JP3003225B2 - Method for producing sintered body of Fe-based soft magnetic material containing B - Google Patents

Method for producing sintered body of Fe-based soft magnetic material containing B

Info

Publication number
JP3003225B2
JP3003225B2 JP2413383A JP41338390A JP3003225B2 JP 3003225 B2 JP3003225 B2 JP 3003225B2 JP 2413383 A JP2413383 A JP 2413383A JP 41338390 A JP41338390 A JP 41338390A JP 3003225 B2 JP3003225 B2 JP 3003225B2
Authority
JP
Japan
Prior art keywords
sintered body
weight
content
sintering
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2413383A
Other languages
Japanese (ja)
Other versions
JPH04221002A (en
Inventor
昭仁 大塚
正和 遠北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2413383A priority Critical patent/JP3003225B2/en
Publication of JPH04221002A publication Critical patent/JPH04221002A/en
Application granted granted Critical
Publication of JP3003225B2 publication Critical patent/JP3003225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はFe系含B軟質磁性材料
焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body of an Fe-based B-containing soft magnetic material.

【0002】[0002]

【従来の技術】Fe−Co合金軟質磁性材料は、規則不
規則変態を有し、変態温度において CsCl型規則格子相
を形成する合金材料であり、現在知られている合金の中
で最高の飽和磁束密度を示すので、パルスモーター、プ
リンターヘッド等のヨーク用磁性材、受話器の振動板と
して広く使用されている。
2. Description of the Related Art An Fe-Co alloy soft magnetic material is an alloy material having an ordered disorder transformation and forming a CsCl type ordered lattice phase at a transformation temperature, and has the highest saturation among currently known alloys. Because of its magnetic flux density, it is widely used as a magnetic material for yokes such as pulse motors and printer heads, and as a diaphragm for a receiver.

【0003】従来この合金は、Fe,Coのみから成っ
ている場合には、いかなる熱処理を 施しても規則変態
を抑えられず、そのため冷間加工が不可能であり、高価
なV,Crを添加し、加工性を改善して製造する必要が
あった。
Conventionally, when this alloy is composed only of Fe and Co, it is impossible to suppress the ordered transformation by any heat treatment, so that cold working is impossible, and expensive V and Cr are added. However, it was necessary to improve the processability and manufacture.

【0004】しかし,それでも未だ規則変態を抑えるに
は十分と言えず、部品等の成形品、特に複雑形状品を得
るには、粉末冶金法によって製造する試みがなされてい
る。
[0004] However, it is still not enough to suppress the ordered transformation, and in order to obtain a molded product such as a part, particularly a complicated-shaped product, an attempt has been made to manufacture the product by powder metallurgy.

【0005】また、通常の粉末冶金法でも、FeとCo
は互いに拡散しづらいため、熔製材並みの磁気特性を得
るための高密度化は難しく、密度をあげようとして高価
な微粉の使用、長時間焼結、HIP処理を行わなければ
ならなかったし、焼結後は、必ず磁気特性向上のための
熱処理を行う必要があった。
[0005] In addition, Fe and Co are also used in ordinary powder metallurgy.
Are difficult to diffuse to each other, so it is difficult to increase the density to obtain magnetic properties comparable to that of the melted material. In order to increase the density, it was necessary to use expensive fine powder, sinter for a long time, and perform HIP processing. After sintering, it was necessary to always perform a heat treatment for improving magnetic properties.

【0006】更に軟質磁性材料として交流で使用される
場合には電気抵抗が大きく、鉄損失の少ない素材を必要
とするが、Fe−Co合金では電気抵抗が低いという欠
点を有していた。
Further, when an alternating current is used as a soft magnetic material, a material having a high electric resistance and a small iron loss is required, but the Fe--Co alloy has a disadvantage that the electric resistance is low.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
のような従来の欠点を解消して、熔製材に匹敵する程度
の軟磁気特性を有するFe系含B軟質磁性材料焼結体を
製造することができる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an Fe-based B-containing soft magnetic material sintered body having a soft magnetic property comparable to that of a molten material by overcoming the above-mentioned conventional disadvantages. It is to provide a method that can be manufactured.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記の課
題を達成すべく鋭意研究の結果、Bの含有量が0.1〜
1.0重量%で、残部が実質的にFe並びにCoからな
るように配合された原料粉末とバインダーとの混合物を
射出成形し、該成形体に脱バインダー処理を施した後、
焼結工程へ移して該成形体の焼結を完了させ、この焼結
体を2〜50℃/minの範囲の冷却速度で徐冷するこ
とにより、焼結体の冷却時に認められ易い格子歪に因っ
た焼結体についての磁気特性の低下が顕著に認められる
事もなく、上記の課題を十分に解決し得ることを見出
し、本発明に至ったものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, it has been found that the content of B is 0.1 to 0.1%.
At 1.0% by weight, a mixture of a raw material powder and a binder blended so that the balance substantially consists of Fe and Co is injection-molded, and the molded body is subjected to a debinding treatment.
By shifting to a sintering step to complete the sintering of the molded body and gradually cooling the sintered body at a cooling rate in the range of 2 to 50 ° C./min, the lattice strain which is easily recognized when the sintered body is cooled is reduced. The present inventors have found that the above problems can be sufficiently solved without any noticeable decrease in magnetic properties of the sintered body due to the above, and have led to the present invention.

【0009】即ち、本発明は、先ず、Bの含有量が0.
1〜1.0重量%で残部が実質的にFe及びCoからな
るようにFe粉と、Co粉と、Fe−Co合金粉と、F
e−B合金粉とバインダーとを適宜混合した混合物を作
成し、この混合物をプレス成形又は射出成形にて所定の
形状に成形し、さらに、この成形体を必要に応じ300
℃程度に保持してバインダーを除去し、次に1100〜
1450℃の温度範囲で焼結した後に2〜50℃/mi
nの範囲の冷却速度で徐冷することにより行われるもの
である。
That is, according to the present invention, first, the content of B is set to 0.1.
Fe powder, Co powder, Fe-Co alloy powder, and F so that the balance is substantially 1.0 to 1.0% by weight of Fe and Co.
A mixture is prepared by appropriately mixing the e-B alloy powder and a binder, and the mixture is molded into a predetermined shape by press molding or injection molding.
℃ to remove the binder, then 1100
2-50 ° C./mi after sintering in the temperature range of 1450 ° C.
This is performed by gradually cooling at a cooling rate in the range of n.

【0010】なお、成形の方法としてはプレス成形,射
出成形のいずれの方法でもよいが、複雑形状品を製造す
る場合は射出成形の方が有効であり、また、前記のFe
粉,Co粉、Fe−Co合金粉、Fe−B合金粉は夫
々、45μm以下の粒径である方が好ましい。
As a molding method, either press molding or injection molding may be used. However, injection molding is more effective when manufacturing a complicated-shaped product.
The powder, the Co powder, the Fe—Co alloy powder, and the Fe—B alloy powder each preferably have a particle size of 45 μm or less.

【0011】さらに、本発明に於いて混合物中に添加さ
れるバインダーとしては、射出成形粉末冶金法として公
知のバインダー、例えば、ポリエチレン、ワックス等を
使用する事が可能であるが、残留カーボンを残存させ易
いバインダーを利用していると、バインダーの除去作業
に際して、焼結体の中にカーボンが侵入して来る恐れが
あり、この場合には、製品の磁気特性が低下してくるの
で、これらの障害を防止する為にも、残留カーボンの発
生しにくいバインダー、例えば、ワックスを主体とした
バインダーを使用する事が好ましい。
Further, as the binder to be added to the mixture in the present invention, it is possible to use a binder known as an injection molding powder metallurgy method, for example, polyethylene, wax or the like. If a binder that can be easily used is used, carbon may enter the sintered body during the removal of the binder, and in this case, the magnetic properties of the product are reduced. In order to prevent the trouble, it is preferable to use a binder which hardly generates residual carbon, for example, a binder mainly composed of wax.

【0012】さらに、バインダーの除去作業について
は、使用されるバインダーの種類によって、加熱脱脂、
溶剤脱脂、その他の公知の方法が用いられるが、その他
の方法と比較した場合、加熱脱脂処理に供される装置が
最も軽便であるために、製品の量産時には、窒素または
水素さらには真空雰囲気中において、加熱装置を用いた
脱脂処理を行うのが一般的である。
Further, the operation of removing the binder may be performed by heat degreasing,
Solvent degreasing and other known methods are used, but when compared with other methods, the equipment provided for heat degreasing is the most convenient, so when mass-producing products, use nitrogen or hydrogen, or even a vacuum atmosphere. In the above, a degreasing treatment using a heating device is generally performed.

【0013】脱バインダー処理された後に施される成形
体の焼結処理については、水素もしくは真空雰囲気中で
行われるのが一般的である。
The sintering of the compact after the binder removal treatment is generally carried out in a hydrogen or vacuum atmosphere.

【0014】[0014]

【作 用】配合した粉末および焼結後の焼結体のB含有
量は0.1〜1.0重量%であることが必要である。
[Operation] The B content of the blended powder and the sintered body after sintering must be 0.1 to 1.0% by weight.

【0015】Bの含有量が0.1重量%未満では焼結後
の最終相対密度は殆ど向上せず、その結果、優れた磁気
特性が発揮されないばかりでなく、電気抵抗も所定の値
が得にくい。
If the B content is less than 0.1% by weight, the final relative density after sintering hardly increases, so that not only excellent magnetic properties are not exhibited, but also a predetermined value of electrical resistance is obtained. Hateful.

【0016】また、B含有量が1.0重量%を超える場
合には、磁束密度が急激に低下して来て、軟磁性材料と
しては使用できなくなって来るからである。
On the other hand, if the B content exceeds 1.0% by weight, the magnetic flux density rapidly decreases and cannot be used as a soft magnetic material.

【0017】なおFe,Co,P以外の元素は含まれな
いことが望ましいが、焼結体の軟磁気特性の磁束密度が
B35=20,000G以下とならない範囲ならば含まれ
ていても差し使えない。
It is preferable that elements other than Fe, Co, and P are not contained, but if the magnetic flux density of the soft magnetic properties of the sintered body is not in the range of B35 = 20,000 G or less, it can be used. Absent.

【0018】合金磁石組成に配合された粉末に、例えば
パラフィンワックス系のバインダーを加えて成形し、3
00℃程度の温度でバインダーを除去するが、このバイ
ンダー除去の温度は、製品成形の際に用いたバインダー
の性質に応じて適宜の温度を選択すれば良い。
The powder mixed with the alloy magnet composition is mixed with, for example, a paraffin wax-based binder and molded.
The binder is removed at a temperature of about 00 ° C., and the temperature for removing the binder may be appropriately selected according to the properties of the binder used in forming the product.

【0019】本発明では、焼結を行う際の温度を110
0〜1450℃と規定したが、この場合、1100℃未
満の温度で焼結処理を行うと、長時間に亘って同一温度
に保持していても、焼結現象は進行しにくく、焼結体の
相対密度が上昇しにくくなる結果、製品の磁気特性が向
上しなくなるからである。
In the present invention, the sintering temperature is set at 110
However, in this case, when the sintering process is performed at a temperature lower than 1100 ° C., the sintering phenomenon hardly proceeds even if the same temperature is maintained for a long time, and the sintered body This is because it is difficult to increase the relative density of the product, and as a result, the magnetic properties of the product cannot be improved.

【0020】また、1450℃を越える温度で焼結処理
を行うと、高密度の焼結体が得られるものの、焼結時に
液相が多く出現する為、製品の形が崩れたり、あるいは
製品の表面が溶融して来るため、所定の形状、寸法のも
のを製造することができにくくなる。
When sintering is carried out at a temperature exceeding 1450 ° C., although a high-density sintered body is obtained, a large amount of liquid phase appears during sintering, so that the shape of the product is lost or Since the surface is melted, it becomes difficult to manufacture a product having a predetermined shape and dimensions.

【0021】焼結後の成形体は2℃/min以上、50
℃/min以下の冷却速度で徐冷することが必要であ
る。
The sintered body after sintering is 2 ° C./min or more, 50
It is necessary to gradually cool at a cooling rate of not more than ° C / min.

【0022】焼結体に格子歪が存在すると磁壁の移動が
妨害されるため、軟磁気特性が低下するという影響をも
たらす。
The presence of lattice strain in the sintered body hinders the movement of the magnetic domain wall, which has the effect of lowering the soft magnetic properties.

【0023】この影響を取り除くため、焼結後の成形体
は50℃/min以下の冷却速度で徐冷することが必要
である。
In order to eliminate this effect, it is necessary to gradually cool the compact after sintering at a cooling rate of 50 ° C./min or less.

【0024】焼結体の冷却速度が50℃/minを越え
る状態では、焼結体の冷却時に、焼結体中に格子歪が生
じ、これがそのまま室温まで残留するため軟磁気特性を
低下させる様になる。
If the cooling rate of the sintered body exceeds 50 ° C./min, lattice strain is generated in the sintered body when the sintered body is cooled, and the lattice strain remains as it is at room temperature. become.

【0025】また、2℃/min以上の冷却速度とした
のは、いたずらに冷却速度を遅くしても、その効果度に
大差なく、製品の処理時間が長引くようになるばかりで
あるからである。
The reason why the cooling rate is set to 2 ° C./min or more is that even if the cooling rate is unnecessarily reduced, the effect thereof is not largely changed, and the processing time of the product is only prolonged. .

【0026】なお、平均粒径が45μmを越える原料粉
末を利用する場合には、混合物に加えるバインダー量が
増加し、かつ焼結の進行するのが遅くなると共に、焼結
体の最終相対密度が上昇せず、磁気特性も向上し難くな
って来る為、原料粉末として最初に配合するFe粉,F
e−B合金粉の平均粒径はその限度として、45μm以
下と規定する。
When a raw material powder having an average particle size of more than 45 μm is used, the amount of binder added to the mixture increases, the sintering progresses slowly, and the final relative density of the sintered body increases. Since it does not increase and the magnetic properties become difficult to improve, Fe powder and
The average particle size of the e-B alloy powder is specified as a limit of 45 μm or less.

【0027】[0027]

【実施例】実施例1 原料粉として平均粒径9μmのFe−50重量%Co合
金粉と平均粒径20μmのFe−44重量%B母合金粉
とを用い、Bの含有量が0.2重量%、Coの含有量が
49重量%、Feの含有量が50.8重量%となるよう
に配合された原料粉末を十分に混合し、これにワックス
系のバインダーを含有率が40〜50容量%となる様に
加え、1500 ℃で混錬後、ペレット状に造粒した。
EXAMPLES Example 1 Fe-50 wt% Co alloy powder having an average particle diameter of 9 μm and Fe-44 wt% B master alloy powder having an average particle diameter of 20 μm were used as raw material powders, and the B content was 0.2%. %, A Co content of 49% by weight and a Fe content of 50.8% by weight are sufficiently mixed with a raw material powder, and a wax-based binder having a content of 40 to 50% is added thereto. After kneading at 1500 ° C., the mixture was granulated into pellets.

【0028】このペレットを射出成形機を用いて射出圧
力1200kg/cm2 の条件で金型に射出成形し,得ら
れた成形体を300℃に保持してワックス系バインダー
の除去を行い、その後、1300℃にて2時間の焼結処
理を施し、10℃/minの冷却速度で冷却して常温と
した。
The pellets are injection-molded into a mold under an injection pressure of 1200 kg / cm 2 using an injection molding machine, and the obtained molded body is kept at 300 ° C. to remove a wax-based binder. A sintering treatment was performed at 1300 ° C. for 2 hours, and cooled at a cooling rate of 10 ° C./min to room temperature.

【0029】このようにして得られた焼結体に励磁コイ
ル及びサーチコイルを共に50ターン巻き、直流記録磁
束計によりBHヒステリシス曲線を描いて、外部磁場3
5Oeにて磁束密度(B35) ,保磁力(Hc),最大透
磁率(μmax )を求めた。
An excitation coil and a search coil are wound around the sintered body for 50 turns, and a BH hysteresis curve is drawn by a DC recording magnetometer, and an external magnetic field 3
The magnetic flux density (B35), coercive force (Hc), and maximum magnetic permeability (μmax) were determined at 5 Oe.

【0030】その結果は表1に示した如くであって、焼
結密度が95%であり、電気抵抗が13μΩcmであ
り、磁束密度が20,000Gであり、保磁力が2.2
Oeであり、最大透磁率が4500μmax であって、優
れた磁気特性を示す事が明らかになった。
The results are as shown in Table 1. The sintered density was 95%, the electric resistance was 13 μΩcm, the magnetic flux density was 20,000 G, and the coercive force was 2.2.
Oe, the maximum magnetic permeability was 4500 μmax, and it was clarified that excellent magnetic properties were exhibited.

【0031】実施例2〜6何れも実施例1と同様な処理
を施したところ、表1に記載された組成をもち、かつ、
表1に記載された原料配合の場合には、何れの場合に
も、実施例1と殆ど変わらぬ結果が示された。
When all of Examples 2 to 6 were treated in the same manner as in Example 1, they had the composition shown in Table 1, and
In the case of the raw material formulations shown in Table 1, in each case, the results were almost the same as those of Example 1.

【0032】比較例1 Bの含有量が0.5重量%、Coの含有量が49重量
%、Feの含有量が50.5重量%となるように配合さ
れた組成の原料粉のみにて圧縮成形体を製造し、実施例
1と同様に処理した結果は、焼結密度が91%しか無
く、また、磁束密度が16,000Gしかなく、しか
も、最大透磁率は3,000μmax であって、実施例の
如き良好な結果は得られなかった。
Comparative Example 1 Only raw material powder having a composition in which the content of B was 0.5% by weight, the content of Co was 49% by weight, and the content of Fe was 50.5% by weight was used. A compression-molded body was manufactured and treated in the same manner as in Example 1. The result was that the sintered density was only 91%, the magnetic flux density was only 16,000 G, and the maximum magnetic permeability was 3,000 μmax. Good results as in the examples were not obtained.

【0033】比較例2 Bを含有させない製品を用意し、請求項1、のB含有量
の下限である0.1重量%を外した組成の場合を検討し
た例であって、電気抵抗が10μΩcmと劣っていると
共に、磁束密度も15,000Gと劣っている。
Comparative Example 2 This is an example in which a product containing no B was prepared, and the composition of the composition except for the lower limit of 0.1% by weight of the B content of claim 1 was examined, and the electrical resistance was 10 μΩcm. And the magnetic flux density is also inferior to 15,000 G.

【0034】比較例3 Bの含有量を0.05重量%、Coの含有量を49重量
%、Feの含有量を50.95重量%とし、請求項1,
のB含有量の下限である0.1重量%を外した組成とし
た例であって、電気抵抗が11μΩcmと劣化している
と共に、磁束密度も15,500Gと劣って居り、さら
に、最大透磁率も3,100G/Oeと劣化して来てい
る。
Comparative Example 3 The content of B was 0.05% by weight, the content of Co was 49% by weight, and the content of Fe was 50.95% by weight.
This is an example of a composition excluding the lower limit of the B content of 0.1% by weight, which has a deteriorated electric resistance of 11 μΩcm, a poor magnetic flux density of 15,500 G, and a maximum permeability. The magnetic susceptibility has also been degraded to 3,100 G / Oe.

【0035】比較例4 Bの含有量を1.5重量%、Coの含有量を49重量
%、Feの含有量を49.5重量%とし、請求項1,の
B含有量の上限である1.0重量%を超えた組成とした
例であって、比較例2と同様に、磁束密度も10,00
0Gと劣って居り、さらに、最大透磁率が1,800G
/Oeと劣化して来ている。
Comparative Example 4 The content of B was 1.5% by weight, the content of Co was 49% by weight, and the content of Fe was 49.5% by weight. This is an example in which the composition exceeds 1.0% by weight, and the magnetic flux density is also 10,000 as in Comparative Example 2.
0G is inferior, and the maximum permeability is 1,800G
/ Oe.

【0036】比較例5 Bの含有量を0.5重量%、Coの含有量を49重量
%、Feの含有量を50.5重量%と、実施例2と同様
にBを規定範囲に収めたものの、焼結後の冷却を0℃の
冷却水とした為、冷却速度が請求項1,の上限である5
0℃/minを超えて600℃/minとなった例であ
って、磁束密度が11,000Gと劣って居り、さら
に、最大透磁率が2,000G/Oeと劣化して来てい
る。
Comparative Example 5 The content of B was 0.5% by weight, the content of Co was 49% by weight, the content of Fe was 50.5% by weight. However, since the cooling after sintering was performed with cooling water at 0 ° C., the cooling rate was the upper limit of claim 1.
This is an example in which the temperature exceeds 0 ° C./min to 600 ° C./min. The magnetic flux density is inferior to 11,000 G, and the maximum magnetic permeability is degrading to 2,000 G / Oe.

【0037】比較例6 Bの含有量を0.5重量%、Coの含有量を49重量
%、Feの含有量を50.5重量%と、実施例2と同様
にBを規定範囲に収めたものの、焼結後の冷却を25℃
の水道水にて冷却した為、冷却速度が請求項1,の上限
である50℃/minを超えた400℃/minとなっ
た例であって、最大透磁率が2,500G/Oeと極端
に劣化して来ていると共に、磁束密度も12,000G
と減少して来ている。
COMPARATIVE EXAMPLE 6 The B content was 0.5% by weight, the Co content was 49% by weight, and the Fe content was 50.5% by weight. However, cooling after sintering is 25 ° C
In this example, the cooling rate was 400 ° C./min, which exceeded the upper limit of 50 ° C./min in claim 1, and the maximum magnetic permeability was 2,500 G / Oe. And the magnetic flux density is 12,000G
And it is decreasing.

【0038】比較例7 Bの含有量を0.5重量%、Coの含有量を49重量
%、Feの含有量を50.5重量%と、実施例2と同様
にBを規定範囲に収めたものの、焼結後の冷却条件を油
冷とした為、冷却速度が請求項1,の上限である50℃
/minを超えて、200℃/minとなった例であっ
て、最大透磁率が3,100G/Oeと極端に劣化して
来ていると共に、磁束密度も14,000Gと減少して
いる。
Comparative Example 7 The content of B was 0.5% by weight, the content of Co was 49% by weight, and the content of Fe was 50.5% by weight. However, since the cooling condition after sintering was oil cooling, the cooling rate was 50 ° C. which was the upper limit of claim 1.
/ Min, exceeding 200 ° C./min, the maximum magnetic permeability has been extremely deteriorated to 3,100 G / Oe, and the magnetic flux density has decreased to 14,000 G.

【0039】比較例8 Bの含有量を0.5重量%、Coの含有量を49重量
%、Feの含有量を50.5重量%と、実施例2と同様
にBを規定範囲に収めたものの、焼結後の冷却条件を油
冷とした為、冷却速度が請求項1,の上限である50℃
/minを超えて、100℃/minとなった例であっ
て、最大透磁率は3,200G/Oeと劣化して来てい
ると共に、磁束密度も16,000Gと減少している。
Comparative Example 8 The content of B was 0.5% by weight, the content of Co was 49% by weight, and the content of Fe was 50.5% by weight. However, since the cooling condition after sintering was oil cooling, the cooling rate was 50 ° C. which was the upper limit of claim 1.
In this example, the maximum magnetic permeability has decreased to 3,200 G / Oe, and the magnetic flux density has decreased to 16,000 G.

【0040】比較例9 Fe−50重量%Co金粉の平均粒径を48〜58μm
の範囲とし、請求項4,の原料粉の平均粒径限度である
45μmより粗い粉末で製造した例であって、焼結体の
密度が80%しか無い上、最大透磁率が1,200G/
Oeと劣化して来ていると共に、磁束密度も9,800
Gと50%近くに減少して来ている。
Comparative Example 9 The average particle size of Fe-50 wt% Co gold powder was 48 to 58 μm.
Wherein the sintered body has a density of only 80% and a maximum magnetic permeability of 1,200 G /
Oe and the magnetic flux density is 9,800
It is decreasing to nearly 50% with G.

【0041】比較例10 焼結温度を1000℃とし、請求項2,の焼結温度の下
限である1100℃以下の温度で焼結を行った例であっ
て、焼結体の密度が85%しか無い上、最大透磁率が
1,900G/Oeと劣化して来ていると共に、磁束密
度も10,500Gと50%近くに減少して来ている。
Comparative Example 10 This is an example in which the sintering temperature is 1000 ° C. and the sintering is performed at a temperature of 1100 ° C. or less, which is the lower limit of the sintering temperature of claim 2, wherein the density of the sintered body is 85% In addition, the maximum magnetic permeability has been degraded to 1,900 G / Oe, and the magnetic flux density has been reduced to 10,500 G, which is close to 50%.

【0042】比較例11 焼結温度を1470℃とし、請求項2,の焼結温度の上
限である1450℃を超えた温度で焼結を行った例であ
って、成形体の形状が充分に保てなかったものである。
Comparative Example 11 This is an example in which the sintering temperature was 1470 ° C. and the sintering was performed at a temperature exceeding 1450 ° C., which is the upper limit of the sintering temperature according to claim 2, wherein the shape of the compact was sufficiently high. I couldn't keep it.

【0043】以上の結果から本発明によって製造した焼
結体は、その軟磁気特性として、高磁束密度、低保磁
力、高透磁率を有していることが認められ、電気抵抗の
向上もあって優れた磁石であるのが判る。
From the above results, it was confirmed that the sintered body manufactured according to the present invention had high magnetic flux density, low coercive force, and high magnetic permeability as its soft magnetic properties, and the electrical resistance was also improved. It turns out that it is an excellent magnet.

【0044】[0044]

【表1】 [Table 1]

【0045】表1中の比較例1−11についての*印は
本発明の範囲を逸脱しているパラメータである。
The symbol * in Comparative Example 1-11 in Table 1 is a parameter outside the scope of the present invention.

【0046】[0046]

【発明の効果】本発明による時には、優れた軟磁気特性
を有すると共に、従来のFe−Co合金と比較して高密
度化され、電気抵抗も向上し、射出成形法を用いること
により複雑形状で高性能の軟磁気特性を有する軟磁性焼
結体を安定して供給し得る事が可能になり、工業的に有
用な製品の製造方法を開示した事によって、産業界に寄
与ところ大なるものがある。
According to the present invention, while having excellent soft magnetic properties, the density is higher than that of the conventional Fe-Co alloy, the electric resistance is improved, and a complicated shape is obtained by using the injection molding method. It has become possible to stably supply soft magnetic sintered bodies with high-performance soft magnetic properties, and by disclosing the manufacturing method of industrially useful products, it will contribute greatly to the industry. is there.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/00 303 B22F 3/10 E (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 7/08 C22C 33/02 C22C 38/00 303 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI C22C 38/00 303 B22F 3/10 E (58) Field surveyed (Int.Cl. 7 , DB name) B22F 1/00-7 / 08 C22C 33/02 C22C 38/00 303

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Bを0.1〜1.0重量%含有し、残部
が実質的にFe及びCoであるFe系合金の組成を有す
る平均粒径45μm以下の原料粉末とバインダーとから
なる混合物を射出成形した後、得られた成形体について
脱バインダー処理を施し、更に、上記の脱バインダー処
理済成形体を加熱して1100〜1450℃の温度範囲
で焼結処理をして焼結体とした後、該焼結体を2〜50
℃/minの範囲の冷却速度で徐冷することより成るF
e系含B軟質磁性材料焼結体の製造方法。
1. A mixture comprising a raw material powder containing B in an amount of 0.1 to 1.0% by weight and having a composition of an Fe-based alloy in which the balance is substantially Fe and Co and having an average particle size of 45 μm or less, and a binder. After the injection molding, the obtained molded body is subjected to a debinding treatment, and the above-described debinding treated molded body is heated and sintered at a temperature of 1100 to 1450 ° C. After that, the sintered body is
F consisting of slow cooling at a cooling rate in the range of ° C / min.
A method for producing an e-based B-containing soft magnetic material sintered body.
JP2413383A 1990-12-20 1990-12-20 Method for producing sintered body of Fe-based soft magnetic material containing B Expired - Fee Related JP3003225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413383A JP3003225B2 (en) 1990-12-20 1990-12-20 Method for producing sintered body of Fe-based soft magnetic material containing B

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413383A JP3003225B2 (en) 1990-12-20 1990-12-20 Method for producing sintered body of Fe-based soft magnetic material containing B

Publications (2)

Publication Number Publication Date
JPH04221002A JPH04221002A (en) 1992-08-11
JP3003225B2 true JP3003225B2 (en) 2000-01-24

Family

ID=18522041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413383A Expired - Fee Related JP3003225B2 (en) 1990-12-20 1990-12-20 Method for producing sintered body of Fe-based soft magnetic material containing B

Country Status (1)

Country Link
JP (1) JP3003225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511831B2 (en) * 2014-05-14 2019-05-15 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP6511832B2 (en) * 2014-05-14 2019-05-15 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core using the powder

Also Published As

Publication number Publication date
JPH04221002A (en) 1992-08-11

Similar Documents

Publication Publication Date Title
US4898625A (en) Method for producing a rare earth metal-iron-boron permanent magnet by use of a rapidly-quenched alloy powder
US5098648A (en) Production process for sintered fe-co type magetic materials
US5147601A (en) Process for manufacturing a soft magnetic body of an iron-nickel alloy
JP4863377B2 (en) Samarium-iron permanent magnet material
US5091022A (en) Manufacturing process for sintered fe-p alloy product having soft magnetic characteristics
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JP3003225B2 (en) Method for producing sintered body of Fe-based soft magnetic material containing B
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JPS62177158A (en) Permanent magnet material and its production
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH05247601A (en) Alloy for corrosion resistant permanent magnet and method for producing permanent magnet therefrom
JPS59140335A (en) Manufacture of rare earth-cobalt sintered magnet of different shape
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH06204021A (en) Composite magnetic material and its manufacture
JPH0570881A (en) Production of sintered compact of fe-ni-p alloy soft-magnetic material
JPS61295342A (en) Manufacture of permanent magnet alloy
JP2928647B2 (en) Method for producing iron-cobalt based sintered magnetic material
JPH055162A (en) Soft magnetic alloy high in magnetic permeability
JPH04183840A (en) Production of sintered compact of fe-co-si alloy soft-magnetic material
JPH06158110A (en) Production of sintered compact of soft magnetic fe-co-v-p alloy material
JP2000239702A (en) Fe-Ni ALLOY POWDER AND ITS MANUFACTURE
JPH0521216A (en) Permanent magnet alloy and its production
JPH04183841A (en) Production on sintered compact of fe-co-p alloy soft-magnetic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees