の配列番号1に示すアミノ酸配列を有する
タンパク質 (b) 配列表の配列番号1に示すアミノ酸配列において
1若しくは数個のアミノ酸が欠失、置換若しくは付加さ
れたアミノ酸配列を有し、かつSPARCの生理学的活性を
有するタンパク質 以下、本発明を詳細に説明する。
【0008】
【発明の実施の形態】本発明の医薬組成物の有効成分で
あるSPARC融合タンパク質とはSPARCとチオレドキシンと
の融合タンパク質である。このSPARC融合タンパク質
は、例えば、チオレドキシン遺伝子を含有する市販の発
現ベクターを利用し、チオレドキシン遺伝子の下流にあ
るマルチクローニングサイトにSPARCをコードするDN
A(以下、SPARC遺伝子という)を挿入し、これを大腸
菌等において大量に発現させることによって調製するこ
とができる。以下、この調製について具体的に説明す
る。
あるSPARC融合タンパク質とはSPARCとチオレドキシンと
の融合タンパク質である。このSPARC融合タンパク質
は、例えば、チオレドキシン遺伝子を含有する市販の発
現ベクターを利用し、チオレドキシン遺伝子の下流にあ
るマルチクローニングサイトにSPARCをコードするDN
A(以下、SPARC遺伝子という)を挿入し、これを大腸
菌等において大量に発現させることによって調製するこ
とができる。以下、この調製について具体的に説明す
る。
【0009】[1] SPARC遺伝子のクローニング (1) SPARC cDNA 断片の増幅 本発明において、SPARC遺伝子のクローニングは、RT-PC
R法により行う。まず、SPARCが発現している組織または
細胞、例えばマウス大脳皮質から全RNAを調製する。全R
NAを調製する方法としては、酸性チオシアン酸グアニジ
ン・フェノール・クロロホルム(AGPC)法 (P.Chomczyn
ski and N.Sacchi, Analytical Biochemistry, 162 : 1
56, 1987) 、チオシアン酸グアニジン−トリフルオロ酢
酸セシウム法 (H.Okayama et al., Methods in Enzymol
ogy, 154 : 3, 1987) 等が挙げられる。この全RNAを用
いてJ.Sambrookらの方法(J.Sambrook et al., Molecula
rCloning, A Laboratory Manual, Second Edition, Col
d Spring Harbor Laboratory Press, 1989) 等に記載の
方法で逆転写酵素の反応を行い、RNA中のmRNAをcDNAに
変換する。次に、このcDNAを鋳型にし、既に報告されて
いるSPARCのcDNAの塩基配列(J.H. McVey et al., Jour
nal of Biochemistry, 263 : 11111-11116,1988)に基
づいたプライマーを用いてPCRを行い、SPARCのcDNA
断片を増幅する。
R法により行う。まず、SPARCが発現している組織または
細胞、例えばマウス大脳皮質から全RNAを調製する。全R
NAを調製する方法としては、酸性チオシアン酸グアニジ
ン・フェノール・クロロホルム(AGPC)法 (P.Chomczyn
ski and N.Sacchi, Analytical Biochemistry, 162 : 1
56, 1987) 、チオシアン酸グアニジン−トリフルオロ酢
酸セシウム法 (H.Okayama et al., Methods in Enzymol
ogy, 154 : 3, 1987) 等が挙げられる。この全RNAを用
いてJ.Sambrookらの方法(J.Sambrook et al., Molecula
rCloning, A Laboratory Manual, Second Edition, Col
d Spring Harbor Laboratory Press, 1989) 等に記載の
方法で逆転写酵素の反応を行い、RNA中のmRNAをcDNAに
変換する。次に、このcDNAを鋳型にし、既に報告されて
いるSPARCのcDNAの塩基配列(J.H. McVey et al., Jour
nal of Biochemistry, 263 : 11111-11116,1988)に基
づいたプライマーを用いてPCRを行い、SPARCのcDNA
断片を増幅する。
【0010】(2) 増幅断片の塩基配列決定 増幅した断片は、サイクルシークエンス法によりその塩
基配列を決定する。まず、(1) で増幅した断片を、pBlu
escript T-ベクター、pBluescriptII T-ベクター、pT7B
lue T-ベクター、pT7Blue-2 T-ベクター等のTAクロー
ニング用のベクターにサブクローニングし、T7プライマ
ー、T3プライマー、M13(-20)プライマー、リバースプラ
イマー、SKプライマー、KSプライマー、R-20merプライ
マー、U-19merプライマー等のプライマーの存在下、鋳
型DNAを熱変性し、プライマーをアニーリングし、蛍
光標識ddNTP によるシークエンス反応を1サイクルと
し、これを30サイクル程度繰り返す。シークエンス反応
は、Taq ポリメラーゼ等の耐熱性ポリメラーゼを使用
し、市販のPCR用のサーマルサイクラーを用いて行う
ことができる。
基配列を決定する。まず、(1) で増幅した断片を、pBlu
escript T-ベクター、pBluescriptII T-ベクター、pT7B
lue T-ベクター、pT7Blue-2 T-ベクター等のTAクロー
ニング用のベクターにサブクローニングし、T7プライマ
ー、T3プライマー、M13(-20)プライマー、リバースプラ
イマー、SKプライマー、KSプライマー、R-20merプライ
マー、U-19merプライマー等のプライマーの存在下、鋳
型DNAを熱変性し、プライマーをアニーリングし、蛍
光標識ddNTP によるシークエンス反応を1サイクルと
し、これを30サイクル程度繰り返す。シークエンス反応
は、Taq ポリメラーゼ等の耐熱性ポリメラーゼを使用
し、市販のPCR用のサーマルサイクラーを用いて行う
ことができる。
【0011】[2] SPARC融合タンパク質発現用プラスミ
ドベクターの作製 本発明においてSPARC融合タンパク質発現用に用いるこ
とのできるプラスミドベクターとしては、宿主細胞内で
複製可能であること、適当な形質転換マーカー遺伝子、
例えばアンピシリン抵抗性遺伝子、カナマイシン抵抗性
遺伝子、テトランサイクリン抵抗性遺伝子等をもつこ
と、導入した宿主細胞で機能するプロモーターの制御
下、チオレドキシン遺伝子の下流にSPARC遺伝子を接続
した時にチオレドキシンと融合した状態でSPARCを発現
させることのできるものであること、望ましくは誘導物
質が存在しない場合の発現レベルが低く、発現誘導時の
レベルが高い誘導ベクターであること、という条件を具
備するものであればいかなるものでもよい。また、チオ
レドキシン-SPARC cDNA 挿入のため、適当な制限酵素サ
イトがあることが望ましい。このようなベクターとして
は、宿主細胞が大腸菌である場合は、例えばpETベクタ
ー(Novagen社製) 、pTrxFUSベクター(Invitrogen社製)
、pCYBベクター(NEW ENGLAMD Bio Labs社製) 等が、宿
主細胞が酵母である場合は、例えばpESP-1発現ベクター
(STRATAGENE社製) 、pAUR123ベクター(宝酒造社製)、
pPICベクター(Invitrogen社製) 等が、また宿主細胞が
動物細胞である場合は、例えばpMAM-neo発現ベクター
(CLONTECH社製) 、pCDNA3.1ベクター(Invitrogen社製)
、pBK-CMVベクター (STRATAGENE社製) 等が、宿主細胞
が昆虫細胞である場合は、例えばpBacPAKベクター (CLO
NTECH社製) 、pAcUW31ベクター(CLONTECH社製) 、pAcP
(+)IE1ベクター(Novagen社製) 等がそれぞれ挙げられ
る。
ドベクターの作製 本発明においてSPARC融合タンパク質発現用に用いるこ
とのできるプラスミドベクターとしては、宿主細胞内で
複製可能であること、適当な形質転換マーカー遺伝子、
例えばアンピシリン抵抗性遺伝子、カナマイシン抵抗性
遺伝子、テトランサイクリン抵抗性遺伝子等をもつこ
と、導入した宿主細胞で機能するプロモーターの制御
下、チオレドキシン遺伝子の下流にSPARC遺伝子を接続
した時にチオレドキシンと融合した状態でSPARCを発現
させることのできるものであること、望ましくは誘導物
質が存在しない場合の発現レベルが低く、発現誘導時の
レベルが高い誘導ベクターであること、という条件を具
備するものであればいかなるものでもよい。また、チオ
レドキシン-SPARC cDNA 挿入のため、適当な制限酵素サ
イトがあることが望ましい。このようなベクターとして
は、宿主細胞が大腸菌である場合は、例えばpETベクタ
ー(Novagen社製) 、pTrxFUSベクター(Invitrogen社製)
、pCYBベクター(NEW ENGLAMD Bio Labs社製) 等が、宿
主細胞が酵母である場合は、例えばpESP-1発現ベクター
(STRATAGENE社製) 、pAUR123ベクター(宝酒造社製)、
pPICベクター(Invitrogen社製) 等が、また宿主細胞が
動物細胞である場合は、例えばpMAM-neo発現ベクター
(CLONTECH社製) 、pCDNA3.1ベクター(Invitrogen社製)
、pBK-CMVベクター (STRATAGENE社製) 等が、宿主細胞
が昆虫細胞である場合は、例えばpBacPAKベクター (CLO
NTECH社製) 、pAcUW31ベクター(CLONTECH社製) 、pAcP
(+)IE1ベクター(Novagen社製) 等がそれぞれ挙げられ
る。
【0012】プロモーターは、上記ベクターを導入する
各々の宿主細胞で機能しうるものであれば特に限定され
ないが、大腸菌を宿主細胞として用いる場合は、例え
ば、T7プロモーター、T5プロモーター、λPLプロモータ
ー、trpプロモーター、tacプロモーター、lacプロモー
ター等が、酵母を宿主細胞として用いる場合は、例え
ば、PGKプロモーター、ADH1プロモーター、Gal1-Gal10
プロモーター、PHO5プロモーター等が、動物細胞を宿主
細胞として用いる場合は、例えば、SV40プロモーター、
CMVプロモーター、CAGプロモーター、SRαプロモータ
ー、EF1αプロモーター、AMLプロモーター、MMTVプロモ
ーター、MTIIプロモーター等が、昆虫細胞を宿主細胞と
して用いる場合は、例えば、P10プロモーター、ポリヘ
ドロンプロモーター等がそれぞれ挙げられる。
各々の宿主細胞で機能しうるものであれば特に限定され
ないが、大腸菌を宿主細胞として用いる場合は、例え
ば、T7プロモーター、T5プロモーター、λPLプロモータ
ー、trpプロモーター、tacプロモーター、lacプロモー
ター等が、酵母を宿主細胞として用いる場合は、例え
ば、PGKプロモーター、ADH1プロモーター、Gal1-Gal10
プロモーター、PHO5プロモーター等が、動物細胞を宿主
細胞として用いる場合は、例えば、SV40プロモーター、
CMVプロモーター、CAGプロモーター、SRαプロモータ
ー、EF1αプロモーター、AMLプロモーター、MMTVプロモ
ーター、MTIIプロモーター等が、昆虫細胞を宿主細胞と
して用いる場合は、例えば、P10プロモーター、ポリヘ
ドロンプロモーター等がそれぞれ挙げられる。
【0013】また、適当なプロモーターの制御下に、チ
オレドキシン遺伝子が既に挿入されている市販の発現ベ
クターを利用してもよく、例えば、T7プロモーターを有
するpET32a(+) ベクター(Novagen社製) が好適に使用さ
れる。上記の発現用プラスミドベクターに、SPARC cDNA
断片をチオレドキシン遺伝子のC末側の制限酵素サイト
にタンパク質のフレームが合うように挿入し、組換えD
NAを得ることができる。
オレドキシン遺伝子が既に挿入されている市販の発現ベ
クターを利用してもよく、例えば、T7プロモーターを有
するpET32a(+) ベクター(Novagen社製) が好適に使用さ
れる。上記の発現用プラスミドベクターに、SPARC cDNA
断片をチオレドキシン遺伝子のC末側の制限酵素サイト
にタンパク質のフレームが合うように挿入し、組換えD
NAを得ることができる。
【0014】得られた組換えDNAを用いて、宿主細胞
を形質転換することにより、形質転換体を作製する。本
発明においてSPARC融合タンパク質を生産するための宿
主細胞としては、大腸菌、枯草菌、酵母、動物、昆虫細
胞等を用いることができるが、大腸菌が好ましい。具体
的には、Escherichia coli JM109、HB101 、BL21、Nova
Blue、AD494 、B834、HMS174、BLR 等を用いることがで
きる。また、上記株でもlon遺伝子欠損株等のプロテア
ーゼ欠損株を用いることが好ましい。形質転換は、例え
ば塩化カルシウム法、エレクトロポレーション法、塩化
ルビジウム法、リポフェクション法、DEAE−デキストラ
ン法、リチウム法、スフェロプラスト法、ウイルス等に
より行う。
を形質転換することにより、形質転換体を作製する。本
発明においてSPARC融合タンパク質を生産するための宿
主細胞としては、大腸菌、枯草菌、酵母、動物、昆虫細
胞等を用いることができるが、大腸菌が好ましい。具体
的には、Escherichia coli JM109、HB101 、BL21、Nova
Blue、AD494 、B834、HMS174、BLR 等を用いることがで
きる。また、上記株でもlon遺伝子欠損株等のプロテア
ーゼ欠損株を用いることが好ましい。形質転換は、例え
ば塩化カルシウム法、エレクトロポレーション法、塩化
ルビジウム法、リポフェクション法、DEAE−デキストラ
ン法、リチウム法、スフェロプラスト法、ウイルス等に
より行う。
【0015】[3] SPARC融合タンパク質の生産 以上のようにして得られた形質転換体を培地に培養し、
培養物中にタンパク質を生成蓄積させ、これを採取する
ことにより、本発明のSPARC融合タンパク質を得ること
ができる。本発明の形質転換体を培地に培養する方法
は、その宿主細胞の培養に用いられる通常の方法に従っ
て行うことができる。
培養物中にタンパク質を生成蓄積させ、これを採取する
ことにより、本発明のSPARC融合タンパク質を得ること
ができる。本発明の形質転換体を培地に培養する方法
は、その宿主細胞の培養に用いられる通常の方法に従っ
て行うことができる。
【0016】大腸菌等の原核生物あるいは酵母等の真核
生物を宿主として得られた形質転換体を培養する培地と
しては、該生物が資化し得る炭素源、窒素源、無機塩類
等を含有し、形質転換体の培養を効率的に行える培地で
あれば天然培地、合成培地のいずれを用いてもよい。炭
素源としては、該生物が資化し得るものであればよく、
グルコース、フラクトース、スクロース、これらを含有
する糖蜜、デンプンあるいはデンプン加水分解物等の炭
水化物、酢酸、プロピオン酸等の有機酸、エタノール、
プロパノール等のアルコール類等を用いることができ
る。
生物を宿主として得られた形質転換体を培養する培地と
しては、該生物が資化し得る炭素源、窒素源、無機塩類
等を含有し、形質転換体の培養を効率的に行える培地で
あれば天然培地、合成培地のいずれを用いてもよい。炭
素源としては、該生物が資化し得るものであればよく、
グルコース、フラクトース、スクロース、これらを含有
する糖蜜、デンプンあるいはデンプン加水分解物等の炭
水化物、酢酸、プロピオン酸等の有機酸、エタノール、
プロパノール等のアルコール類等を用いることができ
る。
【0017】窒素源としては、アンモニア、塩化アンモ
ニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸
アンモニウム等の無機酸もしくは有機酸のアンモニウム
塩、その他の含窒素化合物、並びに、ペプトン、肉エキ
ス、酵母エキス、コーンスチープリカー、カゼイン加水
分解物、大豆粕および大豆粕加水分解物、各種発酵菌
体、およびその消化物等を用いることができる。無機物
としては、リン酸第一カリウム、リン酸第二カリウム、
リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウ
ム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウ
ム等を用いることができる。
ニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸
アンモニウム等の無機酸もしくは有機酸のアンモニウム
塩、その他の含窒素化合物、並びに、ペプトン、肉エキ
ス、酵母エキス、コーンスチープリカー、カゼイン加水
分解物、大豆粕および大豆粕加水分解物、各種発酵菌
体、およびその消化物等を用いることができる。無機物
としては、リン酸第一カリウム、リン酸第二カリウム、
リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウ
ム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウ
ム等を用いることができる。
【0018】具体的には、LB培地、H培地、SOB 培地、
SOC 培地、NZYM培地、TB培地、YT培地、トリプトン培
地、TYGPN 培地、λ培地、スーパーブロス培地、M9培
地、M63培地、A培地等で行うことができる。培地のp
Hは、6〜8に調節することが適当である。pHの調整
は、無機または有機の酸、アルカリ溶液、尿素、炭酸カ
ルシウム、アンモニア等を用いて行う。培養は、4〜40
℃、好ましくは36〜38℃で、1〜24時間、好ましく2〜
3時間行い、必要により通気や攪拌を加えてもよい。ま
た、培養中必要に応じて、アンピシリンやテトラサイク
リン等の抗生物質を培地に添加してもよい。
SOC 培地、NZYM培地、TB培地、YT培地、トリプトン培
地、TYGPN 培地、λ培地、スーパーブロス培地、M9培
地、M63培地、A培地等で行うことができる。培地のp
Hは、6〜8に調節することが適当である。pHの調整
は、無機または有機の酸、アルカリ溶液、尿素、炭酸カ
ルシウム、アンモニア等を用いて行う。培養は、4〜40
℃、好ましくは36〜38℃で、1〜24時間、好ましく2〜
3時間行い、必要により通気や攪拌を加えてもよい。ま
た、培養中必要に応じて、アンピシリンやテトラサイク
リン等の抗生物質を培地に添加してもよい。
【0019】プロモーターとして誘導性のプロモーター
を用いた発現ベクターで形質転換した微生物を培養する
ときには、必要に応じてインデューサーを培地に添加し
てもよい。例えば、lacプロモーターを用いた発現ベク
ターで形質転換した微生物を培養するときにはイソプロ
ピル−β−D−チオガラクトピラノシド等を、trpプロ
モーターを用いた発現ベクターで形質転換した微生物を
培養するときにはインドールアクリル酸等を培地に添加
してもよい。
を用いた発現ベクターで形質転換した微生物を培養する
ときには、必要に応じてインデューサーを培地に添加し
てもよい。例えば、lacプロモーターを用いた発現ベク
ターで形質転換した微生物を培養するときにはイソプロ
ピル−β−D−チオガラクトピラノシド等を、trpプロ
モーターを用いた発現ベクターで形質転換した微生物を
培養するときにはインドールアクリル酸等を培地に添加
してもよい。
【0020】また、動物細胞を宿主として得られた形質
転換体を培養する培地としては、一般に使用されている
RPMI1640培地、EagleのMEM培地、DMEM培地等、またはこ
れら培地に牛胎児血清等を添加した培地等を用いること
ができる。上記形質転換体の培養液から、発現させたタ
ンパク質を単離精製するためには、通常のタンパク質の
単離、精製法を用いればよい。
転換体を培養する培地としては、一般に使用されている
RPMI1640培地、EagleのMEM培地、DMEM培地等、またはこ
れら培地に牛胎児血清等を添加した培地等を用いること
ができる。上記形質転換体の培養液から、発現させたタ
ンパク質を単離精製するためには、通常のタンパク質の
単離、精製法を用いればよい。
【0021】本発明のSPARC融合タンパク質は、細胞質
内に溶解状態で発現しているので、培養終了後、細胞を
遠心分離により回収し水系緩衝液にけん濁後、超音波破
砕機、フレンチプレス、マントンガウリンホモゲナイザ
ー、ダイノミル等により細胞を破砕し、無細胞抽出液を
得る。該無細胞抽出液を遠心分離することにより得られ
た上清から、通常の酵素の単離精製法、即ち、溶媒抽出
法、硫安等による塩析法、脱塩法、有機溶媒による沈殿
法、ジエチルアミノエチル(DEAE)−セファロース、等
レジンを用いた陰イオン交換クロマトグラフィー法、S-
Sepharose FF(ファルマシア社製)等のレジンを用いた
陽イオン交換クロマトグラフィー法、ブチルセファロー
ス、フェニルセファロース等のレジンを用いた疎水性ク
ロマトグラフィー法、分子篩を用いたゲルろ過法、His
Bindレジン(Novagen社製) などを用いたアフィニティー
クロマトグラフィー法、クロマトフォーカシング法、等
電点電気泳動等の電気泳動法等の手法を単独あるいは組
み合わせて用い、精製標品を得ることができる。また、
得られたSPARC融合タンパク質は、エンテロキナーゼ(En
terokinase)、トロンビン(Thrombin)により、SPARCのみ
を切り出すこともできる。
内に溶解状態で発現しているので、培養終了後、細胞を
遠心分離により回収し水系緩衝液にけん濁後、超音波破
砕機、フレンチプレス、マントンガウリンホモゲナイザ
ー、ダイノミル等により細胞を破砕し、無細胞抽出液を
得る。該無細胞抽出液を遠心分離することにより得られ
た上清から、通常の酵素の単離精製法、即ち、溶媒抽出
法、硫安等による塩析法、脱塩法、有機溶媒による沈殿
法、ジエチルアミノエチル(DEAE)−セファロース、等
レジンを用いた陰イオン交換クロマトグラフィー法、S-
Sepharose FF(ファルマシア社製)等のレジンを用いた
陽イオン交換クロマトグラフィー法、ブチルセファロー
ス、フェニルセファロース等のレジンを用いた疎水性ク
ロマトグラフィー法、分子篩を用いたゲルろ過法、His
Bindレジン(Novagen社製) などを用いたアフィニティー
クロマトグラフィー法、クロマトフォーカシング法、等
電点電気泳動等の電気泳動法等の手法を単独あるいは組
み合わせて用い、精製標品を得ることができる。また、
得られたSPARC融合タンパク質は、エンテロキナーゼ(En
terokinase)、トロンビン(Thrombin)により、SPARCのみ
を切り出すこともできる。
【0022】[4] SPARC融合タンパク質含有医薬組成物
の調製 本発明のSPARC融合タンパク質は、神経細胞の細胞接着
を抑制し、細胞遊走を起こさせる作用を有することか
ら、神経細胞の細胞増殖、細胞移動、細胞分化が関与す
る生体のあらゆる現象、たとえば発生、加齢、癌の転
移、創傷治癒、生体防御等の機構解明に役立つ。具体的
には、当該タンパク質は、神経細胞の細胞接着が抑制さ
れ、かつ細胞遊走が活発であることにより進行し、生体
にとって好ましい状態、例えば、創傷治癒過程、脳内で
の血管新生(動脈硬化内膜の栄養血管新生、血管閉塞時
における腹側血行路の形成)などに有利に働くので、創
傷治癒剤、動脈硬化症・脳血栓症・脳塞栓症等の疾患の
予防治療剤として用いることができる。また、当該タン
パク質は、神経細胞の細胞接着が抑制され、かつ細胞遊
走が活発であることにより進行し、生体にとって好まし
くない状態、例えば脳腫瘍組織における癌の増殖・転移
・湿潤に対し、これらを阻害する物質の探索研究用の試
薬として用いることができる。
の調製 本発明のSPARC融合タンパク質は、神経細胞の細胞接着
を抑制し、細胞遊走を起こさせる作用を有することか
ら、神経細胞の細胞増殖、細胞移動、細胞分化が関与す
る生体のあらゆる現象、たとえば発生、加齢、癌の転
移、創傷治癒、生体防御等の機構解明に役立つ。具体的
には、当該タンパク質は、神経細胞の細胞接着が抑制さ
れ、かつ細胞遊走が活発であることにより進行し、生体
にとって好ましい状態、例えば、創傷治癒過程、脳内で
の血管新生(動脈硬化内膜の栄養血管新生、血管閉塞時
における腹側血行路の形成)などに有利に働くので、創
傷治癒剤、動脈硬化症・脳血栓症・脳塞栓症等の疾患の
予防治療剤として用いることができる。また、当該タン
パク質は、神経細胞の細胞接着が抑制され、かつ細胞遊
走が活発であることにより進行し、生体にとって好まし
くない状態、例えば脳腫瘍組織における癌の増殖・転移
・湿潤に対し、これらを阻害する物質の探索研究用の試
薬として用いることができる。
【0023】本発明のSPARC融合タンパク質はまた、神
経突起縮退を促進することにより神経可塑性を惹起する
作用を有する。ここで、「神経可塑性」とは、「神経シ
ナプスの再編成」ともいい、神経細胞の特有の膜特性や
神経細胞間のシナプス結合の強度を、神経細胞を形態学
的に変化させること、例えば樹状突起を退縮させること
等により調整することをいう。この性質により、環境の
変化する要求に対して感覚入力、連合野、運動出力等の
あらゆるレベルにおいて適応することが可能となる。従
って、SPARC融合タンパク質は、神経シナプスの再編成
が関与する生体のあらゆる現象、たとえば記憶、学習な
どの高次脳機能、発生、神経機能疾患等の機構解明に役
立つ。
経突起縮退を促進することにより神経可塑性を惹起する
作用を有する。ここで、「神経可塑性」とは、「神経シ
ナプスの再編成」ともいい、神経細胞の特有の膜特性や
神経細胞間のシナプス結合の強度を、神経細胞を形態学
的に変化させること、例えば樹状突起を退縮させること
等により調整することをいう。この性質により、環境の
変化する要求に対して感覚入力、連合野、運動出力等の
あらゆるレベルにおいて適応することが可能となる。従
って、SPARC融合タンパク質は、神経シナプスの再編成
が関与する生体のあらゆる現象、たとえば記憶、学習な
どの高次脳機能、発生、神経機能疾患等の機構解明に役
立つ。
【0024】具体的には、当該タンパク質は、モルヒネ
中毒などの薬物耐性依存症の機構を解明するための研究
用試薬として、またてんかん、痴呆、健忘症、精神病等
の神経系疾患の予防治療薬として用いることができる。
後記試験例において、「抗細胞接着活性」とは、何らか
の要因により球形化した神経細胞の伸展を阻害する活
性、即ち球形化した状態(但し、球形化した状態の神経
細胞は、生存かつ接着している点に特徴がある。)を維
持する活性をいう。この活性を有する物質は、in vivo
では例えば脳損傷により障害を受けた神経細胞が正常な
神経細胞に置換される過程に寄与しうる。
中毒などの薬物耐性依存症の機構を解明するための研究
用試薬として、またてんかん、痴呆、健忘症、精神病等
の神経系疾患の予防治療薬として用いることができる。
後記試験例において、「抗細胞接着活性」とは、何らか
の要因により球形化した神経細胞の伸展を阻害する活
性、即ち球形化した状態(但し、球形化した状態の神経
細胞は、生存かつ接着している点に特徴がある。)を維
持する活性をいう。この活性を有する物質は、in vivo
では例えば脳損傷により障害を受けた神経細胞が正常な
神経細胞に置換される過程に寄与しうる。
【0025】また、「細胞球形化活性」とは、細胞伸展
および突起伸展していた細胞を球形化した状態にさせる
活性(但し、球形化した状態の神経細胞は、生存かつ接
着している点に特徴がある。)をいう。この活性を有す
る物質は、in vivo では例えば神経突起の縮退現象、す
なわち神経シナプスの再編成の過程に寄与しうる。従っ
て、本発明において、SPARC 融合タンパク質にて確認し
た上記の活性は、神経細胞の細胞接着を抑制し、細胞遊
走を起こさせること、また神経シナプスを再編成するこ
とに連関し、それらの作用効果を裏付けるものである。
および突起伸展していた細胞を球形化した状態にさせる
活性(但し、球形化した状態の神経細胞は、生存かつ接
着している点に特徴がある。)をいう。この活性を有す
る物質は、in vivo では例えば神経突起の縮退現象、す
なわち神経シナプスの再編成の過程に寄与しうる。従っ
て、本発明において、SPARC 融合タンパク質にて確認し
た上記の活性は、神経細胞の細胞接着を抑制し、細胞遊
走を起こさせること、また神経シナプスを再編成するこ
とに連関し、それらの作用効果を裏付けるものである。
【0026】本発明のSPARC融合タンパク質は、上記の
ような種々の作用を有することから、[3] にて得られた
SPARC融合タンパク質の精製標品を、自体公知の種々の
方法にて医薬組成物として提供することができる。例え
ば、精製標品を医薬的に許容できる溶剤、賦形剤、担
体、補助剤等を使用し、常法に従って注射剤、散剤、顆
粒剤、錠剤、坐剤、腸溶剤およびカプセル剤などにする
ことができる。また、医薬組成物中、有効成分であるSP
ARC融合タンパク質の含有量は、0.1〜10重量%程度とす
ればよい。
ような種々の作用を有することから、[3] にて得られた
SPARC融合タンパク質の精製標品を、自体公知の種々の
方法にて医薬組成物として提供することができる。例え
ば、精製標品を医薬的に許容できる溶剤、賦形剤、担
体、補助剤等を使用し、常法に従って注射剤、散剤、顆
粒剤、錠剤、坐剤、腸溶剤およびカプセル剤などにする
ことができる。また、医薬組成物中、有効成分であるSP
ARC融合タンパク質の含有量は、0.1〜10重量%程度とす
ればよい。
【0027】該医薬組成物は、例えば前述の各疾患の予
防治療薬剤として用いる場合、ヒト、マウス、ラット、
ウサギ、イヌ、ネコ等の哺乳動物に対して非経口的にま
たは経口的に安全に投与することができる。本医薬組成
物の投与量は、剤形、投与ルート、症状等により適宜変
更しうるが、例えばヒトを含む哺乳動物に投与する場
合、当該SPARC融合タンパク質を、1 〜100 mgを1日に
数回適用することが例示される。
防治療薬剤として用いる場合、ヒト、マウス、ラット、
ウサギ、イヌ、ネコ等の哺乳動物に対して非経口的にま
たは経口的に安全に投与することができる。本医薬組成
物の投与量は、剤形、投与ルート、症状等により適宜変
更しうるが、例えばヒトを含む哺乳動物に投与する場
合、当該SPARC融合タンパク質を、1 〜100 mgを1日に
数回適用することが例示される。
【0028】
【実施例】次に実施例を挙げて本発明を詳細に説明する
が、本発明はこれに限定されるものではない。 〔実施例1〕 薬物耐性依存関連遺伝子の同定及び解析 ddy 系マウス(雄:6週齢)に塩酸モルヒネを10, 20,
40, 80, 100, 100, 100 mg/kg の用量で1日2回ずつ7
日間にわたって皮下投与を行い、モルヒネ耐性依存モデ
ルマウスを作成した。このモルヒネ慢性投与を施したマ
ウスとコントロールとして生理食塩水投与を施したマウ
スの扁桃体からそれぞれpoly(A)RNA(5μg)を調製し、Z
ap-cDNA synthesis kit (STRATAGENE社) によりλZapII
cDNA ライブラリーを構築した。フォトビオチン−アビ
ジン法によりmRNAの差し引きを行ってsubtracted cDNA
ライブラリーを構築し、さらにディファレンシャルハイ
ブリダイゼーションを行うことで、薬物耐性依存関連候
補遺伝子群を単離した。insitu ハイブリダイゼーショ
ン法による解析の結果、扁桃体におけるmRNAの発現が慢
性投与時に特異的に上昇し、かつナロキソンで拮抗され
る遺伝子が候補遺伝群に中に存在することがわかった。
その遺伝子についてcDNA解析を行った結果、SPARC遺伝
子であることが判明した。
が、本発明はこれに限定されるものではない。 〔実施例1〕 薬物耐性依存関連遺伝子の同定及び解析 ddy 系マウス(雄:6週齢)に塩酸モルヒネを10, 20,
40, 80, 100, 100, 100 mg/kg の用量で1日2回ずつ7
日間にわたって皮下投与を行い、モルヒネ耐性依存モデ
ルマウスを作成した。このモルヒネ慢性投与を施したマ
ウスとコントロールとして生理食塩水投与を施したマウ
スの扁桃体からそれぞれpoly(A)RNA(5μg)を調製し、Z
ap-cDNA synthesis kit (STRATAGENE社) によりλZapII
cDNA ライブラリーを構築した。フォトビオチン−アビ
ジン法によりmRNAの差し引きを行ってsubtracted cDNA
ライブラリーを構築し、さらにディファレンシャルハイ
ブリダイゼーションを行うことで、薬物耐性依存関連候
補遺伝子群を単離した。insitu ハイブリダイゼーショ
ン法による解析の結果、扁桃体におけるmRNAの発現が慢
性投与時に特異的に上昇し、かつナロキソンで拮抗され
る遺伝子が候補遺伝群に中に存在することがわかった。
その遺伝子についてcDNA解析を行った結果、SPARC遺伝
子であることが判明した。
【0029】そこで、前記のddy 系マウス(雄:6週
齢)を用い、モルヒネ投与によるSPARC mRNAの発現変化
を詳細に解析した。モルヒネ投与は、塩酸モルヒネを1
0, 20,40, 80, 100, 100, 100 mg/kg の用量で1日2回
ずつ7日間にわたって皮下投与を行う慢性投与、塩酸モ
ルヒネを100 mg/kg の用量で皮下投与を1回行う急性投
与、また前記慢性投与において塩酸モルヒネの各回の用
量に、それと同量のナロキソンを加えて投与する併用投
与の3種の投与方法で行った。
齢)を用い、モルヒネ投与によるSPARC mRNAの発現変化
を詳細に解析した。モルヒネ投与は、塩酸モルヒネを1
0, 20,40, 80, 100, 100, 100 mg/kg の用量で1日2回
ずつ7日間にわたって皮下投与を行う慢性投与、塩酸モ
ルヒネを100 mg/kg の用量で皮下投与を1回行う急性投
与、また前記慢性投与において塩酸モルヒネの各回の用
量に、それと同量のナロキソンを加えて投与する併用投
与の3種の投与方法で行った。
【0030】図1.aに、扁桃体の各部位(Ce:中心
核、Co:腹質核、Me:内側核、BL:外側基底核、BLA :
前外側基底核、BLV :腹外側基底核、BM:内側基底核)
におけるSPARC mRNA発現量のコントロール(生理食塩水
投与)に対する割合を示す。また、図1.bに、扁桃体
の腹外側基底核(BL)と、扁桃体外の部位である青斑核(L
C))におけるSPARC mRNA発現量のコントロール(生理食
塩水投与)に対する割合を示す。扁桃体ではいずれの部
位でも慢性投与ではSPARC mRNA発現量が高いが(図1.
a)、依存症状に関与する青斑核(LC) では投与方法に
関係なく全く認められなかった(図1.b)。
核、Co:腹質核、Me:内側核、BL:外側基底核、BLA :
前外側基底核、BLV :腹外側基底核、BM:内側基底核)
におけるSPARC mRNA発現量のコントロール(生理食塩水
投与)に対する割合を示す。また、図1.bに、扁桃体
の腹外側基底核(BL)と、扁桃体外の部位である青斑核(L
C))におけるSPARC mRNA発現量のコントロール(生理食
塩水投与)に対する割合を示す。扁桃体ではいずれの部
位でも慢性投与ではSPARC mRNA発現量が高いが(図1.
a)、依存症状に関与する青斑核(LC) では投与方法に
関係なく全く認められなかった(図1.b)。
【0031】扁桃体の外側基底核(BL)におけるSPARC
mRNA発現量についてさらに検討した結果、慢性投与時の
みに4〜5倍の顕著な増加が認められた(図2)。尚、
発現量は、慢性投与、併用投与では投与終了後16時間
後、急性投与では投与終了後3 時間後(図1)、または
3時間と16時間後(図2)に測定した。一方、モルヒネ
慢性投与を中止後少なくとも2週間は外側基底核(BL)に
おいてSPARC mRNAの増加が確認された(図3)。
mRNA発現量についてさらに検討した結果、慢性投与時の
みに4〜5倍の顕著な増加が認められた(図2)。尚、
発現量は、慢性投与、併用投与では投与終了後16時間
後、急性投与では投与終了後3 時間後(図1)、または
3時間と16時間後(図2)に測定した。一方、モルヒネ
慢性投与を中止後少なくとも2週間は外側基底核(BL)に
おいてSPARC mRNAの増加が確認された(図3)。
【0032】〔実施例2〕 (SPARC融合タンパク質の調
製) [1] SPARC 融合タンパク質発現用プラスミドベクターの
作製 (1) Tベクターの作製 D. Marchukらの方法(Nucleic Acids Research, 19 : 1
154, 1990)に準じた。プラスミド Bluescript SK(-) (1
0μg/μl) (STARATAGENE社製) 1.0μl、10×緩衝液H
(宝酒造社製)2.0μl、EcoRV (10 U/μl) 2.0μl、滅菌
水15.0μlを混合して総量を20.0μlに調製し、37℃で2
時間反応させてプラスミドを完全に切断した。エタノー
ル沈殿で生成した沈殿に、10×PCR緩衝液 (PEアプライ
ドシステムズ社製) 4.0μl、10mM dTTP 8.0μl、Ampli
Taq DNA polymerase (5U/μl)(PEアプライドシステムズ
社製) 2.0μl、滅菌水24.0μlを加えて総量を40.0μlに
調製し、70℃で2時間反応させた。フェノールクロロホ
ルム抽出およびエタノール沈殿による精製濃縮後、生成
した沈殿に滅菌水20μlに溶解させてTベクター溶液を
得た。尚、Tベクターは4℃下で保存した。
製) [1] SPARC 融合タンパク質発現用プラスミドベクターの
作製 (1) Tベクターの作製 D. Marchukらの方法(Nucleic Acids Research, 19 : 1
154, 1990)に準じた。プラスミド Bluescript SK(-) (1
0μg/μl) (STARATAGENE社製) 1.0μl、10×緩衝液H
(宝酒造社製)2.0μl、EcoRV (10 U/μl) 2.0μl、滅菌
水15.0μlを混合して総量を20.0μlに調製し、37℃で2
時間反応させてプラスミドを完全に切断した。エタノー
ル沈殿で生成した沈殿に、10×PCR緩衝液 (PEアプライ
ドシステムズ社製) 4.0μl、10mM dTTP 8.0μl、Ampli
Taq DNA polymerase (5U/μl)(PEアプライドシステムズ
社製) 2.0μl、滅菌水24.0μlを加えて総量を40.0μlに
調製し、70℃で2時間反応させた。フェノールクロロホ
ルム抽出およびエタノール沈殿による精製濃縮後、生成
した沈殿に滅菌水20μlに溶解させてTベクター溶液を
得た。尚、Tベクターは4℃下で保存した。
【0033】(2) マウス大脳皮質からの全RNAの抽
出 P.Chomczynskiらの方法(Analytical Biochemistry, 16
2 : 156-159, 1987)に準じて全RNA を抽出した。マウ
ス大脳皮質を摘出後に液体窒素で凍結し、ハンマーで破
砕して粉末状にした。この粉末75mgをグアニジン溶液
(4Mグアニジンチオシアネート、25mMクエン酸ナトリウ
ム pH7.0、0.5%サルコシルナトリウム、0.1Mメルカプト
エタノール) 500μlに溶解させ、これに2M酢酸ナトリウ
ム溶液 (pH4.0) 50μl、DEPC水飽和フェノール(pH4.0)
50μl 、クロロホルム 100μl を加えて撹拌した後、4
℃で15分間放置した。10,000 gで20分間の遠心分離後に
水層を回収し、これに同容量の冷却したイソプロパノー
ル600μlとグリコーゲン(20μg/ml) 2μl を加えて-20
℃で1時間放置した。16,000 gで10分間の遠心分離によ
り生成した沈殿は、グアニジン溶液 500μlに完全に溶
解させて上記の過程を再度繰り返した。イソプロパノー
ル沈殿で生成した沈殿にDEPC水50μl を加えて溶解させ
全RNA 溶液を得た。最終的にマウス大脳皮質 0.3gから2
54μgの全RNAが得られた。
出 P.Chomczynskiらの方法(Analytical Biochemistry, 16
2 : 156-159, 1987)に準じて全RNA を抽出した。マウ
ス大脳皮質を摘出後に液体窒素で凍結し、ハンマーで破
砕して粉末状にした。この粉末75mgをグアニジン溶液
(4Mグアニジンチオシアネート、25mMクエン酸ナトリウ
ム pH7.0、0.5%サルコシルナトリウム、0.1Mメルカプト
エタノール) 500μlに溶解させ、これに2M酢酸ナトリウ
ム溶液 (pH4.0) 50μl、DEPC水飽和フェノール(pH4.0)
50μl 、クロロホルム 100μl を加えて撹拌した後、4
℃で15分間放置した。10,000 gで20分間の遠心分離後に
水層を回収し、これに同容量の冷却したイソプロパノー
ル600μlとグリコーゲン(20μg/ml) 2μl を加えて-20
℃で1時間放置した。16,000 gで10分間の遠心分離によ
り生成した沈殿は、グアニジン溶液 500μlに完全に溶
解させて上記の過程を再度繰り返した。イソプロパノー
ル沈殿で生成した沈殿にDEPC水50μl を加えて溶解させ
全RNA 溶液を得た。最終的にマウス大脳皮質 0.3gから2
54μgの全RNAが得られた。
【0034】(3) RT−PCR法によるマウスSPARC遺
伝子のクローニング (3-1) 一本鎖cDNA合成 (2) で得た全RNA(2.5 μg/μl) 1.2μl にランダムプラ
イマー(100ng/μl) 1.0μl、DEPC処理滅菌水2.8μlを加
えて総量を5.0μlに調製し、70℃で10分間の熱変性処理
をした。この溶液に5×緩衝液 (GIBCO BRL社製)2.0μ
l、0.1Mジチオスレイトール 2.0μl、1.25mM dNTP 8.0
μl、SUPERSCRIPTTM II Reverse Transcriptase (200U/
μl) 1.0μlを加えて総量を20.0μlに調製し、42℃で
2時間反応させた。さらに、70℃で15分間の加熱処理に
より逆転写酵素を完全に失活させて一本鎖cDNA溶液を得
た。
伝子のクローニング (3-1) 一本鎖cDNA合成 (2) で得た全RNA(2.5 μg/μl) 1.2μl にランダムプラ
イマー(100ng/μl) 1.0μl、DEPC処理滅菌水2.8μlを加
えて総量を5.0μlに調製し、70℃で10分間の熱変性処理
をした。この溶液に5×緩衝液 (GIBCO BRL社製)2.0μ
l、0.1Mジチオスレイトール 2.0μl、1.25mM dNTP 8.0
μl、SUPERSCRIPTTM II Reverse Transcriptase (200U/
μl) 1.0μlを加えて総量を20.0μlに調製し、42℃で
2時間反応させた。さらに、70℃で15分間の加熱処理に
より逆転写酵素を完全に失活させて一本鎖cDNA溶液を得
た。
【0035】(3-2) PCR反応 (3-1) で得た一本鎖cDNA溶液 5.0μlに 10×PCR緩衝液
(PEアプライドシステムズ社製) 2.5μl、Ampli Taq DNA
polymerase (5U/μl ) (PEアプライドシステムズ社
製)0.25μl、1.25mM dNTP 8.0μl、60ng/μl プライマ
ー1 (5'-CCGAGAGTTCCCAGCATCAT-3' ; 20mer/配列表の
配列番号3)およびプライマー2 (5'-TCAAACCAATTCACC
AGTCT-3' ; 20mer/配列表の配列番号4)を各々2.5μ
l、滅菌水4.25μlを加えて総量を25.0μlに調製して反
応液とした。次に、DNA Thermal cycler PJ2000 Model
480 (PEアプライドシステムズ社)を用いてPCR(変性
反応;94℃、30秒、アニーリング反応;50℃、45秒、合
成反応 ; 72℃、90秒;35サイクル)、続いて72℃で10
分間伸長反応を行った。約1750bpのPCR産物を1%ア
ガロースゲル電気泳動により分離精製し、ウルトラフリ
ー MC フィルター(ミリポア社製)を用いてゲルより回
収した。回収したPCR産物は DNA Ligation Kit Ver.
2(宝酒造社製)を用いて上記Tベクターにサブクロー
ニングした。尚、プライマーはマウスSPARC cDNA塩基配
列(J.H. McVey et. al. Journal of Biochemistry 26
3 , 11111-11116, 1988)の一部に対応するオリゴヌク
レオチド配列を化学合成することにより作製した。プラ
イマー1および 2は各々SPARC cDNA塩基配列の72-91な
らびに1801-1820に対応するオリゴヌクレオチド配列で
ある。
(PEアプライドシステムズ社製) 2.5μl、Ampli Taq DNA
polymerase (5U/μl ) (PEアプライドシステムズ社
製)0.25μl、1.25mM dNTP 8.0μl、60ng/μl プライマ
ー1 (5'-CCGAGAGTTCCCAGCATCAT-3' ; 20mer/配列表の
配列番号3)およびプライマー2 (5'-TCAAACCAATTCACC
AGTCT-3' ; 20mer/配列表の配列番号4)を各々2.5μ
l、滅菌水4.25μlを加えて総量を25.0μlに調製して反
応液とした。次に、DNA Thermal cycler PJ2000 Model
480 (PEアプライドシステムズ社)を用いてPCR(変性
反応;94℃、30秒、アニーリング反応;50℃、45秒、合
成反応 ; 72℃、90秒;35サイクル)、続いて72℃で10
分間伸長反応を行った。約1750bpのPCR産物を1%ア
ガロースゲル電気泳動により分離精製し、ウルトラフリ
ー MC フィルター(ミリポア社製)を用いてゲルより回
収した。回収したPCR産物は DNA Ligation Kit Ver.
2(宝酒造社製)を用いて上記Tベクターにサブクロー
ニングした。尚、プライマーはマウスSPARC cDNA塩基配
列(J.H. McVey et. al. Journal of Biochemistry 26
3 , 11111-11116, 1988)の一部に対応するオリゴヌク
レオチド配列を化学合成することにより作製した。プラ
イマー1および 2は各々SPARC cDNA塩基配列の72-91な
らびに1801-1820に対応するオリゴヌクレオチド配列で
ある。
【0036】(3-3) PCR産物のcDNA塩基配列決定 上記PCR産物をサブクローニングしたTベクター(pB
SK-SPARCベクター)はサイクルシークエンス法によりcD
NA塩基配列を決定した。QIAGEN plasmid Minikit (フナ
コシ社製)により精製した上記Tベクター1.5μg を鋳
型として使用し、PRISM Ready Reaction Terminator Cy
cle Sequencing Kit (PEアプライドシステムズ社製)を
用いてシークエンス試料を作製した。尚、PCRはDNA
Thermalcycler PJ2000 Model 480 (PEアプライドシステ
ムズ社)を用い、変性反応;96℃、30秒、アニーリング
反応;50℃、15秒、合成反応 ; 60℃、240秒;25サイク
ルの条件下で行った。PCR産物は、エタノール沈殿に
よって未反応物を除去後、変性溶液(5mg/ml ブルーデ
キストラン、8.3mM EDTA pH 8.0、83.3% ホルムアミ
ド)4.0μlに溶解させて90℃で2分間の熱変性処理を行
った。その後直ちにABI 373Sシーケンサー(PEアプライ
ドシステムズ社製)を用いてcDNA塩基配列の解析を行
い、PCR産物がマウスSPARC cDNA塩基配列 (72-1820)
を有することを確認した。
SK-SPARCベクター)はサイクルシークエンス法によりcD
NA塩基配列を決定した。QIAGEN plasmid Minikit (フナ
コシ社製)により精製した上記Tベクター1.5μg を鋳
型として使用し、PRISM Ready Reaction Terminator Cy
cle Sequencing Kit (PEアプライドシステムズ社製)を
用いてシークエンス試料を作製した。尚、PCRはDNA
Thermalcycler PJ2000 Model 480 (PEアプライドシステ
ムズ社)を用い、変性反応;96℃、30秒、アニーリング
反応;50℃、15秒、合成反応 ; 60℃、240秒;25サイク
ルの条件下で行った。PCR産物は、エタノール沈殿に
よって未反応物を除去後、変性溶液(5mg/ml ブルーデ
キストラン、8.3mM EDTA pH 8.0、83.3% ホルムアミ
ド)4.0μlに溶解させて90℃で2分間の熱変性処理を行
った。その後直ちにABI 373Sシーケンサー(PEアプライ
ドシステムズ社製)を用いてcDNA塩基配列の解析を行
い、PCR産物がマウスSPARC cDNA塩基配列 (72-1820)
を有することを確認した。
【0037】(4) pGEX 4T-1ベクターへのサブクローニ
ング (3) で作製した pBSK-SPARC ベクター(6.25μg/μl) 10
μl に10×緩衝液4(NEB社製) 10μl、BamHI 2μl、Xho
I (12 U/μl) 2μl、滅菌水 76μl を加えて総量を100
μlにし、37℃で2時間反応させた。約1800bpのBamHI-X
hoI挿入断片は、1%アガロースゲル電気泳動により分
離精製後にGENE CLEAN II kit(フナコシ社製) を用い
てゲルから回収してTE溶液 (Tris-HCl pH 8.0、0.5mM E
DTA pH 8.0) 48μl に溶解させた。次に、このBamHI-Xh
oI挿入断片溶液 42μlに10×緩衝液4(NEB社製) 10μ
l、BspHI (10 U/μl) 2μl、SmaI (10 U/ μl) 2μl 、
滅菌水44μl を加えて総量を100μlにし、37℃で2時間
反応させた。約1500bpのBspHI-SmaI挿入断片は、1%ア
ガロースゲル電気泳動により分離精製後にGENE CLEANII
kit(フナコシ社製)を用いてゲルから回収しTE溶液 4
8μl に溶解させた。このBspHI-SmaI挿入断片(960ng)
はDNA Blunting Kit(宝酒造社製)を用いて平滑末端化
し、TE溶液10μlに溶解させて平滑末端化挿入断片溶液
を得た。
ング (3) で作製した pBSK-SPARC ベクター(6.25μg/μl) 10
μl に10×緩衝液4(NEB社製) 10μl、BamHI 2μl、Xho
I (12 U/μl) 2μl、滅菌水 76μl を加えて総量を100
μlにし、37℃で2時間反応させた。約1800bpのBamHI-X
hoI挿入断片は、1%アガロースゲル電気泳動により分
離精製後にGENE CLEAN II kit(フナコシ社製) を用い
てゲルから回収してTE溶液 (Tris-HCl pH 8.0、0.5mM E
DTA pH 8.0) 48μl に溶解させた。次に、このBamHI-Xh
oI挿入断片溶液 42μlに10×緩衝液4(NEB社製) 10μ
l、BspHI (10 U/μl) 2μl、SmaI (10 U/ μl) 2μl 、
滅菌水44μl を加えて総量を100μlにし、37℃で2時間
反応させた。約1500bpのBspHI-SmaI挿入断片は、1%ア
ガロースゲル電気泳動により分離精製後にGENE CLEANII
kit(フナコシ社製)を用いてゲルから回収しTE溶液 4
8μl に溶解させた。このBspHI-SmaI挿入断片(960ng)
はDNA Blunting Kit(宝酒造社製)を用いて平滑末端化
し、TE溶液10μlに溶解させて平滑末端化挿入断片溶液
を得た。
【0038】一方、pGEX-4T1ベクター (500ng/μl) (Ph
armacia Biotech社製) 2μl に10×緩衝液4(NEB社製)
2μl、SmaI (10 U/μl) 1μl 、滅菌水 15μl を加えて
総量を20μlにし、37℃で2時間反応させた。フェノー
ルクロロホルム抽出およびエタノール沈殿による精製濃
縮後、生成した沈殿に10×脱リン酸化緩衝液 (宝酒造社
製)5μl 、子牛小腸由来アルカリフォスファターゼ (10
U/μl) 1μl 、滅菌水 44μl を加えて総量を50μlに
し、37℃で15分間反応させて脱リン酸化処理を施した。
52℃で15分間の熱処理を行って脱リン酸化酵素を失活さ
せた後、ェノールクロロホルム抽出およびエタノール沈
殿による精製濃縮を行った。生成した沈殿はTE溶液 20
μl に溶解させて脱リン酸化処理pGEX-4T1ベクター溶液
を得た。
armacia Biotech社製) 2μl に10×緩衝液4(NEB社製)
2μl、SmaI (10 U/μl) 1μl 、滅菌水 15μl を加えて
総量を20μlにし、37℃で2時間反応させた。フェノー
ルクロロホルム抽出およびエタノール沈殿による精製濃
縮後、生成した沈殿に10×脱リン酸化緩衝液 (宝酒造社
製)5μl 、子牛小腸由来アルカリフォスファターゼ (10
U/μl) 1μl 、滅菌水 44μl を加えて総量を50μlに
し、37℃で15分間反応させて脱リン酸化処理を施した。
52℃で15分間の熱処理を行って脱リン酸化酵素を失活さ
せた後、ェノールクロロホルム抽出およびエタノール沈
殿による精製濃縮を行った。生成した沈殿はTE溶液 20
μl に溶解させて脱リン酸化処理pGEX-4T1ベクター溶液
を得た。
【0039】最後に、脱リン酸化処理pGEX-4T1ベクター
溶液 20μlと平滑末端化挿入断片溶液10μlを混合後に
エタノール沈殿による濃縮を行い、DNA Ligation Kit V
er.2(宝酒造社製)によりpGEX-4T1ベクターのSmaI部位
にBspHI-SmaI平滑末端化挿入断片を連結させてpGEX-4T-
SPARC ベクターを得た。尚、BspHI-SmaI平滑末端化挿入
断片がpGEX-4T1ベクターに予定どうり組み込まれている
ことは、pGEX-4T-SPARC ベクターのBamHI-XhoI挿入断片
をpBluescript SK(-) ベクター(STRATAGENE社製) のBam
HI-XhoI部位にサブクローニングしてcDNA塩基配列解析
を行うことにより確認した。
溶液 20μlと平滑末端化挿入断片溶液10μlを混合後に
エタノール沈殿による濃縮を行い、DNA Ligation Kit V
er.2(宝酒造社製)によりpGEX-4T1ベクターのSmaI部位
にBspHI-SmaI平滑末端化挿入断片を連結させてpGEX-4T-
SPARC ベクターを得た。尚、BspHI-SmaI平滑末端化挿入
断片がpGEX-4T1ベクターに予定どうり組み込まれている
ことは、pGEX-4T-SPARC ベクターのBamHI-XhoI挿入断片
をpBluescript SK(-) ベクター(STRATAGENE社製) のBam
HI-XhoI部位にサブクローニングしてcDNA塩基配列解析
を行うことにより確認した。
【0040】(5) pET32a(+)-SPARCベクターの作製 (4) で作製したpGEX-4T-SPARC ベクター (0.25μg/μl)
40μl に10×緩衝液K(宝酒造社製)10μl、BamHI (1
0 U/μl) 2μl、XhoI (12 U/μl) 2μl、滅菌水46μl
を加えて総量を100μlにし、37℃で2時間反応させた。
BamHI-XhoI挿入断片を1%アガロースゲル電気泳動によ
り分離精製し、GENE CLEAN II kit(フナコシ社製)を
用いてゲルよりBamHI-XhoI挿入断片を回収し、TE溶液 4
8μl に溶解させた。pET32a(+)ベクター(Novagen社
製)のBamHI-XhoI部位へサブクローニングした。最終的
に得られたpET32a(+)-SPARCベクターはcDNA塩基配列解
析を行って遺伝子読み枠が合っていることを確認した。
尚、pET32a(+)-SPARCベクターの全cDNA塩基配列は配列
番号2に、このベクターにより生産されるSPARC融合タ
ンパク質の全アミノ酸配列は配列番号1および図4に示
す。また、以上のpET32a(+)-SPARCベクターの構築の概
略を図5に示す。
40μl に10×緩衝液K(宝酒造社製)10μl、BamHI (1
0 U/μl) 2μl、XhoI (12 U/μl) 2μl、滅菌水46μl
を加えて総量を100μlにし、37℃で2時間反応させた。
BamHI-XhoI挿入断片を1%アガロースゲル電気泳動によ
り分離精製し、GENE CLEAN II kit(フナコシ社製)を
用いてゲルよりBamHI-XhoI挿入断片を回収し、TE溶液 4
8μl に溶解させた。pET32a(+)ベクター(Novagen社
製)のBamHI-XhoI部位へサブクローニングした。最終的
に得られたpET32a(+)-SPARCベクターはcDNA塩基配列解
析を行って遺伝子読み枠が合っていることを確認した。
尚、pET32a(+)-SPARCベクターの全cDNA塩基配列は配列
番号2に、このベクターにより生産されるSPARC融合タ
ンパク質の全アミノ酸配列は配列番号1および図4に示
す。また、以上のpET32a(+)-SPARCベクターの構築の概
略を図5に示す。
【0041】[2] SPARC融合タンパク質の生産 [1] にて調製したpET32a(+)-SPARCベクターにて大腸菌
AD494(DE3)を形質転換した。この大腸菌をOD
560=0.6 まで37℃で3時間、30μg/mlのカナマイシンを
含むLB溶液にて培養後、1mM IPTG存在下、20℃で6時
間振盪培養を行った。菌体は、遠心分離(6,000×g, 30
分) により回収し、緩衝液A(5mM Imidazole, 500mM N
aCl, 20mM Tris-HCl, pH7.9)20mlに懸濁させて超音波処
理を行い、遠心分離(30,000×g, 30 分) により可溶性
画分を回収した。この可溶性画分をHis Bind Resinカラ
ム(Novagnen社) に添加後、緩衝液B(1M Imidazole, 5
00mM NaCl, 20mM Tris-HCl, pH7.9) にて吸着画分を溶
出させた。溶出液は約1mlに濃縮後、緩衝液C(10mM Tr
is-HCl, pH7.4, 100mM NaCl, 0.1% NP-40) で一晩透析
し、ゲル濾過カラム[Superdex 75 (Pharmacia 社製)]に
添加した。緩衝液D(10mM Tris-HCl pH7.4, 100mM NaC
l)を流速1ml/min で展開して5mlごとに分画を行い、保
持時間40分の単一ピーク(画分8-10) を回収し、緩衝液
Bで一晩透析した。この試料を10%SDS-pAGE で分離後に
CBB 染色を行い、精製試料が25kDa の単一バンドで98%
以上の純度を有することを確認した(図6)。尚、収率
はLB培養液1L当たり約1mgであた。
AD494(DE3)を形質転換した。この大腸菌をOD
560=0.6 まで37℃で3時間、30μg/mlのカナマイシンを
含むLB溶液にて培養後、1mM IPTG存在下、20℃で6時
間振盪培養を行った。菌体は、遠心分離(6,000×g, 30
分) により回収し、緩衝液A(5mM Imidazole, 500mM N
aCl, 20mM Tris-HCl, pH7.9)20mlに懸濁させて超音波処
理を行い、遠心分離(30,000×g, 30 分) により可溶性
画分を回収した。この可溶性画分をHis Bind Resinカラ
ム(Novagnen社) に添加後、緩衝液B(1M Imidazole, 5
00mM NaCl, 20mM Tris-HCl, pH7.9) にて吸着画分を溶
出させた。溶出液は約1mlに濃縮後、緩衝液C(10mM Tr
is-HCl, pH7.4, 100mM NaCl, 0.1% NP-40) で一晩透析
し、ゲル濾過カラム[Superdex 75 (Pharmacia 社製)]に
添加した。緩衝液D(10mM Tris-HCl pH7.4, 100mM NaC
l)を流速1ml/min で展開して5mlごとに分画を行い、保
持時間40分の単一ピーク(画分8-10) を回収し、緩衝液
Bで一晩透析した。この試料を10%SDS-pAGE で分離後に
CBB 染色を行い、精製試料が25kDa の単一バンドで98%
以上の純度を有することを確認した(図6)。尚、収率
はLB培養液1L当たり約1mgであた。
【0042】〔試験例1〕(SPARC融合タンパク質の脳
内機能解析) 実施例1と同様の条件にてモルヒネまたは生理食塩水の
慢性投与を行い、投与を終了して1,2,4週間後にモ
ルヒネ(100mg/kg) を単回皮下投与を行うことによりモ
ルヒネ自発運動量を測定した。1,2週間後には生理食
塩水投与群に比べてモルヒネ投与群では顕著な自発運動
量増強が認められたが、4週間後には全く増強効果は認
められなかった。この結果は、扁桃体の外側基底核(BL)
におけるモルヒネ慢性投与終了後におけるSPARC mRNAの
発現上昇の経時変化と強く相関する結果であった。
内機能解析) 実施例1と同様の条件にてモルヒネまたは生理食塩水の
慢性投与を行い、投与を終了して1,2,4週間後にモ
ルヒネ(100mg/kg) を単回皮下投与を行うことによりモ
ルヒネ自発運動量を測定した。1,2週間後には生理食
塩水投与群に比べてモルヒネ投与群では顕著な自発運動
量増強が認められたが、4週間後には全く増強効果は認
められなかった。この結果は、扁桃体の外側基底核(BL)
におけるモルヒネ慢性投与終了後におけるSPARC mRNAの
発現上昇の経時変化と強く相関する結果であった。
【0043】そこで、実施例2で調製した20μM のSPAR
C融合タンパク質をマウス扁桃体の両側の外側基底核(B;
1.6mm, L:3.0mm, V:3.0mm) に0.5 μl ずつ注入し、2
日後にモルヒネ100mg/kgを皮下投与したところ、チオレ
ドシンまたは生理食塩水を同様にマウス扁桃体の外側基
底核に注入したものに比べて顕著な自発運動量の亢進が
認められ(図7)、SPARC融合タンパク質が脳内でモル
ヒネによる自発運動量の増強を引き起こしていることが
確認された。
C融合タンパク質をマウス扁桃体の両側の外側基底核(B;
1.6mm, L:3.0mm, V:3.0mm) に0.5 μl ずつ注入し、2
日後にモルヒネ100mg/kgを皮下投与したところ、チオレ
ドシンまたは生理食塩水を同様にマウス扁桃体の外側基
底核に注入したものに比べて顕著な自発運動量の亢進が
認められ(図7)、SPARC融合タンパク質が脳内でモル
ヒネによる自発運動量の増強を引き起こしていることが
確認された。
【0044】〔試験例2〕(神経細胞への抗細胞接着効
果および細胞球形化効果) 代表的な神経培養細胞であるC6Bu-1(ラット由来グリオ
ーマ細胞) 、N18TG-2(マウス由来神経芽細胞腫) 、NG1
08-15 (C6Bu-1とN18TG-2 の雑種細胞) を用いてこれら
に対する抗細胞接着活性および細胞球形化活性を以下の
ようにして調べた。以下、神経培養細胞と記述する場合
は上記の細胞腫を意味するものとする。
果および細胞球形化効果) 代表的な神経培養細胞であるC6Bu-1(ラット由来グリオ
ーマ細胞) 、N18TG-2(マウス由来神経芽細胞腫) 、NG1
08-15 (C6Bu-1とN18TG-2 の雑種細胞) を用いてこれら
に対する抗細胞接着活性および細胞球形化活性を以下の
ようにして調べた。以下、神経培養細胞と記述する場合
は上記の細胞腫を意味するものとする。
【0045】(1) 抗細胞接着活性 神経培養細胞は、37℃、5%CO2 下の炭酸ガス恒温器内に
おいて10% ウシ胎児血清を含むダルベッコ改変イーグル
培地(10%FCS-DMEM 溶液) 中でサブコンフレントになる
まで培養した。サブコンフレントになった神経培養細胞
はPBS(-)溶液で2 回洗浄後、PBS(-)・0.5mM EDTA溶液を
用いて完全にディッシュから剥がし、5%FCS-DMEM溶液に
1 ×106 個/mlの密度になるように懸濁させて細胞懸濁
溶液とした。5%FCS-DMEM溶液70μl とPBS(-)溶液に溶解
して任意の濃度に調製したSPARC融合タンパク質溶液10
μl を96穴プレート(Falcon社製) の各ウェルに添加し
て軽く攪拌した。37℃で15分間、5%CO2 下の炭酸ガス恒
温器内で保温後、上記細胞懸濁溶液を20μl ずつ添加し
て再度軽く攪拌した。このプレートを37℃、5%CO2下の
炭酸ガス恒温器内において48時間培養し、各ウェルを検
鏡して写真撮影を行った。尚、球形化率は球形化してい
る細胞数及び球形していない細胞数を計測することによ
り算出した。
おいて10% ウシ胎児血清を含むダルベッコ改変イーグル
培地(10%FCS-DMEM 溶液) 中でサブコンフレントになる
まで培養した。サブコンフレントになった神経培養細胞
はPBS(-)溶液で2 回洗浄後、PBS(-)・0.5mM EDTA溶液を
用いて完全にディッシュから剥がし、5%FCS-DMEM溶液に
1 ×106 個/mlの密度になるように懸濁させて細胞懸濁
溶液とした。5%FCS-DMEM溶液70μl とPBS(-)溶液に溶解
して任意の濃度に調製したSPARC融合タンパク質溶液10
μl を96穴プレート(Falcon社製) の各ウェルに添加し
て軽く攪拌した。37℃で15分間、5%CO2 下の炭酸ガス恒
温器内で保温後、上記細胞懸濁溶液を20μl ずつ添加し
て再度軽く攪拌した。このプレートを37℃、5%CO2下の
炭酸ガス恒温器内において48時間培養し、各ウェルを検
鏡して写真撮影を行った。尚、球形化率は球形化してい
る細胞数及び球形していない細胞数を計測することによ
り算出した。
【0046】(2) 細胞球形化活性 (1) と同様にして調製した細胞懸濁溶液100 μl を96穴
プレート(Falcon社製)の各ウェルを分注し、37℃、5%CO
2 下の炭酸ガス恒温器内で48時間培養した。神経培養細
胞が接着ならびに伸展しているのを確認した後、PBS(-)
溶液で穏やかに神経培養細胞を洗浄し、各ウェルあたり
5%FCS-DMEME 溶液90μl とPBS(-)溶液に溶解して任意の
濃度に調製したSPARC融合タンパク質溶液10μl を添加
して軽く攪拌した。このプレートを37℃で24時間、5%CO
2下の炭酸ガス恒温器内において培養し、各ウェルを検
鏡して写真撮影を行った。尚、球形化率は球形化してい
る細胞数及び球形していない細胞数を計測することによ
り算出した。
プレート(Falcon社製)の各ウェルを分注し、37℃、5%CO
2 下の炭酸ガス恒温器内で48時間培養した。神経培養細
胞が接着ならびに伸展しているのを確認した後、PBS(-)
溶液で穏やかに神経培養細胞を洗浄し、各ウェルあたり
5%FCS-DMEME 溶液90μl とPBS(-)溶液に溶解して任意の
濃度に調製したSPARC融合タンパク質溶液10μl を添加
して軽く攪拌した。このプレートを37℃で24時間、5%CO
2下の炭酸ガス恒温器内において培養し、各ウェルを検
鏡して写真撮影を行った。尚、球形化率は球形化してい
る細胞数及び球形していない細胞数を計測することによ
り算出した。
【0047】その結果、SPARC融合タンパク質による抗
細胞接着効果および細胞球形化効果は、いずれも濃度依
存的に認められ(図8.a,図9.a)、該タンパク質
のポリクローナル抗体前処理、熱処理(90 ℃, 15分) 、
PBS 処理で完全に消失した(図8.b,図9.b)。ま
た、両効果ともグリオーマ細胞と神経芽細胞腫では感受
性が異なることが確認された。
細胞接着効果および細胞球形化効果は、いずれも濃度依
存的に認められ(図8.a,図9.a)、該タンパク質
のポリクローナル抗体前処理、熱処理(90 ℃, 15分) 、
PBS 処理で完全に消失した(図8.b,図9.b)。ま
た、両効果ともグリオーマ細胞と神経芽細胞腫では感受
性が異なることが確認された。
【0048】
【配列表】 SEQUENCE LISTING <110> Director-General of Agency of Industrial Science and Technology <120> Pharmaceurical composition comprising SPARC fusion protein <130> 11900251 <160> 4 <170> PatentIn Ver. 2.0 <210> 1 <211> 467 <212> PRT <213> Mus musculus <400> 1 Met Ser Asp Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp 1 5 10 15 Val Leu Lys Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp 20 25 30 Cys Gly Pro Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp 35 40 45 Glu Tyr Gln Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn 50 55 60 Pro Gly Thr Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu 65 70 75 80 Leu Phe Lys Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser 85 90 95 Lys Gly Gln Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala Gly Ser Gly 100 105 110 Ser Gly His Met His His His His His His Ser Ser Gly Leu Val Pro 115 120 125 Arg Gly Ser Gly Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln 130 135 140 His Met Asp Ser Pro Asp Leu Gly Thr Asp Asp Asp Asp Lys Ala Met 145 150 155 160 Ala Asp Ile Gly Ser Met Arg Ala Trp Ile Phe Phe Leu Leu Cys Leu 165 170 175 Ala Gly Arg Ala Leu Ala Ala Pro Gln Gln Thr Glu Val Ala Glu Glu 180 185 190 Ile Val Glu Glu Glu Thr Val Val Glu Glu Thr Gly Val Pro Val Gly 195 200 205 Ala Asn Pro Val Gln Val Glu Met Gly Glu Phe Glu Asp Gly Ala Glu 210 215 220 Glu Thr Val Glu Glu Val Val Ala Asp Asn Pro Cys Gln Asn His His 225 230 235 240 Cys Lys His Gly Lys Val Cys Glu Leu Asp Glu Ser Asn Thr Pro Met 245 250 255 Cys Val Cys Gln Asp Pro Thr Ser Cys Pro Ala Pro Ile Gly Glu Phe 260 265 270 Glu Lys Val Cys Ser Asn Asp Asn Lys Thr Phe Asp Ser Ser Cys His 275 280 285 Phe Phe Ala Thr Lys Cys Thr Leu Glu Gly Thr Lys Lys Gly His Lys 290 295 300 Leu His Leu Asp Tyr Ile Gly Pro Cys Lys Tyr Ile Ala Pro Cys Leu 305 310 315 320 Asp Ser Glu Leu Thr Glu Phe Pro Leu Arg Met Arg Asp Trp Leu Lys 325 330 335 Asn Val Leu Val Thr Leu Tyr Glu Arg Asp Glu Gly Asn Asn Leu Leu 340 345 350 Thr Glu Lys Gln Lys Leu Arg Val Lys Lys Ile His Glu Asn Glu Lys 355 360 365 Arg Leu Glu Ala Gly Asp His Pro Val Glu Leu Leu Ala Arg Asp Phe 370 375 380 Glu Lys Asn Tyr Asn Met Tyr Ile Phe Pro Val His Trp Gln Phe Gly 385 390 395 400 Gln Leu Asp Gln His Pro Ile Asp Gly Tyr Leu Ser His Thr Glu Leu 405 410 415 Ala Pro Leu Arg Ala Pro Leu Ile Pro Met Glu His Cys Thr Thr Arg 420 425 430 Phe Phe Glu Thr Cys Asp Leu Asp Asn Asp Lys Tyr Ile Ala Leu Glu 435 440 445 Glu Trp Ala Gly Cys Phe Gly Ile Lys Glu Gln Asp Ile Asn Lys Asp 450 455 460 Leu Val Ile 465 <210> 2 <211> 7375 <212> DNA <213> Mus musculus <220> <221> CDS <222> (5209)..(6609) <400> 2 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600 gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660 ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720 agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780 agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840 tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900 tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960 cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg 1020 aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080 tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440 actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500 aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560 caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620 aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680 accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740 aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860 agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980 gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040 tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160 cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220 cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400 gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640 gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760 tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820 ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940 ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000 aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120 tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300 cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg 3360 gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc 3420 cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg 3480 gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca 3540 tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag 3600 atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt 3660 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 3720 gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc 3780 tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc 3840 cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct 3900 tcggtatcgt cgtatcccac taccgagatg tccgcaccaa cgcgcagccc ggactcggta 3960 atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg 4020 atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct 4080 tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga 4140 cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc 4200 aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg 4260 ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct 4320 tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt 4380 tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc 4440 gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc 4500 gacggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc 4560 gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact 4620 ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga 4680 taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc 4740 ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg 4800 atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag 4860 tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc 4920 gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat 4980 gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc 5040 aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat 5100 cgatctcgat cccgcgaaat taatacgact cactataggg gaattgtgag cggataacaa 5160 ttcccctcta gaaataattt tgtttaactt taagaaggag atatacat atg agc gat 5217 Met Ser Asp 1 aaa att att cac ctg act gac gac agt ttt gac acg gat gta ctc aaa 5265 Lys Ile Ile His Leu Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys 5 10 15 gcg gac ggg gcg atc ctc gtc gat ttc tgg gca gag tgg tgc ggt ccg 5313 Ala Asp Gly Ala Ile Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro 20 25 30 35 tgc aaa atg atc gcc ccg att ctg gat gaa atc gct gac gaa tat cag 5361 Cys Lys Met Ile Ala Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln 40 45 50 ggc aaa ctg acc gtt gca aaa ctg aac atc gat caa aac cct ggc act 5409 Gly Lys Leu Thr Val Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr 55 60 65 gcg ccg aaa tat ggc atc cgt ggt atc ccg act ctg ctg ctg ttc aaa 5457 Ala Pro Lys Tyr Gly Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys 70 75 80 aac ggt gaa gtg gcg gca acc aaa gtg ggt gca ctg tct aaa ggt cag 5505 Asn Gly Glu Val Ala Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln 85 90 95 ttg aaa gag ttc ctc gac gct aac ctg gcc ggt tct ggt tct ggc cat 5553 Leu Lys Glu Phe Leu Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His 100 105 110 115 atg cac cat cat cat cat cat tct tct ggt ctg gtg cca cgc ggt tct 5601 Met His His His His His His Ser Ser Gly Leu Val Pro Arg Gly Ser 120 125 130 ggt atg aaa gaa acc gct gct gct aaa ttc gaa cgc cag cac atg gac 5649 Gly Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp 135 140 145 agc cca gat ctg ggt acc gac gac gac gac aag gcc atg gct gat atc 5697 Ser Pro Asp Leu Gly Thr Asp Asp Asp Asp Lys Ala Met Ala Asp Ile 150 155 160 gga tcc atg agg gcc tgg atc ttc ttt ctc ctt tgc ctg gcc ggg agg 5745 Gly Ser Met Arg Ala Trp Ile Phe Phe Leu Leu Cys Leu Ala Gly Arg 165 170 175 gcc ctg gca gcc cct cag cag act gaa gtt gct gag gag ata gtg gag 5793 Ala Leu Ala Ala Pro Gln Gln Thr Glu Val Ala Glu Glu Ile Val Glu 180 185 190 195 gag gaa acc gtg gtg gag gag aca ggg gta cct gtg ggt gcc aac cca 5841 Glu Glu Thr Val Val Glu Glu Thr Gly Val Pro Val Gly Ala Asn Pro 200 205 210 gtc cag gtg gaa atg gga gaa ttt gag gac ggt gca gag gaa acg gtc 5889 Val Gln Val Glu Met Gly Glu Phe Glu Asp Gly Ala Glu Glu Thr Val 215 220 225 gag gag gtg gtg gct gac aac ccc tgc cag aac cat cat tgc aaa cat 5937 Glu Glu Val Val Ala Asp Asn Pro Cys Gln Asn His His Cys Lys His 230 235 240 ggc aag gtg tgt gag ctg gac gag agc aac acc ccc atg tgt gtg tgc 5985 Gly Lys Val Cys Glu Leu Asp Glu Ser Asn Thr Pro Met Cys Val Cys 245 250 255 cag gac ccc acc agc tgc cct gct ccc att ggc gag ttt gag aag gta 6033 Gln Asp Pro Thr Ser Cys Pro Ala Pro Ile Gly Glu Phe Glu Lys Val 260 265 270 275 tgc agc aat gac aac aag acc ttc gac tct tcc tgc cac ttc ttt gcc 6081 Cys Ser Asn Asp Asn Lys Thr Phe Asp Ser Ser Cys His Phe Phe Ala 280 285 290 acc aag tgc acc ctg gag ggc acc aag aag ggc cac aag ctc cac ctg 6129 Thr Lys Cys Thr Leu Glu Gly Thr Lys Lys Gly His Lys Leu His Leu 295 300 305 gac tac atc gga cca tgc aaa tac atc gcc ccc tgc ctg gat tcc gag 6177 Asp Tyr Ile Gly Pro Cys Lys Tyr Ile Ala Pro Cys Leu Asp Ser Glu 310 315 320 ctg acc gaa ttc cct ctg cgc atg cgt gac tgg ctc aaa aat gtc ctg 6225 Leu Thr Glu Phe Pro Leu Arg Met Arg Asp Trp Leu Lys Asn Val Leu 325 330 335 gtc acc ttg tac gag aga gat gag ggc aac aac ctc ctc act gag aag 6273 Val Thr Leu Tyr Glu Arg Asp Glu Gly Asn Asn Leu Leu Thr Glu Lys 340 345 350 355 cag aag ctg cgt gtg aag aag atc cat gag aac gag aag cgc ctg gag 6321 Gln Lys Leu Arg Val Lys Lys Ile His Glu Asn Glu Lys Arg Leu Glu 360 365 370 gct gga gac cac ccc gtg gag ctg ttg gcc cga gac ttt gag aag aac 6369 Ala Gly Asp His Pro Val Glu Leu Leu Ala Arg Asp Phe Glu Lys Asn 375 380 385 tac aat atg tac atc ttc cct gtc cac tgg cag ttt ggc cag ctg gat 6417 Tyr Asn Met Tyr Ile Phe Pro Val His Trp Gln Phe Gly Gln Leu Asp 390 395 400 cag cac cct att gat ggg tac ctg tcc cac act gag ctg gcc cca ctg 6465 Gln His Pro Ile Asp Gly Tyr Leu Ser His Thr Glu Leu Ala Pro Leu 405 410 415 cgt gct ccc ctc atc ccc atg gaa cat tgc acc aca cgt ttc ttt gag 6513 Arg Ala Pro Leu Ile Pro Met Glu His Cys Thr Thr Arg Phe Phe Glu 420 425 430 435 acc tgt gac cta gac aac gac aag tac att gcc ctg gag gaa tgg gcc 6561 Thr Cys Asp Leu Asp Asn Asp Lys Tyr Ile Ala Leu Glu Glu Trp Ala 440 445 450 ggc tgc ttt ggc atc aag gag cag gac atc aac aag gat ctg gtg atc 6609 Gly Cys Phe Gly Ile Lys Glu Gln Asp Ile Asn Lys Asp Leu Val Ile 455 460 465 taagttcacg cctcctgctg cagtcctgaa ctctctccct ctgatgtgtc ccccctccca 6669 ttaccccctt gtttaaaatg tttggatggt tggctgttcc gcctggggat aaggtgctaa 6729 catagattta actgaataca ttaacggtgc taaaaaaaaa aaaaaaacaa ggtaagaaag 6789 aaactagaac ccaagtctca gcattttccc acataactct gaggccatgg cccatccaca 6849 gcctcctggt cccctgcact acccagtgtc tcactggctg tgttggaaac ggacttgtat 6909 aagctcaccg gccacaagca cgagatatct ctagctttca tttctgtttt gcatttgact 6969 cttaacactc acccagactc tgtgcttatt tcattttggg ggatgtgggc tttttcccct 7029 ggtggtttgg agttaggcag agggaagtta cagacacagg tacaaaattt gggtaaagat 7089 actgtgagac ctgaggaccc accagtcaga acccacatgg caagtcttag tagcctaggt 7149 caaggaaaga cagaataatc cagagctgtg gcacacatga cagactccca gcagcccggt 7209 cgactcgagc accaccacca ccaccactga gatccggctg ctaacaaagc ccgaaaggaa 7269 gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg ggcctctaaa 7329 cgggtcttga ggggtttttt gctgaaagga ggaactatat ccggat 7375 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer 1 <400> 3 ccgagagttc ccagcatcat <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer 2 <400> 4 tcaaaccaat tcaccagtct
【0049】
【配列表フリーテキスト】配列番号3は、プライマー1
のヌクレオチド配列(SPARC cDNA塩基配列の72-91に対
応)を示す。配列番号4は、プライマー2のヌクレオチ
ド配列(SPARC cDNA塩基配列の1801-1820に対応)を示
す。
のヌクレオチド配列(SPARC cDNA塩基配列の72-91に対
応)を示す。配列番号4は、プライマー2のヌクレオチ
ド配列(SPARC cDNA塩基配列の1801-1820に対応)を示
す。
【0050】
【発明の効果】本発明によれば、増殖、接着、移動、興
奮といったような神経細胞や神経シナプスに起こるあら
ゆる変化の機構の研究に、また、その変化に起因する状
態や疾患、代表的には創傷治癒や動脈硬化症などの脳内
の血管新生により改善されうる疾患、てんかん等の神経
系疾患の予防治療に利用できる医薬組成物が提供され
る。
奮といったような神経細胞や神経シナプスに起こるあら
ゆる変化の機構の研究に、また、その変化に起因する状
態や疾患、代表的には創傷治癒や動脈硬化症などの脳内
の血管新生により改善されうる疾患、てんかん等の神経
系疾患の予防治療に利用できる医薬組成物が提供され
る。
【図1】 モルヒネ慢性投与による扁桃体の各部位(C
e:中心核、Co:皮質核、Me:内側核、BL:外側基底
核、BLA :前外側基底核、BLV :腹外側基底核、BM:内
側基底核)および青斑核(LC) におけるSPARC mRNA発現
量のコントロールに対する変動を示す。
e:中心核、Co:皮質核、Me:内側核、BL:外側基底
核、BLA :前外側基底核、BLV :腹外側基底核、BM:内
側基底核)および青斑核(LC) におけるSPARC mRNA発現
量のコントロールに対する変動を示す。
【図2】 モルヒネ投与方法(慢性投与、急性投与、併
用投与)による扁桃体の外側基底核(BL)におけるSPARC
mRNA発現量のコントロールに対する変動を示す。
用投与)による扁桃体の外側基底核(BL)におけるSPARC
mRNA発現量のコントロールに対する変動を示す。
【図3】 モルヒネ投与中止後の扁桃体の外側基底核(B
L)におけるSPARC mRNAの経時変化を示す。
L)におけるSPARC mRNAの経時変化を示す。
【図4】 SPARC融合タンパク質の全アミノ酸配列を示
す。
す。
A :アラニン(Ala) R :アルギニン (Arg) N :アスパラギン (Asn) D :アスパラギン酸 (Asp) C :システイン(Cys) Q :グルタミン (Gln) E :グルタミン酸 (Glu) G :グリシン (Gly) H :ヒスチジン(His) I :イソロイシン(Ile) L :ロイシン (Leu) K :リジン (Lys) M :メチオニン (Met) F :フェニルアラニン (Phe) P :プロリン (Pro) S :セリン (Ser) T :スレオニン (Thr) W :トリプトファン (Trp) Y :チロシン (Tyr) V :バリン (Val)
【図5】 pET32a(+)-SPARCベクターの構築の概略を示
す。
す。
【図6】 精製試料のゲル電気泳動(SDS-PAGE) の結果
を示す。
を示す。
【図7】 SPARC融合タンパク質脳内投与によるモルヒ
ネ自発運動量の増強を示す。
ネ自発運動量の増強を示す。
【図8】 SPARC融合タンパク質の抗細胞接着活性を示
す。
す。
【図9】 SPARC融合タンパク質の細胞球形化活性を示
す。
す。
フロントページの続き (51)Int.Cl.7 識別記号 FI C07K 14/47 C07K 14/47 19/00 19/00 C12N 15/09 ZNA C12P 21/02 C12P 21/02 C12N 15/00 ZNAA (58)調査した分野(Int.Cl.7,DB名) A61K 38/17 C07K 14/195 C07K 14/435 C07K 14/47 C07K 19/00 C12N 15/09 C12P 21/02 CAPLUS(STN) REGISTRY(STN)
Claims (3)
- 【請求項1】 以下の(a)または(b)に示すタンパク質を
有効成分とする医薬組成物。 (a) 配列表の配列番号1に示すアミノ酸配列を有する
タンパク質 (b) 配列表の配列番号1に示すアミノ酸配列において
1若しくは数個のアミノ酸が欠失、置換若しくは付加さ
れたアミノ酸配列を有し、かつSPARCの生理学的活性を
有するタンパク質 - 【請求項2】 神経細胞の細胞接着を抑制し、細胞遊走
を起こさせるための、請求項1記載の医薬組成物。 - 【請求項3】 神経突起縮退を促進することにより神経
可塑性を惹起するための、請求項1記載の医薬組成物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11049708A JP3012930B1 (ja) | 1999-02-26 | 1999-02-26 | Sparc融合タンパク質含有医薬組成物 |
US09/513,442 US6387664B1 (en) | 1999-02-26 | 2000-02-25 | Sparc fusion protein and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11049708A JP3012930B1 (ja) | 1999-02-26 | 1999-02-26 | Sparc融合タンパク質含有医薬組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3012930B1 true JP3012930B1 (ja) | 2000-02-28 |
JP2000247901A JP2000247901A (ja) | 2000-09-12 |
Family
ID=12838700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11049708A Expired - Lifetime JP3012930B1 (ja) | 1999-02-26 | 1999-02-26 | Sparc融合タンパク質含有医薬組成物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3012930B1 (ja) |
-
1999
- 1999-02-26 JP JP11049708A patent/JP3012930B1/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000247901A (ja) | 2000-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100869914B1 (ko) | 혈관 형성 조절에 유용한 트립토파닐-tRNA 신세타제기원 폴리펩타이드 | |
US20020182666A1 (en) | Human aminoacyl-tRNA synthetase polypeptides useful for the regulation of angiogenesis | |
IL195854A (en) | Aminoacyl polypeptides - trna human synthesis used to regulate angiogenesis | |
IE921291A1 (en) | Improvement of the yield when disulfide-bonded proteins are secreted | |
US6387664B1 (en) | Sparc fusion protein and method for producing the same | |
CN112553176B (zh) | 一种热稳定性提高的谷氨酰胺转氨酶 | |
CN110108884A (zh) | 一种对于犬瘟热病毒及抗体的elisa检测方法 | |
JP3012930B1 (ja) | Sparc融合タンパク質含有医薬組成物 | |
CN115247173A (zh) | 构建tmprss6基因突变的缺铁性贫血猪核移植供体细胞的基因编辑系统及其应用 | |
JP3012931B1 (ja) | Sparc融合タンパク質およびその製造方法 | |
CN111748034B (zh) | 一种滑液囊支原体单克隆抗体的制备方法 | |
CN115232817A (zh) | 用于构建三基因联合突变的小型猪核移植供体细胞的基因编辑系统及其应用 | |
KR101137021B1 (ko) | 퓨조박테리움 뉴클레텀 유래의 신규 글리코실트랜스퍼라제및 이를 이용한 올리고당 제조방법 | |
KR100902634B1 (ko) | 재조합 hmgb1 펩티드를 포함하는 핵산 전달 복합체 | |
RU2792132C1 (ru) | Рекомбинантная плазмида pET-GST-3CL, обеспечивающая синтез протеазы 3CL SARS-CoV-2 в клетках E.coli в растворимой форме | |
RU2774333C1 (ru) | Рекомбинантная плазмида pET-GST-3CL-GPG, обеспечивающая синтез протеазы 3CL SARS-CoV-2 в клетках E.coli в растворимой форме | |
CN113234746B (zh) | 一种农药诱导蛋白互作和诱导基因表达的方法 | |
CN115161335B (zh) | 用于构建tardbp基因突变的als模型猪核移植供体细胞的基因编辑系统及其应用 | |
CN112553177B (zh) | 一种热稳定性提高的谷氨酰胺转氨酶变体 | |
KR101892358B1 (ko) | 프롤리다아제 돌연변이체 및 이의 제조방법 및 이에 따라 제조된 프롤리다아제 돌연변이체의 용도 | |
CN116135880A (zh) | 一株羊驼源纳米抗体s140及其应用 | |
CN116135882A (zh) | 一株羊驼源纳米抗体m112及其应用 | |
CN115247174A (zh) | 构建先天性丙种球蛋白缺乏症模型猪核移植供体细胞的基因编辑系统及其应用 | |
CN115232794A (zh) | 一种基因编辑系统及其在构建oca-1b型白化病模型猪核移植供体细胞中的应用 | |
CN115247175A (zh) | 构建setdb1基因突变的表观遗传失调模型猪核移植供体细胞的基因编辑系统及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |