JPH055162A - Soft magnetic alloy high in magnetic permeability - Google Patents

Soft magnetic alloy high in magnetic permeability

Info

Publication number
JPH055162A
JPH055162A JP3182018A JP18201891A JPH055162A JP H055162 A JPH055162 A JP H055162A JP 3182018 A JP3182018 A JP 3182018A JP 18201891 A JP18201891 A JP 18201891A JP H055162 A JPH055162 A JP H055162A
Authority
JP
Japan
Prior art keywords
plane
magnetic
alloy
magnetic permeability
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3182018A
Other languages
Japanese (ja)
Inventor
Takuji Hara
卓司 原
Takuji Okiyama
卓司 沖山
Toshihiko Takemoto
敏彦 武本
Yutaka Kawai
裕 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3182018A priority Critical patent/JPH055162A/en
Publication of JPH055162A publication Critical patent/JPH055162A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To obtain a magnetic alloy having high magnetic permeability by low Ni content by adding Cr to an Ni-Fe alloy so as to make it into an Ni-Cr- Fe alloy having a specified compsn. CONSTITUTION:The ingot of an Ni-Cr-Fe alloy having a compsn. constituted of, by weight, 30 to 55% Ni, <14% Cr and the balance Fe is worked into a sheet by hot rolling and cold rolling. A magnetic allay having a texture in which the integrated intensity in the {200} plane contg. the axis of easy magnetization is integrated in the plane by double or above compared to that in the {200} plane of a random sample obtd. by subjecting alloy powder by a gas atomizing method having the same compsn. to compacting and sintering, in which all crystal planes have been appeared in an equal ratio and having no crystalline orientation and having high magnetic permeability of >=100000mum maximum magnetic permeability can be obtd. An inexpensive magnetic alloy having expensive Ni content lower than that of the conventional high Ni permalloy can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高透磁率が要求される
磁気シールド部材,各種鉄心等に使用され、最大透磁率
μm が100,000以上の高い透磁率をもつ磁性合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic alloy having a high magnetic permeability, having a maximum magnetic permeability μ m of 100,000 or more, which is used for magnetic shield members, various iron cores and the like which are required to have high magnetic permeability.

【0002】[0002]

【従来の技術】Ni−Fe系合金は、磁気ヘッドのケー
ス材,カセットテープの磁気遮蔽材等の磁気シールド部
材や各種電気機器の鉄心材料として広く使用されてい
る。この系統に属する代表的な材料として、Mo,C
r,Cu等を含む高Niパーマロイ(JIS−PC)が
ある。高Niパーマロイは、高透磁率及び高耐食性を呈
するものの、70重量%を超えるNi及びMoを含有し
ていることから、高価なものとなる。そのため、高Ni
パーマロイの使用には、経済的な面からの制約が加わ
る。
2. Description of the Related Art Ni-Fe alloys are widely used as magnetic shield members such as magnetic head case materials, cassette tape magnetic shielding materials, and iron core materials for various electric devices. Typical materials belonging to this system are Mo and C
There is a high Ni permalloy (JIS-PC) containing r, Cu and the like. High Ni permalloy exhibits high magnetic permeability and high corrosion resistance, but it is expensive because it contains more than 70% by weight of Ni and Mo. Therefore, high Ni
The use of permalloy is subject to economic constraints.

【0003】また、高価な高Niパーマロイに代えて、
Ni含有量を45重量%程度に比較的低下させた低Ni
パーマロイ(JIS−PB)が使用されている。低Ni
パーマロイは、飽和磁束密度B10が15,000Gと高
いものの、インダクタンス透磁率μL が高Niパーマロ
イに比較し極めて劣っている。そのため、高い磁気特性
が要求される用途には、依然として高Niパーマロイを
使用せざるをえない。
Further, instead of expensive high Ni permalloy,
Low Ni with a relatively low Ni content of about 45% by weight
Permalloy (JIS-PB) is used. Low Ni
Permalloy has a high saturation magnetic flux density B 10 of 15,000 G, but is extremely inferior in inductance permeability μ L to high Ni permalloy. Therefore, high Ni permalloy is still unavoidable for applications requiring high magnetic properties.

【0004】このようなことから、高Niパーマロイに
匹敵する磁気特性をもち、しかも低Niパーマロイ或い
はそれ以下の安価な軟質磁性合金の開発が望まれてい
る。本発明者等は、この要望に応えるため、特定された
割合でNi及びCrを含有させることによって飽和磁束
密度及びインダクタンス透磁率を改善した軟質磁性合金
を開発し、特願平1−227445号,特願平2−78
215号等として出願した。
For these reasons, it has been desired to develop an inexpensive soft magnetic alloy having a magnetic characteristic comparable to that of high Ni permalloy and having low Ni permalloy or lower. In order to meet this demand, the present inventors have developed a soft magnetic alloy with improved saturation magnetic flux density and inductance permeability by containing Ni and Cr in a specified ratio, and Japanese Patent Application No. 1-227445, Japanese Patent Application 2-78
Filed as No. 215, etc.

【0005】Ni−Fe系合金にCrを添加するとき、
飽和磁歪定数λs及び磁気異方性定数K1 が0に近づ
く。また、キューリ点Tc も、Cr含有量の増加に伴っ
て室温近傍まで低下する。そして、キューリ点近傍で透
磁率が向上するホプキンソン効果を示す。その結果、C
r添加によって透磁率が向上するものと推察される。
When Cr is added to a Ni-Fe alloy,
The saturation magnetostriction constant λ s and the magnetic anisotropy constant K 1 approach 0. The Curie point T c also decreases to near room temperature as the Cr content increases. Then, the Hopkinson effect in which the magnetic permeability is improved in the vicinity of the Curie point is shown. As a result, C
It is assumed that the addition of r improves the magnetic permeability.

【0006】Crを含有させたNi−Fe系合金は、安
価なNi−Fe系軟質磁性合金として代表的なものであ
る45%パーマロイ(JIS−PB)よりも高い初期透
磁率を示し、Mo,Cu等を含有する80%Niパーマ
ロイ(JIS−PC)に匹敵する磁気特性を呈する。し
かも、Niを多量に含有しないことから安価な材料であ
る。この長所から、磁気ヘッドのケース材やカバー材等
の磁気シールド部材,ステーター材やコア材等の各種鉄
心材料として有望な材料である。
[0006] The Ni-Fe based alloy containing Cr has a higher initial magnetic permeability than 45% permalloy (JIS-PB), which is a typical inexpensive Ni-Fe based soft magnetic alloy. It exhibits magnetic characteristics comparable to 80% Ni permalloy (JIS-PC) containing Cu and the like. Moreover, since it does not contain a large amount of Ni, it is an inexpensive material. From this advantage, it is a promising material as various magnetic core materials such as magnetic shield members such as case materials and cover materials for magnetic heads, and stator materials and core materials.

【0007】[0007]

【発明が解決しようとする課題】Ni−Cr−Fe系の
合金材料は、前述したように飽和磁歪λs ,磁気異方性
1 の低下やキューリ点を室温近傍までに低下させるこ
とにより、磁気特性が改善される。また、不純物含有量
を規制して磁壁の移動を妨げる非金属介在物を少なくす
ること,磁化容易な方向の結晶方位を揃えること等によ
っても、磁気特性の向上が図られる。更には、機械的な
歪みを減少させて磁壁の移動を容易にすることによって
も、磁気特性が向上する。
As described above, the Ni--Cr--Fe alloy material is reduced in the saturation magnetostriction λ s , the magnetic anisotropy K 1 and the Curie point to near room temperature. Magnetic properties are improved. Further, the magnetic characteristics can be improved by controlling the content of impurities to reduce the amount of non-metallic inclusions that hinder the movement of the domain wall and by aligning the crystal orientations in the easy magnetization direction. Further, the magnetic characteristics are also improved by reducing the mechanical strain and facilitating the movement of the domain wall.

【0008】しかし、従来の磁気特性を向上させる手段
は、経験的に得られたものが多く、合金材料ごとに特別
な成分設計,加工,熱処理等が施されている。これらの
手段及びその組み合わせは、複雑多岐にわたり汎用性に
乏しい。そして、安定して磁気特性の優れた材料を得る
ためには、一般化されていない特殊な技術が必要とされ
る。
However, many conventional means for improving magnetic properties have been obtained empirically, and special component design, processing, heat treatment, etc. are performed for each alloy material. These means and combinations thereof are complicated and diversified and lack versatility. In order to stably obtain a material having excellent magnetic properties, a special technique that has not been generalized is required.

【0009】本発明は、このような問題を解消すべく案
出されたものであり、結晶方位に工夫を加えることによ
って、安定して透磁率が高いNi−Cr−Fe系軟質磁
性合金を提供することを目的とする。
The present invention has been devised to solve such a problem, and provides a Ni-Cr-Fe based soft magnetic alloy having a stable and high magnetic permeability by devising a crystal orientation. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】本発明のNi−Cr−F
e系軟質磁性合金は、その目的を達成するため、30〜
55重量%のNi及び14重量%以下のCrを含有して
おり、磁化容易軸<100>を含む{200}面の積分
強度が、結晶配向性をもたなりランダム試料の{20
0}面の積分強度の2倍以上で面内集積した集合組織を
もつことを特徴とする。
The Ni-Cr-F of the present invention
The e-based soft magnetic alloy has a content of 30 to
It contains 55% by weight of Ni and 14% by weight or less of Cr, and the integrated strength of the {200} plane including the easy axis of magnetization <100> has a crystalline orientation of {20}.
It is characterized by having an in-plane aggregated texture that is more than twice the integrated intensity of the 0} plane.

【0011】ここで、ランダム試料とは、同じ成分・組
成の合金をガス−アトマイズ法によって粉末化し、得ら
れた合金粉末を圧粉・焼結して製造したものである。ラ
ンダム試料においては、全ての結晶面が等しい割合で出
現しており、結晶配向性をもたない。これに対し、本発
明に従った合金においては、高指数面の積分強度は無視
できる程度に弱いため、ほぼ{200},{220},
{111},{311}の4つの面から構成されると考
えて良い。ランダム試料の{200}面の積分強度I0
に対する本発明試料の{200}面の積分強度Iの比I
/I0 を、以下の説明において積分強度比という。
Here, the random sample is produced by pulverizing an alloy having the same components and compositions by a gas-atomizing method and compacting and sintering the obtained alloy powder. In the random sample, all the crystal planes appear at the same rate and have no crystal orientation. On the other hand, in the alloy according to the present invention, since the integrated strength of the high index plane is so weak as to be negligible, it is almost {200}, {220},
It can be considered that it is composed of four planes of {111} and {311}. Integrated intensity I 0 of {200} plane of random sample
The ratio I of the integrated intensity I of the {200} plane of the sample of the present invention to
/ I 0 is referred to as an integrated intensity ratio in the following description.

【0012】[0012]

【作用】Ni−Cr−Fe系合金の磁化容易軸は<10
0>である。この磁化容易軸<100>の方向性を揃え
るほど、磁気特性の向上が予測される。本発明において
は、磁化容易軸<100>を多く含む{200}面をラ
ンダム試料の2倍以上の割合で面内集積させるとき、透
磁率が飛躍的に向上する興味ある現象を見出した。磁化
容易軸<100>は、他の低指数面である{220},
{111},{311}等にも含まれるが、{200}
面以外の面を面内集積させても、同様な透磁率の向上は
みられない。
Function: The easy axis of magnetization of the Ni-Cr-Fe alloy is <10.
0>. It is expected that the magnetic properties will be improved as the direction of the easy axis <100> is aligned. In the present invention, when a {200} plane containing a large number of easy magnetization axes <100> is in-plane integrated at a rate twice or more that of a random sample, an interesting phenomenon that magnetic permeability is dramatically improved was found. The easy axis of magnetization <100> is another low index plane {220},
Although it is included in {111}, {311}, etc., {200}
Even if the planes other than the planes are integrated in-plane, the same improvement in magnetic permeability is not observed.

【0013】{200}面の面内集積は、成分設計,不
純物含有量の規制,加工条件,熱処理条件等に影響され
るものであり、それぞれの条件を一義的に規定できるも
のではない。しかし、これらの条件は、以下に説明する
範囲内で選択されることが好ましい。
The in-plane accumulation of the {200} plane is influenced by the component design, the regulation of the content of impurities, the processing conditions, the heat treatment conditions, etc., and each condition cannot be uniquely defined. However, these conditions are preferably selected within the range described below.

【0014】成分設計:{200}面の面内集積度を上
げて必要とする残留磁束密度密度及び最大透磁率を得る
ため、30〜55重量%のNiを含有させる。Niの含
有量が30重量%未満では、透磁率の低下がみられる。
逆に、55重量%を超えるNi含有量では、従来の高N
iパーマロイと価格面での有利さが少なくなる。
Component design: To increase the degree of in-plane integration of the {200} plane and obtain the required residual magnetic flux density and maximum magnetic permeability, Ni is contained in an amount of 30 to 55% by weight. When the Ni content is less than 30% by weight, the magnetic permeability is lowered.
On the contrary, when the Ni content exceeds 55% by weight, the conventional high N
iPermalloy will be less advantageous in terms of price.

【0015】また、透磁率及び保磁力を向上させるた
め、Cr含有量を14重量%以下とする。更に詳細に
は、35〜40重量%のNiを含有するNi−Cr−F
e系合金では、3×(Ni%)−5×(Cr%)≦80
の条件で5〜14重量%のCrを含有させる。また、4
0〜52重量%のNiを含有するNi−Cr−Fe系合
金では、50≦(Ni%)+4×(Cr%)≦60の条
件で5重量%以下のCrを含有させる。
Further, in order to improve the magnetic permeability and the coercive force, the Cr content is set to 14% by weight or less. More specifically, Ni-Cr-F containing 35-40 wt% Ni.
In an e-based alloy, 3 × (Ni%) − 5 × (Cr%) ≦ 80
Under these conditions, 5 to 14% by weight of Cr is contained. Also, 4
In a Ni-Cr-Fe alloy containing 0 to 52% by weight of Ni, 5% by weight or less of Cr is added under the condition of 50 ≦ (Ni%) + 4 × (Cr%) ≦ 60.

【0016】不純物含有量:Ni−Cr−Fe系合金に
含まれる不純物としては、Mn,Si,S,O,P,A
l等がある。これら不純物は、たとえば非金属介在物と
してマトリックス中に分散され、磁壁の移動を阻害する
要因となる。この悪影響を抑制するため、Mn≦0.8
0重量%,Si≦0.30重量%,S≦0.0030重
量%,O≦0.0050重量%,P≦0.03重量%,
Al≦0.30重量%にそれぞれ不純物を規制する。こ
のような不純物含有量の低下は、通常の真空精練等で容
易に達成できる。
Impurity content: Mn, Si, S, O, P, A as impurities contained in the Ni-Cr-Fe alloy.
There is l etc. These impurities are dispersed in the matrix as non-metallic inclusions, for example, and become a factor that hinders the movement of the domain wall. In order to suppress this adverse effect, Mn ≦ 0.8
0% by weight, Si ≦ 0.30% by weight, S ≦ 0.0030% by weight, O ≦ 0.0050% by weight, P ≦ 0.03% by weight,
Impurities are regulated so that Al ≦ 0.30% by weight. Such reduction of the impurity content can be easily achieved by ordinary vacuum scouring.

【0017】加工条件:磁気焼鈍前の冷間圧延を大きな
圧延率で行うとき、繊維状の熱延集合組織が破壊され、
{001}<211>及び{211}<111>を主体
とした冷延組織が形成される。この冷延組織は、磁気焼
鈍によって成長する{200}面の面内集積度を向上さ
せる上で重要な役割を果す。また、熱間圧延は、この冷
延組織が形成され易いように、1050度以上の高温に
加熱して行うことが好ましい。
Processing conditions: When cold rolling before magnetic annealing is carried out at a large rolling rate, the fibrous hot rolled texture is destroyed,
A cold rolled structure mainly composed of {001} <211> and {211} <111> is formed. This cold-rolled structure plays an important role in improving the in-plane integration degree of the {200} plane grown by magnetic annealing. Further, the hot rolling is preferably performed by heating to a high temperature of 1050 ° C. or higher so that this cold rolled structure is easily formed.

【0018】熱処理:冷間圧延の途中で行われる中間焼
鈍は、冷延によって生じた加工歪み等の除去を狙ったも
のであるが、無酸化雰囲気中において750〜1100
℃で中間焼鈍を行うことが好ましい。また、磁気焼鈍
は、同様に非金属介在物の析出を防止し且つ{200}
面の面内集積度を向上させるために、H2 ガス中又はH
2 −N2混合ガス中において1000度以上の高温で行
うことが好ましい。
Heat treatment: The intermediate annealing carried out during the cold rolling is intended to remove work strains and the like caused by cold rolling, but it is 750 to 1100 in a non-oxidizing atmosphere.
It is preferable to perform the intermediate annealing at ℃. Magnetic annealing also prevents precipitation of non-metallic inclusions and {200}
In order to improve the degree of in-plane integration of the surface in H 2 gas or H
It is preferable to perform it in a 2- N 2 mixed gas at a high temperature of 1000 ° C. or higher.

【0019】図3には、本発明合金系の結晶モデルであ
る面伸立方構造を示す。本合金系では、磁化容易軸が<
100>であることが知られている、{200}面は<
100>軸を2本含み、磁化容易軸が最も多い。低指数
面に限ると、{220}面には磁化容易軸<100>が
1本含まれ、{111}面や{311}面には磁化容易
軸<100>が含まれない。したがって、透磁率の向上
には、磁化容易軸<100>を多く含む{200}面を
集積させることが有利であり、{200}面の積分強度
比の増加に応じて透磁率が向上する。
FIG. 3 shows a plane extension cubic structure which is a crystal model of the alloy system of the present invention. In this alloy system, the easy axis of magnetization is <
The {200} plane, which is known to be 100>, is
It includes two 100> axes, and has the largest axis of easy magnetization. As far as the low index plane is concerned, the {220} plane includes one easy axis <100>, and the {111} plane and the {311} plane do not include the easy axis <100>. Therefore, in order to improve the magnetic permeability, it is advantageous to integrate {200} planes containing a lot of the easy axis <100>, and the magnetic permeability improves as the integrated intensity ratio of the {200} planes increases.

【0020】このことは、図1の(a)及び(b)に対
比して示すように、1%Cr,3%Cr,5%Cr共
に、{200}面の積分強度比のピークがあるNi含有
量に、最大透磁率μm のピークが一致していることから
も明らかである。なお、図1の{200}面の面内集積
度は、ランダム資料に対する積分強度比で表した。
This means that, as shown in comparison with (a) and (b) of FIG. 1, there is a peak of the integrated intensity ratio of the {200} plane in all of 1% Cr, 3% Cr and 5% Cr. It is also clear from the fact that the peak of maximum magnetic permeability μ m coincides with the Ni content. The in-plane integration degree of the {200} plane in FIG. 1 is represented by the integrated intensity ratio with respect to the random material.

【0021】[0021]

【実施例】以下、実施例によって、本発明を具体的に説
明する。 [実施例1]表1に示した組成を持つ合金を真空溶解
し、得られたインゴットに熱間圧延及び圧延率80%の
冷間圧延を施して板厚0.5mmの冷延板を製造した。
また、冷間圧延の途中では、900℃に1分間加熱する
中間焼鈍を1回施した。なお、試験番号1〜5は本発明
で規定した{200}面の面内集積度を得るための材
料、試験番号6及び7は本発明の規定から外れた{20
0}面の面内集積度を得るための比較材料である。
EXAMPLES The present invention will be specifically described below with reference to examples. [Example 1] An alloy having the composition shown in Table 1 was vacuum melted, and the obtained ingot was subjected to hot rolling and cold rolling at a rolling rate of 80% to produce a cold rolled sheet having a sheet thickness of 0.5 mm. did.
In the middle of cold rolling, intermediate annealing was performed once by heating at 900 ° C for 1 minute. The test numbers 1 to 5 are materials for obtaining the in-plane integration degree of the {200} plane defined in the present invention, and the test numbers 6 and 7 are out of the scope of the present invention {20.
It is a comparative material for obtaining the in-plane integration degree of the 0} plane.

【0022】[0022]

【表1】 [Table 1]

【0023】冷延板から外径45mm,内径33mmの
環状試験片を切り出した。各試験片を1100℃の水素
雰囲気中で1時間加熱する磁気焼鈍を行った。磁気焼鈍
後の各試験片について、初期透磁率μi ,最大透磁率μ
m ,保磁力Hc 及び1kHzにおけるインダクタンス透
磁率μL を測定した。また、磁気焼鈍後の各試験片に対
応する集合組織をMokαの特性X線により測定した。
表2には、{200}面の積分強度比を併せ示してい
る。
An annular test piece having an outer diameter of 45 mm and an inner diameter of 33 mm was cut out from the cold rolled sheet. Magnetic annealing was performed by heating each test piece in a hydrogen atmosphere at 1100 ° C. for 1 hour. For each test piece after magnetic annealing, initial permeability μ i , maximum permeability μ
m , coercive force H c, and inductance permeability μ L at 1 kHz were measured. The texture corresponding to each test piece after magnetic annealing was measured by the characteristic X-ray of Mokα.
Table 2 also shows the integrated intensity ratio of the {200} plane.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明らかなように、{200}面の
面内集積度が高い試験番号1〜5にあっては、最大透磁
率μm ≧100,000の優れた磁気特性が示されてお
り、インダクタンス透磁率μL も高くなっている。ま
た、保磁力Hc も、面内集積度の増加に応じて小さくな
っている。これに対し、{200}面の面内集積度が低
い試験番号6及び7では、50,000或いは65,0
00程度の最大透磁率μm が得られているに過ぎず、イ
ンダクタンス透磁率μL も4800或いは3900以下
の低い値を示している。
As is clear from Table 2, in Test Nos. 1 to 5 in which the {200} plane has a high degree of in-plane integration, excellent magnetic properties with a maximum magnetic permeability μ m ≧ 100,000 are shown. And the inductance permeability μ L is also high. Further, the coercive force H c also decreases as the in-plane integration degree increases. On the other hand, in test numbers 6 and 7 in which the degree of in-plane integration of the {200} plane is low, 50,000 or 65.0
Only the maximum magnetic permeability μ m of about 00 is obtained, and the inductance magnetic permeability μ L also shows a low value of 4800 or 3900 or less.

【0026】[実施例2]実施例1で使用した実験番号
1〜3の合金から切り出された環状試験片に対して、種
々の焼鈍時間及び焼鈍温度で磁気焼鈍を施し、{20
0}面の面内集積度が異なるものを製造した。そして、
焼鈍後の各試験片の最大透磁率μm を測定し、面内集積
度との関係を調査した。調査結果を、図2に示す。
[Example 2] The annular test pieces cut out from the alloys of Experiment Nos. 1 to 3 used in Example 1 were magnetically annealed at various annealing times and annealing temperatures for {20.
0} planes having different in-plane integration degrees were manufactured. And
The maximum magnetic permeability μ m of each test piece after annealing was measured, and the relationship with the in-plane integration degree was investigated. The survey results are shown in FIG.

【0027】図2から明らかなように、{200}面の
積分強度比2を境として最大透磁率μm が急激に上昇し
ていることが判る。すなわち、積分強度比が2以上とな
る条件下で磁気焼鈍を行うとき、最大透磁率μm ≧10
0,000の軟質磁性合金が得られている。これに対
し、同じ組成の合金材料を使用した場合にあっても、積
分強度比が2に達しない場合、最大透磁率μm が低く、
高Niパーマロイの代替品として使用することができな
い。
As is apparent from FIG. 2, the maximum magnetic permeability μ m sharply increases at the boundary of the integrated intensity ratio 2 of the {200} plane. That is, when magnetic annealing is performed under the condition that the integrated intensity ratio is 2 or more, the maximum magnetic permeability μ m ≧ 10
10,000 soft magnetic alloys have been obtained. On the other hand, even when alloy materials having the same composition are used, when the integrated strength ratio does not reach 2, the maximum magnetic permeability μ m is low,
It cannot be used as a substitute for high Ni permalloy.

【0028】本実施例においては、{200}面の面内
集積度を焼鈍条件で制御した。しかし、本発明はこれに
拘束されるものではなく、前述したように成分設計,不
純物規制,加工条件或いはこれらと熱処理条件とを組み
合わせて{200}面の面内集積度を制御できることは
勿論である。
In this example, the in-plane integration degree of the {200} plane was controlled under the annealing conditions. However, the present invention is not restricted to this, and it goes without saying that the in-plane integration degree of the {200} plane can be controlled by combining the component design, the impurity regulation, the processing conditions or the heat treatment conditions as described above. is there.

【0029】[0029]

【発明の効果】以上に説明したように、本発明において
は、{200}面の面内集積度を積分強度比で2以上に
することにより、高NiパーマロイJIC−PCに匹敵
する100,000或いはそれ以上の高い最大透磁率μ
m を示す軟質磁性合金を得ている。しかも、この軟質磁
性合金は、高価なNiを多量に含有するものではないた
め、比較的安価に提供することができる。このような優
れた磁気特性及び価格面から、本発明のNi−Cr−F
e系軟質磁性合金は、高Niパーマロイに代わる有望な
材料である。
As described above, in the present invention, by setting the in-plane integration degree of the {200} plane to be 2 or more in terms of the integrated intensity ratio, 100,000 which is comparable to high Ni permalloy JIS-PC. Or higher maximum permeability μ
A soft magnetic alloy showing m is obtained. Moreover, since this soft magnetic alloy does not contain a large amount of expensive Ni, it can be provided at a relatively low cost. From the viewpoint of such excellent magnetic properties and price, the Ni-Cr-F of the present invention is used.
The e-based soft magnetic alloy is a promising material to replace high Ni permalloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 {200}面の面内集積度と最大透磁率μm
との間に密接な関係が成立していることを示したグラフ
1] In-plane integration degree of {200} plane and maximum magnetic permeability μ m
Graph showing that a close relationship has been established between

【図2】 {200}面の面内集積度が最大透磁率μm
に与える影響を表したグラフ
2] The in-plane integration degree of {200} plane is maximum magnetic permeability μ m
Graph showing the effect on

【図3】 結晶方位を説明するためのモデルFIG. 3 Model for explaining crystal orientation

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/14 H05K 9/00 H 7128−4E (72)発明者 川合 裕 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01F 1/14 H05K 9/00 H 7128-4E (72) Inventor Yu Kawai 4976 Nomura Minamimachi, Shinnanyo, Yamaguchi Prefecture Nisshin Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 30〜55重量%のNi及び14重量%
以下のCrを含有しており、磁化容易軸<100>を含
む{200}面の積分強度が、結晶配向性をもたなりラ
ンダム試料の{200}面の積分強度の2倍以上で面内
集積した集合組織をもつことを特徴とする透磁率が高い
Ni−Cr−Fe系軟質磁性合金。
Claims: 1. 30 to 55% by weight of Ni and 14% by weight.
If the integrated strength of the {200} plane containing the following Cr and including the easy axis <100> is more than twice the integrated strength of the {200} plane of a random sample having crystal orientation, A Ni-Cr-Fe based soft magnetic alloy having a high magnetic permeability characterized by having an integrated texture.
JP3182018A 1991-06-25 1991-06-25 Soft magnetic alloy high in magnetic permeability Withdrawn JPH055162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182018A JPH055162A (en) 1991-06-25 1991-06-25 Soft magnetic alloy high in magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182018A JPH055162A (en) 1991-06-25 1991-06-25 Soft magnetic alloy high in magnetic permeability

Publications (1)

Publication Number Publication Date
JPH055162A true JPH055162A (en) 1993-01-14

Family

ID=16110902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182018A Withdrawn JPH055162A (en) 1991-06-25 1991-06-25 Soft magnetic alloy high in magnetic permeability

Country Status (1)

Country Link
JP (1) JPH055162A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484568A (en) * 2010-09-10 2012-04-18 Vacuumschmelze Gmbh & Co Kg Electric motor rotor or stator core made from a laminated Fe-Ni-Cr/Mo alloy
US9972579B1 (en) 2016-11-16 2018-05-15 Tdk Corporation Composite magnetic sealing material and electronic circuit package using the same
US10256194B2 (en) 2016-03-31 2019-04-09 Tdk Corporation Electronic circuit package using composite magnetic sealing material
US10403582B2 (en) 2017-06-23 2019-09-03 Tdk Corporation Electronic circuit package using composite magnetic sealing material
US10615089B2 (en) 2016-03-31 2020-04-07 Tdk Corporation Composite magnetic sealing material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484568A (en) * 2010-09-10 2012-04-18 Vacuumschmelze Gmbh & Co Kg Electric motor rotor or stator core made from a laminated Fe-Ni-Cr/Mo alloy
GB2484568B (en) * 2010-09-10 2014-01-01 Vacuumschmelze Gmbh & Co Kg Electric motor and process for manufacturing a rotor or a stator of an electric motor
US10256194B2 (en) 2016-03-31 2019-04-09 Tdk Corporation Electronic circuit package using composite magnetic sealing material
US10615089B2 (en) 2016-03-31 2020-04-07 Tdk Corporation Composite magnetic sealing material
US9972579B1 (en) 2016-11-16 2018-05-15 Tdk Corporation Composite magnetic sealing material and electronic circuit package using the same
JP2018082142A (en) * 2016-11-16 2018-05-24 Tdk株式会社 Composite magnetic sealing material, and electronic circuit package arranged by using the same as mold material
US10403582B2 (en) 2017-06-23 2019-09-03 Tdk Corporation Electronic circuit package using composite magnetic sealing material

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
GB1580498A (en) Metallic glasses having a combination of high permeability low magnetostriction low ac core loss and high thermal stability
JPH044393B2 (en)
JPH0774419B2 (en) Method for producing Fe-based soft magnetic alloy
JP3279399B2 (en) Method for producing Fe-based soft magnetic alloy
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
EP0374847A2 (en) Fe-based soft magnetic alloy
JP2000073148A (en) Iron base soft magnetic alloy
JPS6133900B2 (en)
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
EP0240600B1 (en) Glassy metal alloys with perminvar characteristics
JP2894561B2 (en) Soft magnetic alloy
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
EP0575190B1 (en) Fe-base soft magnetic alloy and process for making same
JP2774372B2 (en) Permanent magnet powder
JPH055162A (en) Soft magnetic alloy high in magnetic permeability
JP3294029B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
EP0351051B1 (en) Fe-based soft magnetic alloy
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
WO1990015886A1 (en) Production method of soft magnetic steel material
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP3322407B2 (en) Fe-based soft magnetic alloy
US4938267A (en) Glassy metal alloys with perminvar characteristics
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903