JPH04183840A - Production of sintered compact of fe-co-si alloy soft-magnetic material - Google Patents

Production of sintered compact of fe-co-si alloy soft-magnetic material

Info

Publication number
JPH04183840A
JPH04183840A JP31498090A JP31498090A JPH04183840A JP H04183840 A JPH04183840 A JP H04183840A JP 31498090 A JP31498090 A JP 31498090A JP 31498090 A JP31498090 A JP 31498090A JP H04183840 A JPH04183840 A JP H04183840A
Authority
JP
Japan
Prior art keywords
powder
binder
sintered
weight
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31498090A
Other languages
Japanese (ja)
Inventor
Akihito Otsuka
大塚 昭仁
Masakazu Enboku
遠北 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP31498090A priority Critical patent/JPH04183840A/en
Publication of JPH04183840A publication Critical patent/JPH04183840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To easily obtain a sintered compact having high magnetic flux density, low coercive force, and high magnetic permeability by preparing a green compact which consists of powder of prescribed grain size consisting of specific percentages of Co, Si, and Fe and binder, sintering this green compact, and then cooling the resulting sintered compact at the prescribed cooling velocity. CONSTITUTION:Powdered Co, powdered Si, and powdered Fe or a powder consisting of an alloy of these metals is blended and formed into a powder consisting of, by weight, 40-60% Co, 0.5-3% Si, and the balance Fe and having <=45/mum average grain size. A composition consisting of this powder and a binder is subjected to injection molding to form a green compact. Subsequently, this green compact is subjected to binder removal treatment, sintered, and cooled slowly at 2-50 deg.C/min cooling rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軟磁気特性に優れているFe−Co−Si合金
軟質磁性材料焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a sintered Fe-Co-Si alloy soft magnetic material having excellent soft magnetic properties.

・[従来の技術] Fe−Co合金軟質磁性材料は、規則不規則変態を有し
、変態温度においてC5Cjl型規則格子相を形成する
合金材料であり、現在知られている合金の中で最高の飽
和磁束密度を示すので、パルスモータ−、プリンターヘ
ッド等のヨーク用磁性材、受話器の振動板として広く使
用されている。
・[Prior art] Fe-Co alloy soft magnetic material is an alloy material that has ordered-disorder transformation and forms a C5Cjl type ordered lattice phase at the transformation temperature, and is the best among the currently known alloys. Since it exhibits a saturation magnetic flux density, it is widely used as a magnetic material for yokes such as pulse motors and printer heads, and as a diaphragm for telephone receivers.

従来この合金が、Fe、Coのみから成っている場合に
は、いかなる熱処理を施しても不規則格子から規則格子
への変態の発生を抑える事が出来ず、そのため成形体の
冷間加工は不可能であった。
Conventionally, when this alloy consists only of Fe and Co, no amount of heat treatment can suppress the transformation from an irregular lattice to a regular lattice, and therefore cold working of the compact is not necessary. It was possible.

そこで、この様な事態の改善を図るためには、高価なV
やCrを添加する事によって、成形体の加工性を改善す
る必要があった。
Therefore, in order to improve this situation, expensive V
It was necessary to improve the workability of the molded body by adding Cr or Cr.

しかし乍、それでも未だ規則格子への変態を抑えるには
十分と言えず、部品等の製品、特に複雑な形状の製品を
得る為には、粉末冶金法によって製造する試みがなされ
ている。
However, this is still not sufficient to suppress the transformation into a regular lattice, and attempts have been made to manufacture products such as parts, particularly products with complex shapes, by powder metallurgy.

一方、通常の粉末冶金法は、原料粉末を金型に挿入し、
プレスによる圧縮成形を行って得られるものであり、磁
石の製造に際しては、利用されるCo粉やFe−Co合
金粉が硬質であるために、製品の圧縮成形時に大きな圧
力をかけても成形し難く、クラックが発生し易く問題と
なっている。
On the other hand, in the normal powder metallurgy method, raw material powder is inserted into a mold,
It is obtained by compression molding using a press, and because the Co powder and Fe-Co alloy powder used in magnet manufacturing are hard, it cannot be molded even if large pressure is applied during compression molding of the product. This has become a problem as it is difficult and cracks are likely to occur.

また、通常の粉末冶金法では、平均粒径が比較的大きな
原料粉を用いており、さらにFeとCoは、互いに拡散
しづらい事もあって、高度な磁気特性を得るための高密
度化が難しく、製品の密度をあげようとすれば、高価な
微粉の使用、長時間に及ぶ焼結、HIP処理の導入等を
行わなければならなかった。
In addition, normal powder metallurgy uses raw material powder with a relatively large average particle size, and Fe and Co are difficult to diffuse into each other, so it is necessary to increase the density to obtain advanced magnetic properties. This was difficult, and in order to increase the density of the product, it was necessary to use expensive fine powder, sinter for a long time, and introduce HIP processing.

また、成形体の焼結後は、必ず磁気特性向上のための熱
処理を行う必要があった。
Furthermore, after sintering the compact, it was always necessary to perform heat treatment to improve magnetic properties.

更に軟質磁性材料として交流下で使用される場合には、
電気抵抗が大きく、鉄損失を少なくする必要があるが、
Fe−Co合金では、電気抵抗が低いという欠点を有し
ていた。
Furthermore, when used as a soft magnetic material under alternating current,
Electrical resistance is high and iron loss must be reduced,
Fe--Co alloys had the disadvantage of low electrical resistance.

[発明が解決しようとする課題] 本発明は、上記のような従来の欠点を解消して、優れた
軟磁気特性を有するFe−Co−Si合金材料焼結体を
容易に製造する為の方法を提供することにある。
[Problems to be Solved by the Invention] The present invention provides a method for easily manufacturing a Fe-Co-Si alloy material sintered body having excellent soft magnetic properties by eliminating the conventional drawbacks as described above. Our goal is to provide the following.

[課題を解決するための手段] 本発明者は、上記の課題を達成すべく鋭意研究の結果、
特定の割合で配合したF e −Co −S、 i合金
の特定粒度の粉末を射出成形すると共に、得られた成形
体を脱バインダー処理し、更に、焼結処理を行った後、
特定の冷却速度で徐冷することにより、冷却時に発生す
る格子歪の発生を抑制し、製品の磁気特性を低下させる
ことなく、上記の課題を達成し得ることを見出したもの
である。
[Means for Solving the Problems] As a result of intensive research to achieve the above problems, the present inventors have discovered that
Fe-Co-S, i alloy powder with a specific particle size blended in a specific ratio is injection molded, and the resulting molded body is subjected to binder removal treatment and further sintering treatment,
The inventors have discovered that by slow cooling at a specific cooling rate, it is possible to suppress the occurrence of lattice strain that occurs during cooling and achieve the above-mentioned problems without deteriorating the magnetic properties of the product.

以下に、その詳細を述べる事とする。The details will be described below.

即ち本発明は、Coの含有量が40〜60重量%、5i
ijSO,5〜3重量%で残部が実質的にFeからなる
ようにFe粉とCo粉とSi粉とを配合し、また必要に
応じてFe−Co合金粉、Fe−Si合金粉を加えて配
合した、夫々の原料粉末の平均粒径が45μm以下の粉
末及びバインダーからなる組成物を射出成形し、得られ
た成形体を脱バインダー処理し、更に、この成形体につ
いて焼結処理を行った後、26C/min以上、50’
C/min以下の冷却速度で徐冷してFe−C。
That is, in the present invention, the Co content is 40 to 60% by weight and 5i
ijSO, Fe powder, Co powder, and Si powder are blended so that the balance is substantially Fe at 5 to 3% by weight, and if necessary, Fe-Co alloy powder and Fe-Si alloy powder are added. A composition consisting of a blended powder and a binder in which the average particle size of each raw material powder is 45 μm or less was injection molded, the obtained molded body was subjected to a binder removal treatment, and further, this molded body was subjected to a sintering treatment. After, 26C/min or more, 50'
Fe-C by slow cooling at a cooling rate of C/min or less.

−8t合金軟質磁性材料焼結体を製造する方法である。This is a method for producing a -8t alloy soft magnetic material sintered body.

[作 用] 配合した粉末および焼結後の焼結体のCo含有量は40
〜60重量%であることが必要である。
[Function] The Co content of the blended powder and the sintered body after sintering is 40
~60% by weight is required.

Coの含有量が40重量%未満では磁束密度はそれ程低
下しないが、最大透磁率が大きく減少し軟磁性材料とし
て使用できない、Co含有量が60重量%を越える場合
においては・、磁束密度はそれ程低下しないが、最大透
磁率が大きく減少し軟磁性材料として使用できなくなる
When the Co content is less than 40% by weight, the magnetic flux density does not decrease that much, but the maximum magnetic permeability decreases so much that it cannot be used as a soft magnetic material.When the Co content exceeds 60% by weight, the magnetic flux density decreases by that much. Although it does not decrease, the maximum magnetic permeability decreases significantly and it cannot be used as a soft magnetic material.

またSlの含有量は0.5〜3重量%であることが必要
である。
Further, the content of Sl needs to be 0.5 to 3% by weight.

Siの含有量が0.5重量%未満では焼結後に於ける製
品の最終相対密度が殆ど向上せず、その結果優れた軟磁
気特性が発揮されないばかりでなく電気抵抗も向上しな
い。
When the Si content is less than 0.5% by weight, the final relative density of the product after sintering is hardly improved, and as a result, not only excellent soft magnetic properties are not exhibited, but also electrical resistance is not improved.

Siの含有量が3重量%を越えると磁束密度が急激に低
下し、軟磁性材料として使用できない。
When the Si content exceeds 3% by weight, the magnetic flux density decreases rapidly and the material cannot be used as a soft magnetic material.

なお、Fe、Co、St以外の元素は含まれな−  貴
  − いことが望ましいが、焼結体の軟磁気特性の磁束密度が
83S=19,0OOG以下とならない範囲ならば含ま
れていても差し使えない。
It is preferable that elements other than Fe, Co, and St are not included, but they may be included as long as the magnetic flux density of the soft magnetic properties of the sintered body does not become less than 83S = 19,0OOG. I can't use it again.

また、この粉末の平均粒径は45μm以下であることが
必要である。
Further, it is necessary that the average particle size of this powder is 45 μm or less.

平均粒径が45μmを越える粉末では、この粉末とバイ
ンダーからなる組成物の流動性が低下して来る為、射出
成形作業がほとんど不可能となり、また射出成形ができ
たとしても、成形体を焼結させる工程の進行が遅くれて
来る。
If the average particle size exceeds 45 μm, the fluidity of the composition consisting of the powder and the binder will decrease, making injection molding almost impossible, and even if injection molding is possible, it will be difficult to sinter the molded product. The progress of the tying process is slow.

そのため、焼結体の最終密度が上昇しにくく、磁気特性
も著しく低下する。
Therefore, the final density of the sintered body is difficult to increase, and the magnetic properties are also significantly reduced.

本発明に於いて使用されるバインダーは、射出成形粉末
冶金法用として公知のバインダー、例えば、ポリエチレ
ン、ワックスなどを使用することができるが、これらの
バインダーを除去するときに、残留カーボンが発生し易
く、Fe−Co−Si合金中にカーボンが侵入すると磁
気特性が低下するから、カーボンが残留しにくいバイン
ダー、例えば、ワックスを主体としたバインダーを使用
することが好ましい。
The binder used in the present invention can be a binder known for injection molding powder metallurgy, such as polyethylene or wax, but residual carbon is generated when these binders are removed. If carbon easily enters the Fe-Co-Si alloy, the magnetic properties will deteriorate, so it is preferable to use a binder in which carbon does not easily remain, for example, a binder mainly composed of wax.

成形体からバインダーを除去させる方法としては、使用
するバインダーの種類によって、加熱脱脂、溶剤脱脂、
その他公知の方法が使用できるが、加熱脱脂装置は他の
方法の装置と比較して簡便であるために、量産時には窒
素又は水素雰囲気中あるいは真空中で行う加熱脱脂が好
ましい。
Methods for removing the binder from the molded product include heat degreasing, solvent degreasing, and solvent degreasing, depending on the type of binder used.
Although other known methods can be used, thermal degreasing is preferably carried out in a nitrogen or hydrogen atmosphere or in a vacuum during mass production because a thermal degreasing apparatus is simpler than apparatus for other methods.

脱バインダーされた成形体を焼結処理する場合には、1
200〜1450℃で水素雰囲気中あるいは真空中で3
0〜180分の保持により行う。
When sintering the binder-removed molded body, 1
3 in hydrogen atmosphere or vacuum at 200-1450℃
This is carried out by holding for 0 to 180 minutes.

このようにして焼結作業を終了した焼結晶は、その後、
21’C/min以上、50℃/ m i n以下の冷
却速度で徐冷することが必要である。
The sintered crystals that have been sintered in this way are then
It is necessary to perform slow cooling at a cooling rate of 21'C/min or more and 50°C/min or less.

2℃/ m i n未満の冷却速度で徐冷することは格
子歪の除去に対する本発明の効果を向上し得ぬばかりで
なく、経済的にも好ましくなく、更に、生産性を著しく
低下させる様になって来る。
Slow cooling at a cooling rate of less than 2°C/min not only fails to improve the effect of the present invention on removing lattice strain, but is also economically unfavorable, and furthermore, it seems to significantly reduce productivity. It's coming.

また、50℃/ m i nを超える冷却速度では冷却
時に格子歪が生じ、これがそのまま室温まで残留するし
て来るため、磁石の軟磁気特性が低下する。
Furthermore, if the cooling rate exceeds 50° C./min, lattice distortion occurs during cooling, and this remains as it is until room temperature, resulting in a decrease in the soft magnetic properties of the magnet.

[実施例] 実施例1 原料粉として平均粒径9μmのFe−50重飛火Co合
金粉と平均粒径40μmのFe−44重重景5ifIJ
:合金粉と、必要に応じ平均粒径5μmのカーボニルF
e粉と平均粒径4.5μmの還元Co粉をもちいて表1
に示した配合比で配合した後混合し、これにワックス系
バインダーをバインダー含有率が40〜50容量%とな
るように加え、150℃で混練後ペレット状に造粒した
。このベレットを射出成形機を用いて射出圧力1200
に9/ c m ”の条件で金型に射出成形した。
[Example] Example 1 Fe-50 heavy flying spark Co alloy powder with an average particle size of 9 μm and Fe-44 heavy flying spark 5ifIJ with an average particle size of 40 μm as raw material powder
: Alloy powder and carbonyl F with an average particle size of 5 μm if necessary
Table 1 using E powder and reduced Co powder with an average particle size of 4.5 μm.
The mixtures were mixed at the compounding ratio shown in , and a wax-based binder was added thereto so that the binder content was 40 to 50% by volume. After kneading at 150° C., the mixture was granulated into pellets. This pellet was molded using an injection molding machine at an injection pressure of 1200
It was injection molded into a mold under conditions of 9/cm''.

得られた成形体を300℃に保持してワックス系バイン
ダーの除去を行った。
The wax-based binder was removed while the obtained molded body was maintained at 300°C.

脱バインダー処理された成形体には、その後、1400
℃の温度で2時間かけた焼結処理を施し、次いで、10
8C/minの冷却速度で冷却して常温まで到達させた
After that, the binder-removed molded product was treated with 1400
A sintering process was carried out for 2 hours at a temperature of 10°C.
It was cooled at a cooling rate of 8 C/min to reach room temperature.

このようにして得られた焼結体に励磁コイル及びサーヂ
コイルを共に50ターン巻き、直流記録磁束計により8
11ヒステリシス曲線を描いて、外部磁場350eにて
磁束密度(Bis)、保磁力(Hc )、最大透磁率(
μ、、X)を求めた。その結果を表1に示す。
The sintered body thus obtained was wound with both an excitation coil and a surge coil for 50 turns, and a DC recording magnetometer measured 8
11 Draw a hysteresis curve and calculate the magnetic flux density (Bis), coercive force (Hc), and maximum permeability (
μ,,X) was determined. The results are shown in Table 1.

この場合、得られた製品の焼結密度は93%、電気抵抗
は16μΩCm、磁束密度は20,500G、保磁力は
2.80e、最大透磁率は3500 G / Oeであ
って、優れた磁気特性を示していた。
In this case, the obtained product has excellent magnetic properties, with a sintered density of 93%, electrical resistance of 16μΩCm, magnetic flux density of 20,500G, coercive force of 2.80e, and maximum permeability of 3500G/Oe. It was showing.

実施例2〜5 何れも実施例1と同様な処理を施したところ、表1に記
載された組成を持ち、かつ、表1に記載された原料配合
の場合には、何れの場合にも、実施例1と殆ど変わらぬ
結果が示された。
Examples 2 to 5 All of them were subjected to the same treatment as in Example 1, and when they had the compositions listed in Table 1 and the raw material formulations listed in Table 1, in any case, The results showed almost the same results as in Example 1.

実施例6 冷却速度を50℃/minとしたが、その他の処理条件
に変化の無い場合、表1に記載された組成を持ち、かつ
、表1に記載された原料配合の場合には、良好な磁気特
性を示す製品が得られた。
Example 6 The cooling rate was set to 50°C/min, but if there was no change in other processing conditions, the composition shown in Table 1 and the raw material combination shown in Table 1 were good. A product with excellent magnetic properties was obtained.

−〇  − 比較例1〜8は本発明例と同様のプロセスで製造したが
、組成、原料粉の粒径、冷却速度等を変えて製造した例
である。
-〇- Comparative Examples 1 to 8 were manufactured using the same process as the example of the present invention, but were manufactured by changing the composition, particle size of raw material powder, cooling rate, etc.

比較例I Siの含有量を0.09重重景とじ、請求項1のSi含
有量の下限である0、5重量%以下の組成とした例であ
って、電気抵抗が劣っている。
Comparative Example I This is an example in which the Si content is 0.09% by weight and the composition is 0.5% by weight or less, which is the lower limit of the Si content in Claim 1, and the electrical resistance is poor.

比較例2 Siの含有量を3.96重量%とじ、請求項1のSi含
有量の上限である3重置%以上の組成とした例であって
、最大透磁率が2000G/○eと劣化して来ている6 比較例3 Coの含有量を35重重景とし、請求項1のCo含有量
の下限である40重量%以下の組成とした例であって、
最大透磁率が1900G10eと劣化して来ている。
Comparative Example 2 This is an example in which the Si content is 3.96% by weight and the composition is more than 3%, which is the upper limit of the Si content in claim 1, and the maximum magnetic permeability is degraded to 2000G/○e. 6 Comparative Example 3 An example in which the Co content is 35% by weight and the composition is 40% by weight or less, which is the lower limit of the Co content in claim 1,
The maximum magnetic permeability has deteriorated to 1900G10e.

比較例4 Coの含有量を65重置火とし、請求項1のCo含有量
の上限である60重重景以上の組成とじた例であって、
最大透磁率が1200G10eと劣化して来ている。
Comparative Example 4 An example in which the Co content is set to 65 layers, and the composition is set to 60 layers or more, which is the upper limit of the Co content in claim 1,
The maximum magnetic permeability has deteriorated to 1200G10e.

比較例5 焼結後の冷却を油冷とした為、冷却速度が請求項1の上
限である50℃/ m i nを越えた例であって、最
大透磁率が850 G / Oeと劣化して来ていると
ともに、磁束密度も11,500Gと、実施例の50%
程度に減少している。
Comparative Example 5 This is an example in which the cooling rate after sintering was oil-cooled, which exceeded the upper limit of claim 1 of 50°C/min, and the maximum magnetic permeability deteriorated to 850 G/Oe. At the same time, the magnetic flux density is 11,500G, 50% of the example.
It has decreased to a certain extent.

比較例6 焼結後の冷却を25℃の水道水にて冷却した為、冷却速
度が請求項1の上限である50℃/minを越えた例で
あって、最大透磁率が690 G10eと劣化して来て
いるとともに、磁束密度も9゜300Gと、実施例の4
5%程度に減少している。
Comparative Example 6 This is an example in which the cooling rate exceeded the upper limit of claim 1 of 50°C/min because the cooling after sintering was performed using 25°C tap water, and the maximum magnetic permeability deteriorated to 690 G10e. At the same time, the magnetic flux density is 9°300G, compared to Example 4.
It has decreased to around 5%.

比較例7 焼結後の冷却を0℃の冷水とした為、冷却速度が請求項
1の上限である50℃/ m i nを越えた例であっ
て、最大透磁率が420 G / Oeと劣化して来て
いるとともに、磁束密度も6700Gと、実施例の30
%程度に減少している。
Comparative Example 7 This is an example in which the cooling rate after sintering was 0°C cold water, so the cooling rate exceeded the upper limit of claim 1, 50°C/min, and the maximum magnetic permeability was 420 G/Oe. In addition to deteriorating, the magnetic flux density is also 6700G, which is 30% in the example.
It has decreased to about %.

比較例8 Fe’−50重置火Co合金粉の粒径を48〜58μm
の範囲とし、請求項1の原料粉の」1限である45μm
より粗い粉末で製造した例であって、焼結密度が79%
と大幅に劣化している。
Comparative Example 8 Particle size of Fe'-50 superimposed Co alloy powder was 48 to 58 μm
45 μm, which is the limit of the raw material powder of claim 1.
An example made with coarser powder, with a sintered density of 79%
has deteriorated significantly.

以上の結果から本発明によって製造した焼結体の軟磁気
特性が高磁束密度、低保磁力、高透磁率を有しているこ
とが認められ、電気抵抗も向上しているのが判る。
From the above results, it is confirmed that the soft magnetic properties of the sintered body produced according to the present invention are high magnetic flux density, low coercive force, and high magnetic permeability, and it is also found that the electrical resistance is improved.

(この頁以下余白) [発明の効果] 本発明による時には、優れた軟磁気特性を有すると共に
、従来のFe−Co合金と比較して高密度化され、電気
抵抗も向上し、射出成形法を用いることにより複雑形状
で高性能の軟磁気特性を有する軟磁性焼結体を、安定し
て供給し得る事が可能になり、工業的にも有用な製品の
提供によって、産業界に寄与するところ大なるものがあ
る。
(Margins below this page) [Effects of the Invention] The present invention has excellent soft magnetic properties, has higher density compared to conventional Fe-Co alloys, has improved electrical resistance, and is suitable for injection molding. By using this technology, it becomes possible to stably supply soft magnetic sintered bodies with complex shapes and high performance soft magnetic properties, and contribute to the industry by providing industrially useful products. There is something big.

Claims (1)

【特許請求の範囲】[Claims] 1、Coが40〜60重量%、Siが0.5〜3重量%
、残部が実質的にFeからなるように配合された、平均
粒径45μm以下の粉末及びバインダーからなる組成物
を射出成形し、得られた成形体を脱バインダー処理し、
更に、焼結処理を行った後、該焼結体を2℃/min以
上、50℃/min以下の冷却速度で徐冷することを特
徴とするFe−Co−Si合金軟質磁性材料焼結体の製
造方法。
1. 40-60% by weight of Co, 0.5-3% by weight of Si
, injection molding a composition consisting of powder with an average particle size of 45 μm or less and a binder, the remainder of which is blended so that the remainder substantially consists of Fe, and the resulting molded body is subjected to a binder removal treatment,
Furthermore, after performing the sintering treatment, the sintered body is slowly cooled at a cooling rate of 2°C/min or more and 50°C/min or less. manufacturing method.
JP31498090A 1990-11-19 1990-11-19 Production of sintered compact of fe-co-si alloy soft-magnetic material Pending JPH04183840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31498090A JPH04183840A (en) 1990-11-19 1990-11-19 Production of sintered compact of fe-co-si alloy soft-magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31498090A JPH04183840A (en) 1990-11-19 1990-11-19 Production of sintered compact of fe-co-si alloy soft-magnetic material

Publications (1)

Publication Number Publication Date
JPH04183840A true JPH04183840A (en) 1992-06-30

Family

ID=18059979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31498090A Pending JPH04183840A (en) 1990-11-19 1990-11-19 Production of sintered compact of fe-co-si alloy soft-magnetic material

Country Status (1)

Country Link
JP (1) JPH04183840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160221083A1 (en) * 2015-02-03 2016-08-04 The Nanosteel Company, Inc. Infiltrated ferrous materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160221083A1 (en) * 2015-02-03 2016-08-04 The Nanosteel Company, Inc. Infiltrated ferrous materials
JP2018510267A (en) * 2015-02-03 2018-04-12 ザ・ナノスティール・カンパニー・インコーポレーテッド Infiltrated iron material
US11628493B2 (en) * 2015-02-03 2023-04-18 Maclean-Fogg Company Infiltrated ferrous materials

Similar Documents

Publication Publication Date Title
JP3171558B2 (en) Magnetic materials and bonded magnets
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JPH04183840A (en) Production of sintered compact of fe-co-si alloy soft-magnetic material
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
JPH0570881A (en) Production of sintered compact of fe-ni-p alloy soft-magnetic material
JP3003225B2 (en) Method for producing sintered body of Fe-based soft magnetic material containing B
JPH06204021A (en) Composite magnetic material and its manufacture
JPH0734183A (en) Composite dust core material and its production
JP7387670B2 (en) Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder
JPH04183841A (en) Production on sintered compact of fe-co-p alloy soft-magnetic material
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP2005243895A (en) Powder for pressed powder core and pressed powder core employing it
JP2928647B2 (en) Method for producing iron-cobalt based sintered magnetic material
JPS6077961A (en) Permanent magnet material and its manufacture
JPH06158110A (en) Production of sintered compact of soft magnetic fe-co-v-p alloy material
JPH02125835A (en) Manufacture of fe-co alloy soft magnetic material sintered body
JP2004137536A (en) Metal powder for compressed powder magnetic core
JP2000150256A (en) Dust core
JP2001023810A (en) Powder for powder magnetic core
JP2000049009A (en) Dust core and its manufacture