JP2995200B2 - Engine air supply - Google Patents

Engine air supply

Info

Publication number
JP2995200B2
JP2995200B2 JP23627090A JP23627090A JP2995200B2 JP 2995200 B2 JP2995200 B2 JP 2995200B2 JP 23627090 A JP23627090 A JP 23627090A JP 23627090 A JP23627090 A JP 23627090A JP 2995200 B2 JP2995200 B2 JP 2995200B2
Authority
JP
Japan
Prior art keywords
air supply
speed
branch pipe
low
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23627090A
Other languages
Japanese (ja)
Other versions
JPH04116226A (en
Inventor
義和 石川
Original Assignee
株式会社日本気化器製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本気化器製作所 filed Critical 株式会社日本気化器製作所
Priority to JP23627090A priority Critical patent/JP2995200B2/en
Publication of JPH04116226A publication Critical patent/JPH04116226A/en
Application granted granted Critical
Publication of JP2995200B2 publication Critical patent/JP2995200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエンジン、殊に多気筒エンジンに空気を供給
する給気装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an air supply device for supplying air to an engine, particularly a multi-cylinder engine.

[従来の技術] エンジンの給気弁が開いて空気がシリンダに流入する
とき、流入空気は質量と速度とをもっているためある慣
性を有しており、この慣性によりピストンが下死点に達
してシリンダの容積増加がなくなった後も流入を続ける
が、ピストンが上昇運動に転じるとシリンダ内圧力が上
昇して流入空気の流速が急激に低下してゼロとなるこ
と、および流入速度がゼロとなるシリンダ内圧力が最大
となったとき給気弁を閉じれば最大の充填効率が得られ
ることは周知である。また、給気管内を流れる空気の慣
性効果はエンジン回転速度の上昇に伴って増大するた
め、最大充填効率が得られる回転速度域は限定されてお
り、それよりも低速域では慣性効果が小さいために流入
空気は早目に流速ゼロとなって吸気弁が閉じる前に逆流
を開始して充填効率を低下させ、それよりも高速域では
空気流入時間が短かいために充分に流入する前に吸気弁
が閉じて充填効率を低下させることも良く知られている
事柄である。
[Prior Art] When air flows into a cylinder when an air supply valve of an engine is opened, the inflow air has a certain inertia due to its mass and speed, and the inertia causes the piston to reach a bottom dead center. The flow continues even after the cylinder volume has ceased to increase, but when the piston starts to move upward, the pressure in the cylinder increases and the flow velocity of the inflowing air rapidly decreases to zero, and the inflow speed becomes zero. It is well known that the maximum charging efficiency is obtained by closing the air supply valve when the pressure in the cylinder is at a maximum. In addition, the inertia effect of the air flowing in the air supply pipe increases as the engine rotation speed increases, so the rotation speed range where the maximum filling efficiency is obtained is limited. The flow rate of the inflowing air becomes zero early and starts backflow before the intake valve closes, lowering the charging efficiency. It is also well known that the valve closes and reduces the filling efficiency.

エンジンのトルク曲線が低速および高速域で低い山状
になる理由は前述の充填効率特性によるものであり、こ
の特性を改善してエンジンの全回転速度域で高トルクを
得るため、即ち全回転速度域で高充填効率を得るため
に、給気管を互いに独立してシリンダに接続された低速
用と高速用の2系統に分け回転速度に応じて両者を切換
え使用する可変給気システムが一部のエンジンに採用さ
れている。
The reason why the torque curve of the engine has a low mountain shape in the low speed and high speed regions is due to the above-described charging efficiency characteristic. In order to improve this characteristic and obtain a high torque in the entire engine speed range, In order to obtain a high filling efficiency in the region, the variable air supply system which divides the air supply pipe into two systems of low speed and high speed which are connected to the cylinder independently of each other and switches between them according to the rotational speed is used in some variable air supply systems. Used in engines.

しかしながら、低速用給気管と高速用給気管とを具え
た前記従来の可変給気システムは、吸気マニホルドのブ
ランチが2系統となっていて絞り弁下流の給気管容積が
大きいため、絞り弁が低開度で給気管内が高負圧である
無負荷時や部分負荷時におけるシリンダ内既燃ガスの給
気管への逆流量が多い。従って、吸入工程においてシリ
ンダに流入する既燃ガスに対する新気の割合が小さくな
ってアイドリングの不安定や部分負荷運転の不良を招く
などの問題をもっている。
However, the conventional variable air supply system including the low-speed air supply pipe and the high-speed air supply pipe has two branches of the intake manifold and has a large intake pipe volume downstream of the throttle valve. The backflow of burned gas in the cylinder to the air supply pipe is large at the time of no load or partial load when the inside of the air supply pipe is at a high negative pressure at the opening degree. Therefore, the ratio of fresh air to the burned gas flowing into the cylinder in the suction process becomes small, causing problems such as instability of idling and failure of partial load operation.

[発明が解決しようとする課題] 本発明が解決しようとする課題は、給気管を低速用と
高速用の2系統に分けて高トルク域の拡張を計った可変
給気システムが無負荷時および部分負荷時においてエン
ジン運転性能の低下を招く、という点である。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is that the variable air supply system in which the air supply pipe is divided into two systems for low speed and high speed to expand the high torque region is used when no load is applied and The point is that the engine operating performance is reduced at the time of partial load.

即ち、本発明は可変給気システムにおいて無負荷時お
よび部分負荷時に良好なエンジン運転性を得ることを計
ったものである。尚、本発明では給気管が2系統である
ことを利用して高トルク域の拡張、軽負荷域での運転安
定性向上のほかに可変スワールによる燃費向上を計っ
た。
That is, the present invention is intended to obtain good engine operability under no load and partial load in the variable air supply system. In the present invention, in addition to the expansion of the high torque region and the improvement of the operation stability in the light load region, the improvement of the fuel efficiency by the variable swirl is measured by utilizing the two supply pipes.

[課題を解決するための手段] 前記課題を解決するために本発明が講じた手段は次の
通りである。
[Means for Solving the Problems] Means taken by the present invention to solve the problems are as follows.

即ち、吸気マニホルドが低速用給気管と高速用分岐管
とに分岐し、更にこれらがエンジンのシリンダ毎に低速
用給気枝管と高速用給気枝管とに分岐してシリンダに各
別に接続し、且つシリンダ毎の低速用給気枝管と高速用
給気枝管とを連通路によって連通させた。そして、高速
用給気管の入口附近に第一の給気制御弁を設け、高速用
給気枝管の連通路の上流側および下流側に第二の給気制
御弁およびスワール制御弁を設けた。
That is, the intake manifold branches into a low-speed supply pipe and a high-speed branch pipe, and these further branch into a low-speed supply branch pipe and a high-speed supply branch pipe for each cylinder of the engine, and are separately connected to the cylinders. In addition, the low-speed air supply branch pipe and the high-speed air supply branch pipe for each cylinder were connected to each other through a communication passage. A first air supply control valve was provided near the inlet of the high-speed air supply pipe, and a second air supply control valve and a swirl control valve were provided on the upstream and downstream sides of the communication path of the high-speed air supply branch pipe. .

第一、第二の給気制御弁は慣性効果の可変即ち高トル
ク域の拡張と給気管容積の可変即ち軽負荷域での運転性
向上とを実現させ、スワール制御弁は既知のように燃費
向上を実現させるものである。
The first and second air supply control valves realize a variable inertia effect, that is, expansion of a high torque region, and a variable air supply tube volume, that is, improved drivability in a light load region. It is to achieve improvement.

尚、低速用給気枝管を高速用給気枝管よりも小径且つ
長大とすること、二つの給気制御弁を同時に開閉駆動す
ることが好ましい。
It is preferable that the low-speed air supply branch pipe be smaller in diameter and longer than the high-speed air supply branch pipe, and that two air supply control valves be simultaneously opened and closed.

[作用] 軽負荷域ではエンジンの回転速度に関係なく第一、第
二の給気制御弁とスワール制御弁とを閉弁しておくこと
により、低速用給気枝管のみで空気をシリンダに流入さ
せ強力なスワールを発生させ且つ給気管容積を小さくす
る。低速高負荷域では第一、第二の給気制御弁を閉弁し
スワール制御弁を開弁しておくことにより、空気流量を
増大させるとともに充填効率を向上させる。高速高負荷
域では第一、第二の給気制御弁とスワール制御弁とを開
弁しておくことにより、空気流量を更に増大させ高い充
填効率を得る。
[Operation] In the light load region, the first and second air supply control valves and the swirl control valve are closed regardless of the rotational speed of the engine, so that air is supplied to the cylinder only by the low-speed air supply branch pipe. The inflow creates a strong swirl and reduces the intake air volume. In the low-speed and high-load region, the first and second air supply control valves are closed and the swirl control valve is opened to increase the air flow rate and improve the charging efficiency. In the high-speed and high-load region, the first and second air supply control valves and the swirl control valve are opened to further increase the air flow rate and obtain high filling efficiency.

[実施例] 図面を参照して本発明の実施例を説明する。Example An example of the present invention will be described with reference to the drawings.

図示しないエアクリーナを通過した空気の流量を制御
してエンジン1の出力(回転速度)を制御する絞り弁7
を具えたスロットルボディ8の下流に吸気マニホルド9
が接続されている。エンジン1のシリンダ2は互いに独
立した低速用ポート3と高速用ポート5とを有しそれぞ
れ吸気弁4、6によって各別に開閉される。
Throttle valve 7 that controls the output (rotational speed) of engine 1 by controlling the flow rate of air that has passed through an air cleaner (not shown).
Downstream of the throttle body 8 with the intake manifold 9
Is connected. The cylinder 2 of the engine 1 has a low-speed port 3 and a high-speed port 5 independent of each other, and is opened and closed by intake valves 4 and 6 respectively.

吸気マニホルド9は低速用給気管10と高速用給気管12
とに分岐し、更にこれらはシリンダ2毎に低速用給気枝
管11と高速用給気枝管13とに分岐して低速用ポート3と
高速用ポート5とに接続されている。低速用給気枝管11
は高速用給気枝管13よりも小径且つ長大に形成されてお
り、エンジン1に近い個所でシリンダ2毎に連通路14に
よって互いに連通させられている。
The intake manifold 9 has a low-speed air supply pipe 10 and a high-speed air supply pipe 12
These branches into a low-speed air supply branch pipe 11 and a high-speed air supply branch pipe 13 for each cylinder 2 and are connected to a low-speed port 3 and a high-speed port 5. Low-speed supply branch 11
Are formed to have a smaller diameter and a larger length than the high-speed air supply branch pipe 13, and are connected to each other by a communication passage 14 for each cylinder 2 at a location near the engine 1.

また、高速用給気枝管13の集合部である高速用給気管
12の入口附近に第一の給気制御弁15が設置されていると
ともに、高速用給気枝管13の連通路14との接続個所の上
流側および下流側に第二の給気制御弁17およびスワール
制御弁19が設置されている。これらの制御弁15、17、19
は蝶形であって第二の給気制御弁17とスワール制御弁19
とはそれぞれ一本の弁軸18、20に取付けられて一斉に開
閉動作するようになっている。第一の給気制御弁15の弁
軸16と第二の給気制御弁17の弁軸18とはリンク機構21に
よって連結されていて、電磁石を有する電磁式のアクチ
ュエータ22により同時に開閉駆動される。スワール制御
弁19の弁軸20はダイヤフラムを有する負圧式のアクチュ
エータ23により開閉駆動され、吸気マニホルド負圧が高
い軽負荷域で閉弁しているが吸気マニホルド負圧が低い
高負荷域で開弁してスワール制御を行なうことは従来の
ものと同じである。給気制御弁15、17のアクチュエータ
22は例えば自動車に搭載したマイクロコンピュータから
送られる駆動信号により二つの給気制御弁15、17を同時
に開閉駆動する。
Also, the high-speed air supply pipe, which is an aggregation of the high-speed air supply branch pipes 13,
A first air supply control valve 15 is installed in the vicinity of the inlet 12 and a second air supply control valve 17 is provided upstream and downstream of a connection point of the high-speed air supply branch pipe 13 with the communication passage 14. And a swirl control valve 19. These control valves 15, 17, 19
Is a butterfly and has a second air supply control valve 17 and a swirl control valve 19
Are attached to the single valve shafts 18 and 20, respectively, so as to open and close simultaneously. The valve shaft 16 of the first air supply control valve 15 and the valve shaft 18 of the second air supply control valve 17 are connected by a link mechanism 21 and are simultaneously opened and closed by an electromagnetic actuator 22 having an electromagnet. . The valve shaft 20 of the swirl control valve 19 is driven to open and close by a negative pressure type actuator 23 having a diaphragm, and is closed in a light load region where the intake manifold negative pressure is high, but is opened in a high load region where the intake manifold negative pressure is low. Performing the swirl control is the same as the conventional one. Actuators for air supply control valves 15, 17
Reference numeral 22 simultaneously opens and closes the two air supply control valves 15 and 17 in response to a drive signal sent from a microcomputer mounted on an automobile.

尚、第二の給気制御弁17は連通路14との接続個所に接
近して設けられている。
Note that the second air supply control valve 17 is provided close to a connection point with the communication passage 14.

このように構成した本実施例では、軽負荷域において
はエンジン1の回転速度に関係なく第一、第二の給気制
御弁15、17を閉弁させておくものであり、スワール制御
弁19は高い吸気マニホルド負圧によって閉弁している。
このとき、低開度の絞り弁7を通過した空気は全て低速
用給気管10に入り低速用給気枝管11から低速用ポート3
を通ってシリンダ2に高速度で流入し、強力なスワール
を発生して燃焼を促進する。また、二つの給気制御弁1
5、15が閉弁していることによって、吸気マニホルド9
の有効面積が減少しシリンダ2の既燃ガスの逆流量を少
量とし、殊に低速回転域での運転性能を低下させない
(第2図参照)。
In the present embodiment configured as described above, in the light load range, the first and second air supply control valves 15 and 17 are closed regardless of the rotation speed of the engine 1, and the swirl control valve 19 Is closed by high intake manifold negative pressure.
At this time, all the air that has passed through the low-opening throttle valve 7 enters the low-speed air supply pipe 10 and passes from the low-speed air supply branch pipe 11 to the low-speed port 3.
Through the cylinder 2 at a high speed to generate a strong swirl to promote combustion. Also, two air supply control valves 1
Since the valves 5 and 15 are closed, the intake manifold 9
Reduces the effective flow area of the burned gas in the cylinder 2 so as to reduce the reverse flow rate of the burned gas, and does not deteriorate the operation performance especially in the low-speed rotation range (see FIG. 2).

次に、高負荷域においては吸気マニホルド負圧が低く
なることによってスワール制御弁19は開弁状態となる。
Next, in the high load region, the swirl control valve 19 is opened by the intake manifold negative pressure being reduced.

ここで、低速高負荷域では第一、第二の給気制御弁1
5、17を閉弁させておくものであり、高開度の絞り弁7
を通過した空気は全て低速用給気管10に入り低速用給気
枝管11から低速用ポート3を通るとともに一部の空気は
連通路14を経て高速用給気枝管13、高速用ポート5を通
ってシリンダ2に流入する。即ち、空気は2個の吸気弁
4、6を流れるため1個のみの場合よりも抵抗が小さく
空気流量の増大が計れるとともに、小径で長大な低速用
給気枝管11がもつ慣性効果を利用して高い充填効率を得
る。(第3図参照)。
Here, in the low speed and high load range, the first and second air supply control valves 1
The valves 5 and 17 are closed.
All of the air that has passed through enters the low-speed air supply pipe 10, passes through the low-speed air supply branch 11, passes through the low-speed port 3, and some of the air passes through the communication passage 14, and the high-speed air supply branch 13 and the high-speed port 5 And flows into the cylinder 2. That is, since the air flows through the two intake valves 4 and 6, the resistance is smaller and the air flow rate can be increased as compared with the case of only one intake valve, and the inertia effect of the small-diameter and long low-speed air supply branch pipe 11 is used. To obtain high filling efficiency. (See FIG. 3).

また、高速高負荷域では第一、第二の給気制御弁15、
17を開弁させるものであり、絞り弁7を通過した空気は
低速用給気管10と高速用給気管12の両方に入り、低速用
給気枝管11と高速用給気枝管13から低速用ポート3と高
速用ポート5を通ってシリンダ2に流入する。即ち、空
気は2系統でエンジン1に供給され、殊に高速用給気枝
管13は大径且つ短小であるので大量の空気を流し高い充
填効率を得る(第4図参照)。
In the high-speed, high-load range, the first and second air supply control valves 15,
The air that has passed through the throttle valve 7 enters both the low-speed air supply pipe 10 and the high-speed air supply pipe 12, and the low-speed air supply branch pipe 11 and the high-speed air supply branch pipe 13 And flows into the cylinder 2 through the high-speed port 3 and the high-speed port 5. That is, air is supplied to the engine 1 in two systems. In particular, since the high-speed supply branch pipe 13 has a large diameter and a short diameter, a large amount of air flows to obtain high filling efficiency (see FIG. 4).

尚、アクチュエータ22、23はともに電磁式とし、或い
はステッピングモータで構成して開度無段階に開閉駆動
するようにしてもよく、また第一、第二の給気制御弁1
5、17を各別のアクチュエータで同時に開閉駆動するよ
うにしてもよい。
The actuators 22 and 23 may both be of an electromagnetic type, or may be constituted by a stepping motor so as to open and close in a stepless manner.
Each of the actuators 5 and 17 may be simultaneously opened and closed by a separate actuator.

[発明の効果] 以上の説明から明かなように、本発明によるとスワー
ル制御弁のほかに高速用給気管に第一の給気制御弁を設
けるとともに各高速用給気枝管に第二の給気制御弁を設
けたので、高速高負荷域以外はこれらを閉弁させておく
ように設定することにより、軽負荷域で強力なスワール
を発生させて燃焼を促進するとともに既燃ガスの逆流量
を減少して殊に低速回転域でのエンジン運転性能を低下
させないばかりか、高負荷域で回転域に応じ給気制御弁
を開閉することにより充填効率を高め高トルク域を拡張
することができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, in addition to the swirl control valve, the first air supply control valve is provided in the high-speed air supply pipe, and the second high-speed air supply branch pipe is provided in each high-speed air supply branch pipe. The air supply control valves are provided so that they are closed except in the high-speed, high-load range to generate strong swirl in the light-load range to promote combustion and to reverse the burned gas. In addition to reducing the flow rate and not only lowering the engine operation performance especially in the low-speed rotation range, it is also possible to open and close the air supply control valve according to the rotation range in a high load range to increase the filling efficiency and expand the high torque range. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す断面配置図、第2図、第
3図、第4図は動作を説明するための部分図である。 1……エンジン、2……シリンダ、7……絞り弁、9…
…吸気マニホルド、10……低速用給気管、11……低速用
給気枝管、12……高速用給気管、13……高速用給気枝
管、14……連通路、15……第一の給気制御弁、17……第
二の給気制御弁、19……スワール制御弁、22、23……ア
クチュエータ、
FIG. 1 is a sectional layout view showing an embodiment of the present invention, and FIGS. 2, 3 and 4 are partial views for explaining the operation. 1 ... Engine, 2 ... Cylinder, 7 ... Throttle valve, 9 ...
… Intake manifold, 10… low-speed air supply pipe, 11… low-speed air supply branch pipe, 12… high-speed air supply pipe, 13… high-speed air supply branch pipe, 14… communication path, 15… One air supply control valve, 17 ... second air supply control valve, 19 ... swirl control valve, 22, 23 ... actuator

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸気マニホルドが低速用給気管と高速用分
岐管とに分岐し、更にこれらがエンジンのシリンダ毎に
低速用給気枝管と高速用給気枝管とに分岐して前記シリ
ンダに各別に接続されているとともに、前記シリンダ毎
の低速用給気枝管と高速用給気枝管とが連通路によって
互いに連通させられており、且つ前記高速用給気管は入
口附近に第一の給気制御弁を具え、前記高速用給気枝管
は前記連通路の上流側および下流側に第二の給気制御弁
およびスワール制御弁を具えていることを特徴とするエ
ンジンの給気装置。
An intake manifold branches into a low-speed supply pipe and a high-speed branch pipe, and these branch into a low-speed supply branch pipe and a high-speed supply branch pipe for each cylinder of the engine. And the low-speed air supply branch pipe and the high-speed air supply branch pipe for each cylinder are connected to each other by a communication passage, and the high-speed air supply pipe is firstly connected near the inlet. The high-speed air supply branch pipe further includes a second air supply control valve and a swirl control valve on the upstream and downstream sides of the communication passage. apparatus.
【請求項2】低速用給気枝管は高速用給気枝管よりも小
径且つ長大である請求項1記載のエンジンの給気装置。
2. The engine air supply device according to claim 1, wherein the low-speed air supply branch pipe has a smaller diameter and a longer length than the high-speed air supply branch pipe.
【請求項3】第一および第二の給気制御弁が同時に開閉
駆動される請求項1記載のエンジンの給気装置。
3. An air supply system for an engine according to claim 1, wherein said first and second air supply control valves are simultaneously opened and closed.
JP23627090A 1990-09-06 1990-09-06 Engine air supply Expired - Lifetime JP2995200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23627090A JP2995200B2 (en) 1990-09-06 1990-09-06 Engine air supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23627090A JP2995200B2 (en) 1990-09-06 1990-09-06 Engine air supply

Publications (2)

Publication Number Publication Date
JPH04116226A JPH04116226A (en) 1992-04-16
JP2995200B2 true JP2995200B2 (en) 1999-12-27

Family

ID=16998296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23627090A Expired - Lifetime JP2995200B2 (en) 1990-09-06 1990-09-06 Engine air supply

Country Status (1)

Country Link
JP (1) JP2995200B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332177B2 (en) * 1993-12-22 2002-10-07 日産自動車株式会社 Spark ignition internal combustion engine

Also Published As

Publication number Publication date
JPH04116226A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US4612903A (en) Induction system for internal combustion engine having multiple inlet valves
US7690200B2 (en) Device for imparting a whirling motion on the flow of air for supplying a turbo-supercharged internal-combustion engine
US5063899A (en) Intake system for multi-cylinder internal combustion engine
JP2639721B2 (en) Combustion chamber of internal combustion engine
JPH0758050B2 (en) Intake control device for exhaust turbocharged engine
JP2995200B2 (en) Engine air supply
JPS614823A (en) Intake devce for internal-combustion engine
US4364366A (en) Induction system for supercharged engine
JPH01142214A (en) Turbo supercharged engine
US4393852A (en) Linkage mechanism for supercharger system
US4364367A (en) Linkage mechanism for supercharger system
JPS61164041A (en) Internal-combustion engine with turbo charger
JPH07233761A (en) Exhaust reflux device for engine
JPS6244097Y2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6131147Y2 (en)
JPS58220923A (en) Air intake control device of internal-combustion engine
KR970000362Y1 (en) Variable intake valve driving apparatus of a car
JPH09112285A (en) Boost pressure control device for internal combustion engine
KR960007387Y1 (en) Air-intake increasing device
JPH0523785Y2 (en)
JPH045692Y2 (en)
JPS61207826A (en) Engine equipped with exhaust turbosupercharger
JPH0123654B2 (en)
JPS633376Y2 (en)