JPH06158110A - Production of sintered compact of soft magnetic fe-co-v-p alloy material - Google Patents
Production of sintered compact of soft magnetic fe-co-v-p alloy materialInfo
- Publication number
- JPH06158110A JPH06158110A JP33949392A JP33949392A JPH06158110A JP H06158110 A JPH06158110 A JP H06158110A JP 33949392 A JP33949392 A JP 33949392A JP 33949392 A JP33949392 A JP 33949392A JP H06158110 A JPH06158110 A JP H06158110A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- weight
- powder
- binder
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、軟磁気特性に優れたF
e−Co−V−P合金軟質磁性材料焼結体の製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to F which is excellent in soft magnetic characteristics.
The present invention relates to a method for manufacturing an e-Co-VP alloy soft magnetic material sintered body.
【0002】[0002]
【従来の技術】Fe−Co合金軟質磁性材料は、規則−
不規則変態をし、変態温度においてCsCl型規則格子
相を形成する合金材料であり、現在知られている合金の
中で最も大きい飽和磁束密度を示すので、パルスモータ
ー、プリンターヘッド等のヨーク用磁性材、受話器の振
動板として広く使用されている。しかし、Fe、Coの
みから成っている場合にはいかなる熱処理を施しても、
不規則格子から規則格子への変態を抑えることができ
ず、そのため冷間加工が不可能であった。2. Description of the Related Art Fe-Co alloy soft magnetic materials have a rule-
It is an alloy material that undergoes disordered transformation and forms a CsCl-type ordered lattice phase at the transformation temperature. Since it has the highest saturation magnetic flux density among currently known alloys, it is magnetic for yokes of pulse motors, printer heads, etc. Widely used as a diaphragm for materials and receivers. However, if it is made of only Fe and Co, no matter what heat treatment is performed,
The transformation from disordered lattice to ordered lattice could not be suppressed, so cold working was impossible.
【0003】そこで、この様な事態の改善を図るため
に、Vを添加して加工性を改善したFe−Co−V合金
が、Fe−Co合金よりも実用的に使われている。しか
しそれでも規則格子への変態を抑えるのは十分といえ
ず、成型品、特に複雑形状の部品を得るためには、粉末
冶金法によって製造する試みがなされている。一方、通
常の粉末冶金法は、原料粉末を金型に挿入し、プレスに
よる圧縮成型を行うものであり、Co粉やFe−Co合
金粉が硬質であるために、圧縮成型時に大きな圧力をか
けても成型し難く、クラックが発生しやすい。またこの
場合、平均粒径が比較的大きい原料粉を用いており、更
にFeとCoは互いに拡散しづらいため磁気特性を得る
ための高密度化が難しく、密度を上げようとして高価な
微粉の使用、長時間焼結、HIP処理を行わなければな
い。また、焼結後は、必ず磁気特性向上のための熱処理
を行う必要がある。更に軟質磁性材料として交流で使用
される場合には、電気抵抗が大きく、鉄損失を少なくす
る必要がある。Therefore, in order to improve such a situation, an Fe-Co-V alloy in which V is added to improve workability is more practically used than the Fe-Co alloy. However, it is still not sufficient to suppress the transformation into a regular lattice, and attempts have been made to manufacture by a powder metallurgy method in order to obtain a molded product, particularly a component having a complicated shape. On the other hand, the usual powder metallurgy method involves inserting raw material powder into a mold and performing compression molding by pressing. Since Co powder and Fe-Co alloy powder are hard, a large pressure is applied during compression molding. However, it is difficult to mold and cracks easily occur. Further, in this case, a raw material powder having a relatively large average particle size is used, and since Fe and Co are hard to diffuse into each other, it is difficult to increase the density to obtain magnetic characteristics, and expensive fine powder is used to increase the density. , Long-term sintering and HIP treatment must be performed. Further, after sintering, it is always necessary to perform heat treatment for improving magnetic properties. Further, when it is used as an alternating current as a soft magnetic material, it has a large electric resistance and it is necessary to reduce iron loss.
【0004】[0004]
【発明が解決しようとする課題】本発明の課題は、上記
のような従来の欠点を解消して、優れた軟磁気特性を有
するFe−Co−V−P合金材料焼結体を製造すること
ができる方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional drawbacks and to produce an Fe-Co-VP alloy material sintered body having excellent soft magnetic characteristics. It is to provide a method that can.
【0005】[0005]
【課題を解決するための手段】本発明者は、上記の課題
を解決すべく研究した結果、特定粒度の粉末を特定組成
になるように配合して射出成型し、得られた成型体を脱
バインダー処理し、更に、焼結処理を行った後、特定の
冷却速度で徐冷することにより、冷却時に発生する格子
歪の発生を制御し、製品の磁気特性を低下させることな
く上記の課題である磁気特性を得るための高密度化、電
気抵抗の向上を達成し得ることを見いだした。As a result of research to solve the above-mentioned problems, the present inventor has blended powders having a specific particle size so as to have a specific composition, and injection-molded the resulting molded product. After the binder treatment and further the sintering treatment, by gradually cooling at a specific cooling rate, the generation of lattice strain generated during cooling is controlled, and the above-mentioned problems can be solved without lowering the magnetic properties of the product. It has been found that a higher density and higher electric resistance can be achieved to obtain a certain magnetic property.
【0006】即ち本発明のFe−Co−V−P合金軟質
磁性材料焼結体の製造方法は、Coが40〜60重量
%、Vが0.3〜3重量%、Pが0.1〜1重量%、残
部が実質的にFeからなるように配合された、平均粒径
45μm以下の粉末及びバインダーからなる組成物を射
出成型し、得られた成型体を脱バインダー処理し、更
に、1100〜1450℃の温度範囲で焼結処理を行っ
た後、該焼結体を2〜50℃/minの冷却速度で徐冷
する点に特徴がある。That is, in the method for manufacturing the Fe-Co-VP alloy soft magnetic material sintered body of the present invention, Co is 40 to 60% by weight, V is 0.3 to 3% by weight and P is 0.1 to 0.1% by weight. A composition comprising 1% by weight and a powder having a mean particle size of 45 μm or less and a binder, which is blended so that the balance substantially consists of Fe, is injection-molded, and the obtained molded body is subjected to a binder removal treatment. It is characterized in that after performing the sintering treatment in the temperature range of ˜1450 ° C., the sintered body is gradually cooled at a cooling rate of 2˜50 ° C./min.
【0007】[0007]
【作用】配合した粉末及び焼結後の焼結体のCo含有量
は40〜60重量%であることが必要である。Co含有
量が40重量%未満では磁束密度はそれほど低下しない
が、最大透磁率大きく減少し、軟磁性材料として使用で
きない。Co含有量が40重量%を超える場合において
も磁束密度はそれほど低下しないが、最大透磁率が大き
く減少し、軟磁性材料として使用できない。The Co content of the blended powder and the sintered body after sintering must be 40 to 60% by weight. When the Co content is less than 40% by weight, the magnetic flux density does not decrease so much, but the maximum magnetic permeability greatly decreases, and it cannot be used as a soft magnetic material. Even when the Co content exceeds 40% by weight, the magnetic flux density does not decrease so much, but the maximum magnetic permeability greatly decreases, and it cannot be used as a soft magnetic material.
【0008】またV含有量は0.3〜3重量%であるこ
とが必要である。V含有量が0.3重量%未満では電気
抵抗が向上しない。V含有量が3重量%を超えると磁束
密度が急激に低下し、軟磁性材料として使用できない。The V content must be 0.3 to 3% by weight. If the V content is less than 0.3% by weight, the electric resistance is not improved. If the V content exceeds 3% by weight, the magnetic flux density decreases sharply, and it cannot be used as a soft magnetic material.
【0009】更に、P含有量は0.1〜1重量%である
ことが必要である。P含有量が0.1重量%未満では焼
結後の最終相対密度はほとんど向上せず、その結果優れ
た軟磁気特性が発揮されないばかりでなく、電気抵抗が
向上しない。P含有量が1重量%を超えると磁束密度が
急激に低下し、軟磁性材料として使用できない。Further, the P content must be 0.1 to 1% by weight. If the P content is less than 0.1% by weight, the final relative density after sintering is hardly improved, and as a result, not only the excellent soft magnetic characteristics are exhibited, but also the electric resistance is not improved. When the P content exceeds 1% by weight, the magnetic flux density is drastically reduced, and it cannot be used as a soft magnetic material.
【0010】Co、V、P及びFeは、それぞれの粉
末、或いはFe−Co−V合金粉、Fe−Co合金粉、
Fe−V合金粉、Fe−P合金粉などを適宜使用すれば
良い。なお、焼結体中にFe、Co、V、P以外の元素
は含まれないことが望ましいが、焼結体の軟磁気特性の
磁束密度がB35=19000 G 以下とならない範囲な
らば含まれていても差し支えない。Co, V, P and Fe are the respective powders, or Fe-Co-V alloy powder, Fe-Co alloy powder,
Fe-V alloy powder, Fe-P alloy powder, or the like may be used as appropriate. It is desirable that the sintered body does not contain elements other than Fe, Co, V, and P, but if the magnetic flux density of the soft magnetic characteristics of the sintered body does not fall below B 35 = 19000 G, it is included. It does not matter if you
【0011】また、この粉末の平均粒径は45μm以下
であることが必要である。平均粒径が45μmを超える
粉末では、この粉末とバインダーからなる組成物の流動
性が低下し、射出成型がほとんど不可能となり、また、
射出成型ができたとしても、成型体を焼結させる工程の
進行が遅れてくる。そのため、焼結体の最終密度が上昇
しにくく、磁気特性も著しく低下する。The average particle size of this powder must be 45 μm or less. If the average particle size exceeds 45 μm, the fluidity of the composition comprising the powder and the binder decreases, making injection molding almost impossible.
Even if injection molding is possible, the progress of the process of sintering the molded body is delayed. Therefore, the final density of the sintered body is unlikely to increase, and the magnetic properties are significantly reduced.
【0012】本発明におけるバインダーは、射出成型粉
末冶金法用としての公知のバインダー、例えばポリエチ
レン、ワックスなどを使用することができるが、バイン
ダー除去の時に残留カーボンが発生して、Fe−Co−
V−P合金中にカーボンが侵入すると磁気特性が低下す
るから、カーボンが残留しにくいバインダー、例えばワ
ックスを主体としたバインダーを使用することが好まし
い。As the binder in the present invention, known binders for injection molding powder metallurgy, such as polyethylene and wax, can be used, but residual carbon is generated when the binder is removed, and Fe--Co--
When carbon penetrates into the VP alloy, the magnetic properties deteriorate, so it is preferable to use a binder in which carbon is unlikely to remain, for example, a binder mainly composed of wax.
【0013】成型体からバインダーを除去する方法とし
ては、使用するバインダーの種類によって、加熱脱脂、
溶剤脱脂、その他公知の方法が使用できるが、加熱脱脂
装置は他の方法の装置と比較して簡便であるために、量
産時には窒素または水素雰囲気中、或いは真空中で行う
加熱脱脂が好ましい。脱バインダーされた成型体を焼結
処理する場合には、1100〜1450℃で水素雰囲気
中、或いは真空中で30〜300分保持して行う。この
とき、あらかじめ加熱してある炉に成型体を挿入しても
良いし、常温で成型体を炉に挿入してから適当な昇温速
度で昇温しても良い。As a method of removing the binder from the molded body, heating degreasing, depending on the kind of the binder used,
Although solvent degreasing and other known methods can be used, the heat degreasing apparatus is preferably a heat degreasing apparatus that is performed in a nitrogen or hydrogen atmosphere or in a vacuum during mass production because the heat degreasing apparatus is simpler than the apparatuses of other methods. When the debindered molded body is sintered, it is held at 1100 to 1450 ° C. in a hydrogen atmosphere or in vacuum for 30 to 300 minutes. At this time, the molded body may be inserted into a furnace that has been heated in advance, or the molded body may be inserted into the furnace at room temperature and then heated at an appropriate heating rate.
【0014】この様に焼結作業を終了した焼結品は、そ
の後、2〜50℃/minの冷却速度で徐冷することが
必要である。2℃/min未満の冷却速度で徐冷するこ
とは、格子歪の除去に対する本発明の効果を向上し得ぬ
ばかりでなく、生産性が著しく低下するため好ましくな
い。また、50℃/minを超える冷却速度では冷却時
に格子歪が生じ、これがそのまま室温で残留するため軟
磁気特性が低下する。The sintered product, which has been subjected to the sintering work in this manner, is then required to be gradually cooled at a cooling rate of 2 to 50 ° C./min. Gradually cooling at a cooling rate of less than 2 ° C./min is not preferable because not only the effect of the present invention for removing lattice strain cannot be improved but also productivity is significantly reduced. Further, when the cooling rate exceeds 50 ° C./min, lattice distortion occurs during cooling and remains at room temperature as it is, so that the soft magnetic characteristics deteriorate.
【0015】[0015]
実施例1〜8、比較例1〜10 原料粉として平均粒径9μmのFe−50重量%Co合
金粉、平均粒径40μmのFe−53重量%V合金粉、
平均粒径40μmのFe−27重量%P合金粉、必要に
応じて平均粒径5μmのカーボニルFe粉と、平均粒径
4.5μmの還元Co粉を用いて表1に示した配合比で
配合した後混合し、これにワックス系バインダーをバイ
ンダー含有率が40〜50容量%と成るように加え、1
50℃で混練後、ペレット状に造粒した。このペレット
を射出成型機を用いて射出圧力1200 kg/cm2
の条件で金型に射出成型した。得られた成型体を300
℃に保持してワックス系バインダーの除去を行った。そ
の後、1400℃の温度で2時間焼結し、表1に示した
冷却速度で冷却して常温とした。Examples 1 to 8 and Comparative Examples 1 to 10 Fe-50 wt% Co alloy powder having an average particle size of 9 μm, Fe-53 wt% V alloy powder having an average particle size of 40 μm as raw material powders,
Fe-27% by weight P alloy powder having an average particle size of 40 μm, carbonyl Fe powder having an average particle size of 5 μm, and reduced Co powder having an average particle size of 4.5 μm were used at the compounding ratios shown in Table 1. After that, they are mixed, and a wax-based binder is added to this so that the binder content is 40 to 50% by volume.
After kneading at 50 ° C, the mixture was granulated into pellets. The pellets were injected using an injection molding machine at an injection pressure of 1200 kg / cm 2.
It was injection-molded into the mold under the conditions of. The obtained molded body is 300
The wax binder was removed by keeping the temperature at ℃. After that, it was sintered at a temperature of 1400 ° C. for 2 hours and cooled at the cooling rate shown in Table 1 to room temperature.
【0016】[0016]
【表1】 [Table 1]
【0017】この様にして得られた焼結体に、励磁コイ
ル及びサーチコイルを共に50ターン巻き、直流記録磁
束計によりBHヒステリシス曲線を描いて、外部磁場
35Oe にて磁束密度(B35)、保磁力(Hc)、最
大透磁率(μm)、を求めた。その結果を表2に示す。An exciting coil and a search coil were wound together for 50 turns on the sintered body thus obtained, a BH hysteresis curve was drawn by a DC recording flux meter, and an external magnetic field was drawn.
The magnetic flux density (B 35 ), coercive force (Hc), and maximum magnetic permeability (μm) were determined at 35 Oe. The results are shown in Table 2.
【0018】[0018]
【表2】 [Table 2]
【0019】比較例1〜10は実施例と同様の方法で製
造したが、組成、原料粉の粒径、冷却速度等を変えて製
造した例である。比較例1ではPの含有量が0.1重量
%未満であるため焼結密度が低く、磁束密度(B35)が
劣っている。比較例2ではPの含有量が1重量%を超え
ているため、最大透磁率(μm)が低下し、保磁力(H
c)も高くなっている。比較例3ではVの含有量が0.
3重量%未満であるため電気抵抗が劣っている。比較例
4はVの含有量が3重量%を超えているため最大透磁率
(μm)が低下し、保磁力も高くなっている。Comparative Examples 1 to 10 are examples produced by the same method as that of the example, but the composition, the particle size of the raw material powder, the cooling rate, etc. were changed. In Comparative Example 1, since the P content is less than 0.1% by weight, the sintered density is low and the magnetic flux density (B 35 ) is inferior. In Comparative Example 2, since the P content exceeds 1% by weight, the maximum magnetic permeability (μm) decreases, and the coercive force (H
c) is also high. In Comparative Example 3, the V content was 0.
Since it is less than 3% by weight, the electric resistance is poor. In Comparative Example 4, since the V content exceeds 3% by weight, the maximum magnetic permeability (μm) is decreased and the coercive force is also increased.
【0020】比較例5ではCoの含有量が60重量%を
超えているため磁束密度(B35)が劣っている。比較例
6ではCoの含有量が40重量%未満であるため磁束密
度(B35)が劣っている。比較例7、比較例8、比較例
9では焼結後の冷却を、それぞれ湯冷、25℃の水によ
る水冷、0℃の水による水冷とし、冷却速度を50℃/
minを超えるものとしたため、いずれも磁気特性が大
きく劣っている。比較例10ではFe−50重量%Co
合金粉の平均粒径を 45 μm を超える粗いものとし
たため焼結密度が低く、磁気特性が劣っている。In Comparative Example 5, the magnetic flux density (B 35 ) is inferior because the Co content exceeds 60% by weight. In Comparative Example 6, since the Co content is less than 40% by weight, the magnetic flux density (B 35 ) is inferior. In Comparative Example 7, Comparative Example 8 and Comparative Example 9, the cooling after sintering was performed by hot water cooling, water cooling with 25 ° C. water, water cooling with 0 ° C. water, and a cooling rate of 50 ° C. /
Since it exceeds min, the magnetic properties are greatly inferior in all cases. In Comparative Example 10, Fe-50 wt% Co
Since the average particle size of the alloy powder is coarser than 45 μm, the sintered density is low and the magnetic properties are poor.
【0021】なお、焼結体の焼結密度は93%以上、電
気抵抗は 30 μΩ 以上、磁束密度(B35)は 190
00 G 以上、保磁力(Hc)は 3 Oe 以下、最大
透磁率(μm)は 3000 G/Oe 以上であること
が望ましい。以上の結果から明らかなように、本発明の
方法によって製造した焼結体は、軟磁気特性において低
保磁力、高透磁率であり、電気抵抗も高い。The sintered density of the sintered body is 93% or more, the electric resistance is 30 μΩ or more, and the magnetic flux density (B 35 ) is 190.
It is desirable that the coercive force (Hc) is 00 G or more, the coercive force (Hc) is 3 Oe or less, and the maximum magnetic permeability (μm) is 3000 G / Oe or more. As is clear from the above results, the sintered body produced by the method of the present invention has low coercive force, high magnetic permeability, and high electric resistance in soft magnetic characteristics.
【0022】[0022]
【発明の効果】本発明は優れた軟磁気特性を有し、従来
のFe−Co合金、Fe−Co−V合金と比較して高密
度化され、電気抵抗も向上し、射出成型法を用いること
により複雑形状で高性能の軟磁気特性を有する軟磁性焼
結体を安定して供給し得るなど工業的に有利である顕著
な効果が認められる。INDUSTRIAL APPLICABILITY The present invention has excellent soft magnetic properties, has a higher density than conventional Fe-Co alloys and Fe-Co-V alloys, and has improved electrical resistance. As a result, a remarkable effect that is industrially advantageous, such as a stable supply of a soft magnetic sintered body having a complicated shape and high performance soft magnetic characteristics, is recognized.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 S 304 38/12 Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/00 303 S 304 38/12
Claims (3)
3重量%、Pが0.1〜1重量%、残部が実質的にFe
からなるように配合された粉末及びバインダーからなる
組成物を射出成型し、得られた成型体を脱バインダー処
理し、更に、焼結処理を行った後、該焼結体を徐冷する
ことをすることを特徴とするFe−Co−V−P合金軟
質磁性材料焼結体の製造方法。1. Co of 40 to 60% by weight and V of 0.3 to
3% by weight, P is 0.1 to 1% by weight, and the balance is substantially Fe.
A composition comprising powder and a binder compounded as described above is injection-molded, the obtained molded body is subjected to binder removal treatment, and further subjected to sintering treatment, and then gradually cooling the sintered body. A method for producing a Fe-Co-VP alloy soft magnetic material sintered body, comprising:
/minとすることを特徴とする請求項1記載のFe−
Co−V−P合金軟質磁性材料焼結体の製造方法。2. The cooling rate at the time of gradually cooling the molded body is 2 to 50 ° C.
Fe / min according to claim 1, characterized in that
A manufacturing method of a Co-VP alloy soft magnetic material sintered body.
とを特徴とする請求項1もしくは請求項2に記載のFe
−Co−V−P合金軟質磁性材料焼結体の製造方法。3. The Fe according to claim 1, wherein the average particle size of the powder is 45 μm or less.
-Method for producing a Co-VP alloy soft magnetic material sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33949392A JPH06158110A (en) | 1992-11-27 | 1992-11-27 | Production of sintered compact of soft magnetic fe-co-v-p alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33949392A JPH06158110A (en) | 1992-11-27 | 1992-11-27 | Production of sintered compact of soft magnetic fe-co-v-p alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06158110A true JPH06158110A (en) | 1994-06-07 |
Family
ID=18327991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33949392A Pending JPH06158110A (en) | 1992-11-27 | 1992-11-27 | Production of sintered compact of soft magnetic fe-co-v-p alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06158110A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019173126A (en) * | 2018-03-29 | 2019-10-10 | セイコーエプソン株式会社 | Soft magnetic powder and manufacturing method of sintered body |
US11450459B2 (en) | 2018-03-29 | 2022-09-20 | Seiko Epson Corporation | Soft magnetic powder and method for producing sintered body |
-
1992
- 1992-11-27 JP JP33949392A patent/JPH06158110A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019173126A (en) * | 2018-03-29 | 2019-10-10 | セイコーエプソン株式会社 | Soft magnetic powder and manufacturing method of sintered body |
US11450459B2 (en) | 2018-03-29 | 2022-09-20 | Seiko Epson Corporation | Soft magnetic powder and method for producing sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04329847A (en) | Manufacture of fe-ni alloy soft magnetic material | |
JPH0775205B2 (en) | Method for producing Fe-P alloy soft magnetic sintered body | |
JP2587872B2 (en) | Method for producing soft magnetic sintered body of Fe-Si alloy | |
JPH1131610A (en) | Manufacture of rare-earth magnet powder with superior magnetic anisotropy | |
JPH06158110A (en) | Production of sintered compact of soft magnetic fe-co-v-p alloy material | |
JPH0521220A (en) | Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density | |
JPH0570881A (en) | Production of sintered compact of fe-ni-p alloy soft-magnetic material | |
JPS59140335A (en) | Manufacture of rare earth-cobalt sintered magnet of different shape | |
JPS639733B2 (en) | ||
JP3003225B2 (en) | Method for producing sintered body of Fe-based soft magnetic material containing B | |
JPS63178505A (en) | Anisotropic r-fe-b-m system permanent magnet | |
JPS6180805A (en) | Permanent magnet material | |
JP2928647B2 (en) | Method for producing iron-cobalt based sintered magnetic material | |
JPH04183840A (en) | Production of sintered compact of fe-co-si alloy soft-magnetic material | |
JP3351554B2 (en) | Manufacturing method of sintered anisotropic magnet | |
JPH06136404A (en) | Production of iron-base soft magnetic material sintered compact | |
JPS63137136A (en) | Manufacture of rare earth-iron group sintered permanent magnet material | |
JPH10147832A (en) | Manufacture of 'permalloy(r)' sintered compact | |
JPS60254707A (en) | Manufacture of permanent magnet | |
JPS62213207A (en) | Manufacture of rare earth magnet | |
JPH0645832B2 (en) | Rare earth magnet manufacturing method | |
JPH01212702A (en) | Manufacture of magnetic material | |
JPS60211032A (en) | Sm2co17 alloy suitable for use as permanent magnet | |
JPH0418707A (en) | Manufacture of permanent magnet | |
JP2000021614A (en) | Manufacture of rare earth magnet powder superior in magnetic anisotropy |