JP3332177B2 - Spark ignition internal combustion engine - Google Patents

Spark ignition internal combustion engine

Info

Publication number
JP3332177B2
JP3332177B2 JP32378993A JP32378993A JP3332177B2 JP 3332177 B2 JP3332177 B2 JP 3332177B2 JP 32378993 A JP32378993 A JP 32378993A JP 32378993 A JP32378993 A JP 32378993A JP 3332177 B2 JP3332177 B2 JP 3332177B2
Authority
JP
Japan
Prior art keywords
intake
internal combustion
combustion engine
control valve
spark ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32378993A
Other languages
Japanese (ja)
Other versions
JPH07180559A (en
Inventor
明裕 飯山
浩之 糸山
和喜 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32378993A priority Critical patent/JP3332177B2/en
Priority to DE4445777A priority patent/DE4445777B4/en
Priority to KR1019940036508A priority patent/KR0167381B1/en
Publication of JPH07180559A publication Critical patent/JPH07180559A/en
Application granted granted Critical
Publication of JP3332177B2 publication Critical patent/JP3332177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/02Modifying induction systems for imparting a rotation to the charge in the cylinder in engines having inlet valves arranged eccentrically to cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、運転条件に応じて空燃
比を希薄化する火花点火式内燃機関の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a spark ignition type internal combustion engine in which an air-fuel ratio is reduced according to operating conditions.

【0002】[0002]

【従来の技術】火花点火式内燃機関において、主として
低負荷運転時または希薄空燃比運転時の燃焼性状を改善
することを目的として、切欠等からなる部分的な開口部
を設けたスワールコントロールバルブと呼ばれる空気制
御弁を機関吸気ポート付近に介装し、その開口部に吸気
流を集中させることにより通路内で吸気を偏流させると
共に流速を高めてシリンダ内の空気流動を促すようにし
たものが知られている(例えば実開平1−91038号
公報参照)。
2. Description of the Related Art In a spark ignition type internal combustion engine, a swirl control valve provided with a partial opening such as a notch is provided mainly for the purpose of improving the combustion characteristics during low load operation or lean air-fuel ratio operation. A known air control valve is installed in the vicinity of the engine intake port to concentrate the intake air flow at the opening to deviate the intake air in the passage and increase the flow velocity to promote the air flow in the cylinder. (See, for example, Japanese Utility Model Laid-Open No. 1-91038).

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
従来の内燃機関では、一般に吸気マニホールドの枝管の
長さおよび空気制御弁上流の吸気通路形状が気筒毎に異
なっていることや、シリンダ内の縦方向の渦流(タンブ
ル)が不足していること、各気筒の空気制御弁の取付や
切欠形状の誤差によりサイクル毎の吸気の平均流速の変
動が発生しがちであることなどに原因して、必ずしも安
定した希薄燃焼運転を行うことができず、あるいは安定
した運転状態が得られる空燃比を十分に大きくできず希
薄燃焼限界が低いという問題があった。
In such a conventional internal combustion engine, the length of the branch pipe of the intake manifold and the shape of the intake passage upstream of the air control valve are generally different for each cylinder. Due to lack of vertical vortex (tumble) in the vertical direction, and the tendency of the average flow velocity of intake air to fluctuate in each cycle due to errors in the installation of air control valves in each cylinder and errors in notch shapes. However, there has been a problem that a stable lean burn operation cannot always be performed, or an air-fuel ratio for obtaining a stable operation state cannot be sufficiently increased, and a lean burn limit is low.

【0004】本発明は、このような従来の問題点を解消
することを目的としている。
An object of the present invention is to solve such a conventional problem.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明では、運転条件に応じて空燃比を希薄化する火
花点火式内燃機関において、希薄空燃比運転時に、シリ
ンダ内吸気流動のタンブル比が1.6〜3.1、同じく
スワール比が1.8〜3.5となるような吸気系を設定
した内燃機関を提案するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, according to the present invention, in a spark ignition type internal combustion engine in which the air-fuel ratio is made lean according to the operating conditions, the tumble of the intake air flow in the cylinder during the lean air-fuel ratio operation is performed. The present invention proposes an internal combustion engine in which an intake system is set such that the ratio is 1.6 to 3.1 and the swirl ratio is also 1.8 to 3.5.

【0006】ただし、タンブル比=シリンダ内の縦渦の
回転速度/エンジン回転速度 スワール比=シリンダ内の水平渦の回転速度/エンジン
回転速度 である。
However, tumble ratio = rotation speed of vertical vortex in cylinder / engine rotation speed Swirl ratio = rotation speed of horizontal vortex in cylinder / rotation speed of engine.

【0007】また、本発明はこのようなタンブル比およ
びスワール比を得るための構成として次のA〜Eの手段
を個々に備え、または組み合わせてなる火花点火式内燃
機関を提案するものである。
Further, the present invention proposes a spark ignition type internal combustion engine which is individually provided with or combined with the following means A to E as a configuration for obtaining such a tumble ratio and a swirl ratio.

【0008】A.吸気コレクタ集合部から分岐して機関
の各吸気ポートに至る複数の吸気通路を配設すること
A. A plurality of intake passages branching from the intake collector assembly and reaching each intake port of the engine.

【0009】B.部分的に開口部を有する空気制御弁を
吸気ポート付近の吸気通路に介装すること。ただしこの
空気制御弁に関しては、さらに次の構成aまたはbを備
えることが望ましい。
B. An air control valve having a partial opening is interposed in an intake passage near an intake port. However, it is desirable that the air control valve further has the following configuration a or b.

【0010】a.希薄空燃比運転時には閉状態で開口部
側が下流側に所定量、好ましくは吸気通路中心軸に垂直
な横断面に対して20〜30度の範囲内で傾斜するよう
に設定すること。
A. At the time of lean air-fuel ratio operation, the opening side is set to be inclined downstream by a predetermined amount in a closed state, preferably within a range of 20 to 30 degrees with respect to a cross section perpendicular to the central axis of the intake passage.

【0011】b.開口部は略水平な取付軸よりも上側で
かつ片側に片寄った部分に形成し、好ましくは開口部の
重心(図心)点と通路中心とを結ぶ線分の取付軸中心線
となす角度が上方に45〜75度または60〜70度
範囲内にあるように形成すること。
B. The opening is formed in a portion above the substantially horizontal mounting shaft and offset to one side, and preferably has an angle formed by the mounting shaft center line of a line connecting the center of gravity (center of gravity) of the opening and the center of the passage. The upper part is formed to be in a range of 45 to 75 degrees or 60 to 70 degrees .

【0012】C.空気制御弁の吸気通路を各気筒間で等
長とし、かつ空気制御弁の直上流部の所定区間の吸気通
路形状を各気筒間で略同一とすること。ただしこの吸気
通路に関しては、さらに次の構成c〜eを備えることが
望ましいc.所定区間の吸気通路形状を直線形状とすること。 d.所定区間の吸気通路をそれ以外の吸気通路とは別体
の通路アダプタによって形成すること。 e.所定区間の吸気通路の長さを吸気ポート内直径の約
1.5〜3.5倍の範囲に設定すること。
C. Air intake passage of air control valve between cylinders
And the intake air flow in a predetermined section immediately upstream of the air control valve.
The road shape should be approximately the same for each cylinder. But this intake
Regarding the passage, the following configurations c to e may be further provided.
Desirable . c. The shape of the intake passage in the predetermined section is linear. d. The intake passage for the specified section is separate from the other intake passages
Formed by a passage adapter. e. The length of the intake passage in the specified section is
Set in the range of 1.5 to 3.5 times.

【0013】D.各吸気ポートをシリンダ内で縦渦を生
起する形状に形成し、特に吸気ポートは機関燃焼室に接
続する曲線部とその上流側の直線部とを有し、曲線部分
の中心線の平均半径が50mm以上であり、直線部分の
中心線が水平面となす角度が10〜30度の範囲内であ
ること
D. Each intake port is formed in a shape that generates a vertical vortex in the cylinder, and especially the intake port is in contact with the engine combustion chamber.
A curved portion having a continuous curved portion and a straight portion on the upstream side thereof.
The average radius of the center line is 50 mm or more,
The angle between the center line and the horizontal plane is within the range of 10 to 30 degrees.
That .

【0014】E.空気制御弁開口部側の吸気弁が早期に
開くように位相差を有して開弁駆動される2つの吸気弁
を備えること。
E. Two intake valves that are driven to open with a phase difference so that the intake valve on the air control valve opening side opens earlier are provided.

【0015】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関を前提として、これら各手段の具体的な
組み合わせとして推奨されるのは、第1には、吸気コレ
クタ集合部から分岐して機関の各吸気ポートに至る複数
の吸気通路を配設すると共に、部分的に開口部を有し希
薄空燃比運転時には閉状態制御される空気制御弁を各
吸気ポート付近に介装し、前記複数の吸気通路を、各気
筒間で等長とし、かつ、前記空気制御弁の直上流の所定
区間の形状を各気筒間で略同一とすることである。
On the premise of a spark ignition type internal combustion engine that dilutes the air-fuel ratio in accordance with the operating conditions, a specific combination of these means is firstly recommended as a branch from the intake collector assembly. with arranging a plurality of intake passages leading to the intake ports of the engine Te, partly during lean air-fuel ratio operation has an aperture interposed air control valve is controlled to the closed state in the vicinity of the intake ports, Each of the plurality of intake passages is
It is the same length between the cylinders, and a predetermined immediately upstream of the air control valve.
This is to make the shape of the section substantially the same between the cylinders .

【0016】第2には、部分的に開口部を有し希薄空燃
比運転時には閉状態に制御される空気制御弁を機関の吸
気ポート付近に介装し、前記吸気ポートを、機関の燃焼
室に接続する曲線部分とその上流側の直線部分とから形
成するとともに、前記曲線部分の中心線の平均半径を5
0mm以上とし、前記直線部分の中心線が水平面となす
角度を10〜30度の範囲内とすることである。
Second, a lean air-fuel system having a partial opening
At the time of specific operation, the air control valve that is controlled to be closed
Interposed in the vicinity of the intake port, and the intake port is
From the curved part connected to the chamber and the straight part upstream
And the average radius of the center line of the curved portion is 5
0 mm or more, and the center line of the straight line portion forms a horizontal plane.
The angle is in the range of 10 to 30 degrees .

【0017】第3には、取付軸よりも上方で、かつ径方
向に片寄った部分に開口部を有し、希薄空燃比運転時に
は閉状態に制御される空気制御弁を機関の吸気ポート付
近に介装し、前記空気制御弁開口部側のものが早期に開
くように位相差を有して開弁駆動される2つの吸気弁を
備えたことである。
Third, it is located above the mounting shaft, and
Has an opening in a part that is offset in the direction
Is equipped with an air control valve that is controlled to the closed state with the intake port of the engine.
The air control valve opening side is opened early.
The two intake valves that are driven to open with a phase difference
It is prepared .

【0018】[0018]

【0019】[0019]

【0020】本発明によれば、このような構成を備える
ことにより、シリンダ内に最適な空気流動場を形成し
て、燃焼の安定性を損なわずにより大きな空燃比域での
希薄空燃比運転が可能となる。
According to the present invention, by providing such a configuration, an optimal air flow field is formed in the cylinder, and the lean air-fuel ratio operation in a larger air-fuel ratio region can be performed without impairing the stability of combustion. It becomes possible.

【0021】以下、本発明の作用ないし効果につき実施
例による実験結果と併せて説明する。なお、タンブル比
とスワール比とを総称する場合に「タンブルスワール
比」と称することにする。
Hereinafter, the operation and effect of the present invention will be described together with the experimental results of the embodiments. It should be noted that the tumble ratio and the swirl ratio are collectively referred to as "tumble swirl ratio".

【0022】[0022]

【実施例】図1〜図3に本発明による火花点火式内燃機
関の実施例を示す。各図において、1は機関本体、2は
シリンダ、3はシリンダヘッド、4は燃焼室、5は点火
プラグ、6は吸気ポート、7は吸気マニホールドを示し
ている。
1 to 3 show an embodiment of a spark ignition type internal combustion engine according to the present invention. In each of the drawings, reference numeral 1 denotes an engine body, 2 denotes a cylinder, 3 denotes a cylinder head, 4 denotes a combustion chamber, 5 denotes a spark plug, 6 denotes an intake port, and 7 denotes an intake manifold.

【0023】図3に示されるように、吸気マニホールド
7はその吸気コレクタ集合部8から分岐して機関1の各
吸気ポート6に至る複数の吸気管9を互いに等長かつ気
筒列方向に対称形状に配設してある。
As shown in FIG. 3, the intake manifold 7 has a plurality of intake pipes 9 branching from the intake collector collecting section 8 and reaching the intake ports 6 of the engine 1 having the same length and being symmetrical in the cylinder row direction. It is arranged in.

【0024】各吸気管9のシリンダヘッド3との接合部
付近には各気筒間で同一形状の直線状の吸気通路を形成
する通路アダプタ10が設けられ、その吸気ポート6に
近い部分には空気制御弁11が介装されている。
A passage adapter 10 for forming a linear intake passage of the same shape between the cylinders is provided near the joint of each intake pipe 9 with the cylinder head 3. A control valve 11 is interposed.

【0025】空気制御弁11は通路アダプタ10を横断
するように略水平に設けられた取付軸12を介して回動
可能に支持されており、図示されないアクチュエータを
介して希薄空燃比運転時には閉位置(図示状態)に制御
される。
The air control valve 11 is rotatably supported via a mounting shaft 12 provided substantially horizontally so as to cross the passage adapter 10, and is closed through an actuator (not shown) in the lean air-fuel ratio operation. (Illustrated state).

【0026】この空気制御弁11には、図1に示される
ように部分的に開口部13が形成されている。この開口
部13は、この場合前記取付軸12よりも上側でかつ片
側に偏った部分を切り欠いた態様で形成されている。
The air control valve 11 is partially formed with an opening 13 as shown in FIG. In this case, the opening 13 is formed in such a manner that a portion deviated to one side above the mounting shaft 12 is cut out.

【0027】閉位置における空気制御弁11は、図2に
示されるように前記開口部13の側が下流側に所定量
(α)だけ傾斜した状態となるように設定されている。
The air control valve 11 in the closed position is set so that the opening 13 is inclined downstream by a predetermined amount (α) as shown in FIG.

【0028】吸気ポート6は、この場合気筒列方向に2
個設けられた吸気弁14,15に対応するように途中か
ら分岐している。また、強い縦渦を生起するためのポー
ト形状として、図2に示されるようにその中心線が水平
面となす角度(θ)を小さく(θ=10〜30度程度)
設定されている。
In this case, the intake port 6
It branches from the middle so as to correspond to the intake valves 14 and 15 provided individually. Further, as shown in FIG. 2, a port shape for generating a strong vertical vortex has a small angle (θ) between its center line and a horizontal plane (θ = about 10 to 30 degrees).
Is set.

【0029】本発明では、例えばこのように火花点火式
内燃機関を構成することにより、希薄空燃比運転時に、
シリンダ内吸気流動のタンブル比が1.6〜3.1、同
じくスワール比が1.8〜3.5となるように図るもの
である。
In the present invention, for example, by configuring the spark ignition type internal combustion engine as described above, during the lean air-fuel ratio operation,
The tumble ratio of the intake air flow in the cylinder is set to 1.6 to 3.1, and the swirl ratio is set to 1.8 to 3.5.

【0030】タンブル、すなわちシリンダ内の縦渦を強
化するポート形状の特徴は、直線的な形状を有すること
と、その通路中心線が水平面となす角度(θ)が小さい
ことである。つまり、吸気行程前半のシリンダ中心側の
吸気弁直下の垂直な空気下降流を極力抑制して、シリン
ダ内の縦渦の生成を妨げないように図るのであり、ポー
ト上側の空気質量流量を大きくするほどタンブルの強度
は大きくなる。例えば、ある種の小型車用内燃機関にお
いては、前記θが約10〜30度で、その下流側の曲線
部分の半径Rが50mm以上であることが、タンブルを生
成するためには有効である。
The characteristics of the port shape for enhancing the tumble, that is, the vertical vortex in the cylinder, are that it has a linear shape and that the angle (θ) that the center line of the passage forms with the horizontal plane is small. In other words, the vertical air descending flow just below the intake valve on the cylinder center side in the first half of the intake stroke is suppressed as much as possible so as not to hinder the generation of longitudinal vortices in the cylinder, and the air mass flow rate above the port is increased. The stronger the tumble, the greater the strength. For example, in a certain kind of internal combustion engine for a small vehicle, it is effective that the above-mentioned θ is about 10 to 30 degrees and the radius R of the curved portion on the downstream side is 50 mm or more in order to generate a tumble.

【0031】図4は、吸気マニホールドの吸気管(ブラ
ンチ)の長さと空気制御弁直上流の長さL(図1参照)
を所定割合で変更して、希薄燃焼時の燃焼安定性を検討
した結果を示すものである。吸気管が長くなるほど各気
筒間での吸気管長さの相対的な差異が少なくなるのであ
り、図に見られるように、この気筒毎の吸気管長さの差
異が小さいほど希薄燃焼時の燃焼安定性が向上している
ことがわかる。すなわち、吸気マニホールドは、その吸
気管が各気筒毎に等長であることが希薄空燃比下で安定
した燃焼性を得るための望ましい条件である。
FIG. 4 shows the length of the intake pipe (branch) of the intake manifold and the length L immediately upstream of the air control valve (see FIG. 1).
Is changed at a predetermined ratio, and the result of studying the combustion stability during lean combustion is shown. The longer the intake pipe, the smaller the relative difference in intake pipe length between the cylinders.As can be seen in the figure, the smaller the difference in intake pipe length for each cylinder, the smaller the combustion stability during lean burn. It can be seen that is improved. That is, it is a desirable condition for the intake manifold to have a stable combustion property under a lean air-fuel ratio when the intake pipe is equal in length for each cylinder.

【0032】また、図4において空気制御弁直上流部の
直線状部分の長さは約100mmで燃焼安定性が最良と
なっている。これはポート内直径の約2.5倍の長さに
相当する。実際上は、ポート内直径の1.5〜3.5倍
の長さであれば希薄燃焼時の安定性を向上させる効果が
得られる。これは、空気制御弁直上流の直線部におい
て、各気筒毎に空気流動の差異が平滑化され、各気筒毎
の空気流動場が均一になるからである。
In FIG. 4, the length of the linear portion immediately upstream of the air control valve is about 100 mm, and the combustion stability is the best. This corresponds to a length of about 2.5 times the inner diameter of the port. Actually, if the length is 1.5 to 3.5 times the inner diameter of the port, the effect of improving the stability during lean combustion can be obtained. This is because the difference in air flow for each cylinder is smoothed in the linear portion immediately upstream of the air control valve , and the air flow field for each cylinder becomes uniform.

【0033】このように、吸気系に関しては、吸気マニ
ホールドの各気筒への吸気管を等長とし、特に好ましく
空気制御弁の直上流にポート内直径の1.5〜3.5
倍の長さを有する互いに略同一形状の吸気通路部分を設
けることにより、各気筒間で空気流動を均一化して、具
体的には燃焼安定限界空燃比値を約1〜1.5(割合と
して5%程度)以上増大させて、機関の希薄燃焼時の燃
焼安定性を高める効果が期待できる。
As described above, regarding the intake system, the intake pipes to the respective cylinders of the intake manifold have the same length, and it is particularly preferable that the diameter of the port inside the port is 1.5 to 3.5 immediately upstream of the air control valve.
By providing intake passage portions having substantially the same shape and having twice the length, the air flow is made uniform among the cylinders. Specifically, the combustion stability limit air-fuel ratio value is set to about 1 to 1.5 (as a ratio). 5%) or more, an effect of improving the combustion stability during lean combustion of the engine can be expected.

【0034】図5に、空気制御弁の開口部位置を種々変
更して、希薄燃焼における安定燃焼限界となる空燃比を
調べた結果を示す。この図から、縦渦の強さを示すタン
ブル比と水平渦の強さを示すスワール比にはそれぞれに
最適値があり、通常はタンブル比が1.6〜2.2、ス
ワール比が1.8〜3.2の範囲が最適であることがわ
かる。ただし、点火系の出力を増大させることにより、
それだけ着火不良の機会が減少することから、タンブル
比は2.2〜3.1、スワール比は1.8〜3.5と最
適値の範囲が拡大される。
FIG. 5 shows the results obtained by variously changing the position of the opening of the air control valve and examining the air-fuel ratio which becomes the stable combustion limit in lean combustion. From this figure, there is an optimum value for each of the tumble ratio indicating the strength of the vertical vortex and the swirl ratio indicating the strength of the horizontal vortex. Usually, the tumble ratio is 1.6 to 2.2 and the swirl ratio is 1. It turns out that the range of 8-3.2 is optimal. However, by increasing the output of the ignition system,
Since the chance of poor ignition decreases accordingly, the range of the optimum value is expanded, with the tumble ratio being 2.2 to 3.1 and the swirl ratio being 1.8 to 3.5.

【0035】詳細には、タンブル比が強いと乱れの生成
が大きく、この乱れの生成により希薄燃焼時の安定性が
大きく影響されるので、図5に示されるように同一の燃
焼安定性を示す線が水平に近くなる。一方、タンブル比
が大きくなると、図6に示されるように同一の乱れ強さ
に対するサイクル毎の平均流速の変動が大きくなる。こ
のサイクル毎の平均流速の変動が大きくなると、図7に
示されるように燃焼安定限界となる空燃比が濃方向へ移
動してしまう。なお、図示されるように、各吸気ポート
毎に燃料を噴射供給するMPi方式では、マニホールド
集合部よりも上流側から各気筒分の燃料をまとめて供給
するSPi方式に比較して、平均流速のサイクル毎の変
動の影響を強く受け、したがってこれを抑制することが
より重要である。また、同一の空燃比で運転していると
タンブル比が相対的に増大するほど燃焼安定性が悪くな
る。これらのことから、シリンダ内の水平渦は縦渦のも
つサイクル毎の平均流速の変動が大きくなるという欠点
を補うものであり、空気流動場のサイクル毎の変動を抑
制する効果があることがわかる。
More specifically, when the tumble ratio is strong, the generation of turbulence is large, and the generation of turbulence greatly affects the stability during lean combustion. Therefore, the same combustion stability is exhibited as shown in FIG. The line becomes nearly horizontal. On the other hand, when the tumble ratio increases, as shown in FIG. 6, the fluctuation of the average flow velocity in each cycle for the same turbulence intensity increases. When the fluctuation of the average flow velocity in each cycle becomes large, the air-fuel ratio which becomes the combustion stability limit moves in the rich direction as shown in FIG. As shown in the figure, the MPi system that injects and supplies fuel to each intake port has an average flow velocity lower than the SPi system that collectively supplies fuel for each cylinder from the upstream side of the manifold assembly. It is strongly influenced by cycle-to-cycle variations and it is therefore more important to control it. In addition, when operating at the same air-fuel ratio, the combustion stability becomes worse as the tumble ratio relatively increases. From these facts, it can be understood that the horizontal vortex in the cylinder compensates for the drawback that the vertical vortex has a large fluctuation in the average flow velocity in each cycle, and has an effect of suppressing the fluctuation of the air flow field in each cycle. .

【0036】図8に、このような知見に基づく最適なタ
ンブルスワール領域を示す。この図から、おおむねタン
ブル比は1.6〜2.8、スワール比は1.8〜3.2
の範囲に最適値があることがわかる。ただし、図5と図
8の結果は点火系を格別に強化していない条件でのもの
であり、実用的にはさらに強化した点火系を用いること
により、安定燃焼限界となる空燃比は大きくなり、タン
ブル比、スワール比ともに若干大きくても燃焼は安定す
る。
FIG. 8 shows an optimal tumble swirl region based on such findings. From this figure, the tumble ratio is generally 1.6 to 2.8, and the swirl ratio is 1.8 to 3.2.
It can be seen that there is an optimum value in the range. However, the results in FIGS. 5 and 8 are obtained under conditions where the ignition system is not particularly strengthened. In practice, the use of a further enhanced ignition system increases the air-fuel ratio at which the stable combustion limit is reached. Even if both the tumble ratio and the swirl ratio are slightly higher, the combustion is stable.

【0037】点火系の強化とは、放電電圧の放電期間を
増大させ、放電エネルギを増大させることである。その
ためには一般に点火コイルの改良と、大きな放電エネル
ギに耐えるだけの点火プラグの耐久性向上が必要であ
る。ただし、点火系の過度の強化は、点火コイルの駆動
エネルギに機関動力が消費されて燃費の悪化を招くと共
に点火プラグの消耗を促すので、点火系の強化にはある
程度の限界がある。
The enhancement of the ignition system is to increase the discharge period of the discharge voltage and increase the discharge energy. For this purpose, it is generally necessary to improve the ignition coil and the durability of the ignition plug to withstand a large discharge energy. However, excessive strengthening of the ignition system consumes engine power for driving energy of the ignition coil, thereby deteriorating fuel consumption and promoting consumption of the spark plug. Therefore, there is a certain limit to strengthening the ignition system.

【0038】図9は、実用上許容されるレベルで強化し
た点火系でのタンブル比およびスワール比に対する安定
燃焼限界を示したもので、タンブル比=2.7、スワー
ル比=2.7で最適となっており、既述した通り、タン
ブル比が2.2〜3.1、スワール比が1.8〜3.5
の範囲で燃焼改善効果が見られる。
FIG. 9 shows a stable combustion limit with respect to the tumble ratio and the swirl ratio in the ignition system reinforced at a practically acceptable level. The optimum tumble ratio is 2.7 and the swirl ratio is 2.7. As described above, the tumble ratio is 2.2 to 3.1, and the swirl ratio is 1.8 to 3.5.
The combustion improvement effect can be seen in the range.

【0039】次に、空気制御弁開口部の重心位置が燃焼
安定性に及ぼす影響について説明する。図10は、空気
制御弁開口部の重心位置と希薄燃焼時の安定燃焼限界空
燃比の関係を示したものである。空気制御弁開口部の重
心位置には最適値があり、製造誤差やエンジン諸元の相
違を考慮して最適値の95%程度の効果を得ることを前
提条件とすると、通路中心から開口部重心点に引いた線
分が取付軸となす角度(β)が45〜70度の範囲内に
あることが必要であり、望ましくはβ=50〜55度程
度とする。この開口部構成と、上述したタンブルを生起
する吸気ポート(タンブル強化ポート)との組み合わせ
により、上述したタンブル比=2.7、スワール比=
2.7という最適値を得ることが可能となる。
Next, the effect of the position of the center of gravity of the opening of the air control valve on combustion stability will be described. FIG. 10 shows air
4 shows the relationship between the position of the center of gravity of the control valve opening and the stable combustion limit air-fuel ratio during lean combustion. There is an optimum value for the position of the center of gravity of the opening of the air control valve, and if it is assumed that an effect of about 95% of the optimum value is obtained in consideration of manufacturing errors and differences in engine specifications, the center of gravity of the opening from the passage center. It is necessary that the angle (β) between the line drawn at the point and the mounting axis is in the range of 45 to 70 degrees, and preferably β is about 50 to 55 degrees. By the combination of this opening configuration and the intake port (tumble enhancement port) that generates the above-described tumble, the above-described tumble ratio = 2.7 and swirl ratio =
It is possible to obtain an optimum value of 2.7.

【0040】なお、タンブル強化ポートを併用せず、開
口部を設けた空気制御弁のみでタンブルを生成すること
も可能であるが、一般に、タンブル強化ポートを併用し
たほうが空気制御弁の開口部面積を大きく取れるので、
より高負荷域まで希薄燃焼運転を行なえるという利点が
得られる。
Although it is possible to generate a tumble only with the air control valve provided with the opening without using the tumble reinforcing port together, it is generally better to use the tumble reinforcing port together with the opening area of the air control valve. You can get
The advantage is obtained that the lean burn operation can be performed up to a higher load range.

【0041】次に閉位置において空気制御弁上部が流れ
の下流側に所定量だけ傾斜するように設定する点につい
て説明すると、これにより図11に示されるように燃焼
安定効果が向上する。これは、図12にされるように、
空気制御弁傾斜により乱れの生成はそのままに、空気制
御弁開口部への吸気の流れが整えられて、平均減速のサ
イクル変動が抑えられるからである。図13は、空気制
御弁傾斜角(α)と安定燃焼効果の関係を示したもので
ある。図示されるように、空気制御弁傾斜角が20〜3
0度が最も燃焼安定性の向上を期待できる範囲である。
傾斜角0度付近では取付バラツキに原因して、設定でき
る空燃比の幅が小さくなってしまうが、20〜30度の
範囲で空気制御弁傾斜角を設定することにより、設定で
きる空燃比の幅が最大となり、したがって仮に傾斜角度
に取付上の誤差があってもこれを十分に吸収することが
できる。
Next, the setting of the upper portion of the air control valve so as to be inclined by a predetermined amount toward the downstream side of the flow in the closed position will be described. This improves the combustion stabilizing effect as shown in FIG. This is, as shown in FIG.
Generation of turbulence by the air control valve inclination is intact, the air system
This is because the flow of the intake air to the valve opening is adjusted, and the cycle fluctuation of the average deceleration is suppressed. FIG. 13 shows the air control.
It shows the relationship between the valve inclination angle (α) and the stable combustion effect. As shown, the air control valve inclination angle 20-3
0 degree is the range in which improvement in combustion stability can be expected most.
When the inclination angle is around 0 degree, the range of the air- fuel ratio that can be set becomes small due to the mounting variation. However, by setting the inclination angle of the air control valve in the range of 20 to 30 degrees, the width of the air-fuel ratio that can be set is set. Is maximized, and therefore, even if there is an error in mounting the inclination angle, this can be sufficiently absorbed.

【0042】一方、図1または図2に示されるように吸
気弁を2個設けた機関の場合には、空気制御弁開口部に
臨む吸気弁(図1では吸気弁15)の方を他方よりも早
期に開弁させることにより、図14に示されるように燃
焼安定性を向上させることができる。これは、空気制御
開口部側の吸気弁を先に開弁させることにより、当該
吸気弁に対応する一方の吸気ポートのスワール・タンブ
ル生成のきっかけ取りが安定して得られ、その結果とし
て、図15に示されるように、乱れの生成はそのまま
に、サイクル毎の平均流速の変動が抑制されるからであ
る。
On the other hand, in the case of an engine provided with two intake valves as shown in FIG. 1 or FIG. 2, the intake valve (the intake valve 15 in FIG. 1) facing the air control valve opening is set to be smaller than the other. By opening the valve at an early stage, the combustion stability can be improved as shown in FIG. This is, air control
By opening the intake valve on the valve opening side first, a trigger for swirl tumble generation of one intake port corresponding to the intake valve can be stably obtained, and as a result, as shown in FIG. As described above, the fluctuation of the average flow velocity in each cycle is suppressed while generating the turbulence as it is.

【0043】以上のように、本発明はタンブル比および
スワール比をともに2.7前後に設定することにより最
適な希薄燃焼運転性能を得たものであり、このようなタ
ンブルスワール比の設定を実現する具体的な構成とし
て、吸気マニホールド構造の等長・対称化、所定位置に
開口部を有する空気制御弁とその取付傾斜角度の設定、
吸気ポートのタンブル強化ポート化、吸気2弁の位相差
開弁設定等の手段を提案するものであるが、前記各手段
はあくまでも一構成例であり、他の構成を採用した場合
においても前記本発明の最適タンブルスワール比の設定
を行うことにより、希薄燃焼限界の拡大ないし希薄燃焼
機関の安定性向上効果を期待できる。
As described above, according to the present invention, the optimum lean burn operation performance is obtained by setting both the tumble ratio and the swirl ratio to around 2.7, and such setting of the tumble swirl ratio is realized. As a specific configuration, the intake manifold structure is made equal length and symmetrical, an air control valve having an opening at a predetermined position, and setting of the mounting inclination angle thereof,
Means such as a tumble strengthening port of the intake port and setting of a phase difference valve opening of the two intake valves are proposed. However, each of the above means is merely an example of the configuration, and even if other configurations are adopted, the above-described means is not required. By setting the optimum tumble swirl ratio of the present invention, it is possible to expect an effect of expanding the lean burn limit or improving the stability of the lean burn engine.

【0044】また、前記の各手段を実施するにあたって
も、これらは機関の要求仕様等に応じて必ずしもすべて
を兼備させる必要はない。例えばボア/ストローク比が
0.8〜0.9程度のロングストローク型の機関では、
ピストン速度が速いので吸気ポートをタンブル強化ポー
トとする必要は必ずしもなく、上述した空気制御弁の傾
斜角αおよび空気制御弁開口部重心角βの最適化と、吸
気2弁の位相差の設定により、最適なタンブルスワール
比を実現することが可能である。ただし、この場合は吸
気ポートによるタンブル生成を行わない分だけ、空気制
御弁開口部でのタンブル生成を強化するのが望ましく、
そのためには例えば図10の符号Sに示されるように重
心角βが60〜70度の範囲となるように設定する。ま
た、吸気2弁の位相差は例えば図14に示されるように
クランク角度にして8度程度とする。
In carrying out the above-mentioned means, it is not always necessary to combine all of them in accordance with the required specifications of the engine. For example, in a long stroke type engine having a bore / stroke ratio of about 0.8 to 0.9,
The piston speed is high need not necessarily be the intake port and the tumble reinforcing port, and optimizing the inclination angle α and the air control valve opening centroid angle β of the above described air control valve, by setting the phase difference of the intake 2 valves It is possible to realize an optimum tumble swirl ratio. However, in this case, the air control only
It is desirable to enhance tumble generation at the orifice opening,
For this purpose, for example, the center of gravity angle β is set to be in a range of 60 to 70 degrees as shown by a reference symbol S in FIG. The phase difference between the two intake valves is, for example, about 8 degrees as a crank angle as shown in FIG.

【0045】図16は、本発明を具現化するための上記
の各手段とそのいくつかの組み合わせによる効果を燃焼
限界空燃比で示したものである。図示されるように、吸
気2弁形式の機関に空気制御弁を設けただけの従来例に
比較すると、タンブル強化ポート(上記本発明の手段
D)、空気制御弁傾斜取付け(同じく手段Bのa)、
気制御弁直前の直線同一形状化を含む吸気系の等長・対
称化(同じく手段A,C)、吸気2弁の位相差開弁設定
(同じく手段E)等を個々に適用してもある程度の燃焼
限界向上効果が得られるが、特にこれらを組み合わせた
うえで、空気制御弁開口部重心位置を最適設定すること
(同じく手段Bのb)により、図中の符号5,9,10
のグラフに見られるように顕著な効果が得られる。ま
た、吸気2弁に位相差を与えるものとした場合には、符
号11に見られるようにタンブル強化ポートを備えない
構成においても十分に優れた燃焼改善効果が得られる。
FIG. 16 shows the effect of each of the above-described means for embodying the present invention and some combinations thereof as a combustion limit air-fuel ratio. As shown in the figure, as compared with a conventional example in which an air control valve is merely provided in an engine of a two-intake type, the tumble reinforced port (the means D of the present invention described above), the air control valve is inclinedly mounted (similarly, a ), Empty
Even if the intake system is made equal length and symmetrical including the same linear shape immediately before the air control valve (same means A and C), the phase difference valve opening setting of the two intake valves (same means E), etc. The combustion limit improving effect can be obtained. In particular, by combining them and setting the position of the center of gravity of the air control valve opening optimally (same means b), reference numerals 5, 9, 10 in the figure are used.
A remarkable effect can be obtained as shown in the graph of FIG. Further, when a phase difference is given to the two intake valves, a sufficiently excellent combustion improvement effect can be obtained even in a configuration without a tumble enhancement port as indicated by reference numeral 11.

【0046】[0046]

【発明の効果】以上を要するに本発明は、火花点火式内
燃機関において、シリンダ内のタンブル成分による適度
な乱れの確保とスワール成分による平均流速のサイクル
変動の抑制とにより希薄燃焼時の燃焼安定化に有効なシ
リンダ内の空気流動場が得られるという知見に基づいて
最適なタンブル比およびスワール比を付与すると共に、
これを実現するための具体的な手段として、吸気管構成
の等長・対称化、空気制御弁の開口部重心位置の最適
化、空気制御弁の傾斜取付角度の最適化、タンブル強化
ポート形状、位相差を有して開弁する吸気2弁形式等の
構成を提案するものであり、これらの構成を備えること
により、希薄燃焼限界をより向上させ、または希薄燃焼
域での燃焼安定性を改善できるという効果が奏されるも
のである。
In summary, the present invention relates to a spark-ignition internal combustion engine which stabilizes combustion during lean combustion by ensuring appropriate turbulence due to a tumble component in a cylinder and suppressing cycle fluctuations of an average flow velocity due to a swirl component. While giving the optimal tumble ratio and swirl ratio based on the knowledge that an effective air flow field in the cylinder can be obtained,
Specific means for realizing this include: making the intake pipe configuration isometric and symmetric, optimizing the position of the center of gravity of the opening of the air control valve, optimizing the inclination mounting angle of the air control valve, the shape of the tumble reinforced port, It proposes a configuration such as a two-valve intake valve that opens with a phase difference. By providing these configurations, the lean burn limit is further improved, or the combustion stability in the lean burn region is improved. This has the effect of being able to do so.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による火花点火式内燃機関の一実施例の
概略平面断面図。
FIG. 1 is a schematic plan sectional view of one embodiment of a spark ignition type internal combustion engine according to the present invention.

【図2】同じく実施例の概略縦断面図。FIG. 2 is a schematic longitudinal sectional view of the embodiment.

【図3】同じく実施例の吸気マニホールドの構成を示す
ための概略平面図。
FIG. 3 is a schematic plan view showing the configuration of the intake manifold of the embodiment.

【図4】吸気管の寸法と安定燃焼限界との関係を示した
線図。
FIG. 4 is a diagram showing a relationship between a size of an intake pipe and a stable combustion limit.

【図5】吸気のタンブル比およびスワール比と安定燃焼
限界の関係を示した線図。
FIG. 5 is a diagram showing a relationship between a tumble ratio and a swirl ratio of intake air and a stable combustion limit.

【図6】吸気のタンブル比成分と平均流速のサイクル変
動との関係を示した線図。
FIG. 6 is a diagram showing a relationship between a tumble ratio component of intake air and a cycle variation of an average flow velocity.

【図7】吸気の平均流速のサイクル変動と安定燃焼限界
との関係を示した線図。
FIG. 7 is a diagram showing a relationship between a cycle variation of an average flow velocity of intake air and a stable combustion limit.

【図8】空気制御弁の開口部構成とタンブルスワール領
域の関係を示した説明図。
FIG. 8 is an explanatory diagram showing a relationship between an opening configuration of the air control valve and a tumble swirl region.

【図9】最適なタンブルスワール領域を安定燃焼限界と
の関係において示した説明図。
FIG. 9 is an explanatory diagram showing an optimum tumble swirl region in relation to a stable combustion limit.

【図10】空気制御弁の開口部重心角と安定燃焼限界と
の関係を示した説明図。
FIG. 10 is an explanatory diagram showing a relationship between an opening center-of-gravity angle of the air control valve and a stable combustion limit.

【図11】空気制御弁の傾斜角設定に基づく燃焼改善効
果の説明図。
FIG. 11 is an explanatory diagram of the combustion improvement effect based on the setting of the inclination angle of the air control valve.

【図12】空気制御弁の傾斜角と吸気の平均流速のサイ
クル変動との関係を示した線図。
FIG. 12 is a diagram showing a relationship between the inclination angle of the air control valve and the cycle fluctuation of the average flow velocity of intake air.

【図13】空気制御弁の傾斜角と安定燃焼限界との関係
を傾斜角毎に示した線図。
FIG. 13 is a diagram showing the relationship between the inclination angle of the air control valve and the stable combustion limit for each inclination angle.

【図14】吸気2弁を位相差を設けて開弁させたときの
燃焼改善効果の説明図。
FIG. 14 is an explanatory diagram of a combustion improvement effect when two intake valves are opened with a phase difference provided therebetween.

【図15】吸気2弁の開弁位相差と吸気の平均流速のサ
イクル変動との関係を示した線図。
FIG. 15 is a diagram showing a relationship between a valve opening phase difference between two intake valves and a cycle variation of an average flow velocity of intake air.

【図16】本発明の実施例による効果を構成要件毎に従
来例との比較において示した説明図。
FIG. 16 is an explanatory diagram showing the effect of the embodiment of the present invention for each component in comparison with the conventional example.

【符号の説明】[Explanation of symbols]

1 内燃機関本体 2 シリンダ 3 シリンダヘッド 4 燃焼室 5 点火プラグ 6 吸気ポート 7 吸気マニホールド 8 吸気コレクタ集合部 9 吸気管(ブランチ) 10 通路アダプタ 11 空気制御弁 12 空気制御弁の取付軸 13 空気制御弁の開口部 14 第1の吸気弁 15 第2の吸気弁 θ 吸気ポートの進入角 α 空気制御弁の傾斜角 β 空気制御弁の開口部の重心角 DESCRIPTION OF SYMBOLS 1 Internal combustion engine main body 2 Cylinder 3 Cylinder head 4 Combustion chamber 5 Spark plug 6 Intake port 7 Intake manifold 8 Intake collector assembly 9 Intake pipe (branch) 10 Passage adapter 11 Air control valve 12 Air control valve mounting shaft 13 Air control valve Opening 14 first intake valve 15 second intake valve θ entrance angle of intake port α inclination angle of air control valve β angle of center of gravity of opening of air control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02F 1/42 F02F 1/42 F F02M 69/00 360 F02M 69/00 360C 合議体 審判長 西野 健二 審判官 清田 栄章 審判官 氏原 康宏 (56)参考文献 特開 昭63−266122(JP,A) 特開 平5−231276(JP,A) 特開 平5−202758(JP,A) 実開 昭63−182231(JP,U) 実開 昭55−114355(JP,U) 実開 平4−14736(JP,U)────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI F02F 1/42 F02F 1/42 F F02M 69/00 360 F02M 69/00 360C Joint panel Referee Chief Kenji Nishino Referee Judge Kiyota Eisai Yasuhiro Ujihara (56) References JP-A-63-266122 (JP, A) JP-A-5-231276 (JP, A) JP-A-5-202758 (JP, A) Jpn. ) Japanese Utility Model Showa 55-114355 (JP, U) Japanese Utility Model Hei 4-14736 (JP, U)

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、シリンダ内で縦渦を生起する形状の吸気ポートと、 吸気通路内に介装され、部分的に開口部が形成された空
気制御弁と、 を備え、 前記空気制御弁を閉状態とする希薄空燃比運転時に、シ
リンダ内吸気流動のタンブル比が1.6〜3.1、同じ
くスワール比が1.8〜3.5となるように前記空気制
御弁の開口部の位置を設定する ことを特徴とする火花点
火式内燃機関。
1. A spark ignition type internal combustion engine in which an air-fuel ratio is made lean according to operating conditions, an intake port having a shape for generating a vertical vortex in a cylinder , and an opening portion partially interposed in an intake passage. Sky formed
Comprising a gas control valve, and the air control valve during lean air-fuel ratio operation to a closed state,
Tumble ratio of the intake air flow in the Linda is 1.6 to 3.1, same
Air control so that the swirl ratio is 1.8 to 3.5.
A spark ignition type internal combustion engine, wherein a position of an opening of a control valve is set .
【請求項2】前記吸気通路は吸気コレクタ集合部から分
岐して各気筒の吸気ポートに至るように各気筒毎に設け
られ、 前記吸気通路を各気筒間で等長とし、かつ、前記空気制
御弁の直上流の所定区間の吸気通路形状を各気筒間で略
同一とすることを特徴とする請求項1に記載の 火花点火
式内燃機関。
2. The intake passage is separated from an intake collector assembly.
Provided for each cylinder so that it branches to the intake port of each cylinder
The intake passage is made equal in length between the cylinders, and
The shape of the intake passage in a predetermined section immediately upstream of the valve is roughly
The spark ignition type internal combustion engine according to claim 1, wherein the internal combustion engine is the same.
【請求項3】前記所定区間の形状が直線形状であること
を特徴とする請求項2に記載の火花点火式内燃機関。
3. A spark ignition type internal combustion engine according to claim 2, wherein said predetermined section has a linear shape.
【請求項4】前記所定区間の吸気通路は、それ以外の吸
気通路とは別体の通路アダプタによって形成されている
ことを特徴とする請求項2または3に記載の火花点火式
内燃機関。
4. The spark ignition type internal combustion engine according to claim 2, wherein the intake passage in the predetermined section is formed by a passage adapter separate from the other intake passages.
【請求項5】前記所定区間の吸気通路の長さは、吸気ポ
ート内直径の約1.5〜3.5倍の範囲内に設定されて
いることを特徴とする請求項2から4のいずれか一つに
記載の火花点火式内燃機関。
5. The intake passage according to claim 2, wherein a length of the intake passage in the predetermined section is set within a range of about 1.5 to 3.5 times an intake port inner diameter. A spark ignition type internal combustion engine according to any one of the preceding claims.
【請求項6】前記空気制御弁は、その取付軸よりも上側
でかつ径方向に片寄った部分に開口部が形成されている
ことを特徴とする請求項2から5のいずれか一つに記載
の火花点火式内燃機関。
6. The air control valve according to claim 2, wherein an opening is formed at a position above the mounting shaft and offset in the radial direction. Spark ignition type internal combustion engine.
【請求項7】前記空気制御弁の開口部は、その重心点と
通路中心とを結ぶ線分の取付軸中心線となす角度が上方
に45〜75度の範囲で設定されていることを特徴とす
る請求項6に記載の火花点火式内燃機関。
7. An opening of said air control valve, wherein an angle formed by a center line of a mounting axis of a line connecting a center of gravity of the air control valve and the center of the passage is set upward in a range of 45 to 75 degrees. The spark ignition type internal combustion engine according to claim 6, wherein
【請求項8】前記空気制御弁の開口部は、その重心点と
通路中心とを結ぶ線分の取付軸中心となす角度が上方に
60〜70度の範囲で設定されていることを特徴とする
請求項6に記載の火花点火式内燃機関。
8. An opening of the air control valve, wherein an angle between the center of a line connecting the center of gravity of the air control valve and the center of the passage is set within an upper range of 60 to 70 degrees. The spark ignition type internal combustion engine according to claim 6.
【請求項9】前記空気制御弁開口部側の吸気弁が早期に
開弁するように位相差を有して駆動される2つの吸気弁
を備えることを特徴とする請求項6から8のいずれか一
つに記載の火花点火式内燃機関。
9. The air intake valve according to claim 6, further comprising two intake valves driven with a phase difference so that the intake valve on the air control valve opening side opens earlier. A spark ignition type internal combustion engine according to any one of the preceding claims.
【請求項10】前記空気制御弁は、閉状態で下流側に所
定量傾斜するように制御されることを特徴とする請求項
2から9のいずれか一つに記載の火花点火式内燃機関。
10. The spark ignition type internal combustion engine according to claim 2, wherein the air control valve is controlled so as to be inclined downward by a predetermined amount in a closed state.
【請求項11】希薄空燃比運転時の前記空気制御弁の所
定量の傾斜角度は、吸気通路中心軸に垂直な横断面に対
して20〜30度の範囲内に設定されていることを特徴
とする請求項10に記載の火花点火式内燃機関。
11. A lean angle of the air control valve at the time of lean air-fuel ratio operation is set within a range of 20 to 30 degrees with respect to a cross section perpendicular to the central axis of the intake passage. The spark ignition type internal combustion engine according to claim 10, wherein
【請求項12】前記各吸気ポートは、シリンダ内で縦渦
を生起する形状に形成されていることを特徴とする請求
項2から11のいずれか一つに記載の火花点火式内燃機
関。
12. The spark ignition type internal combustion engine according to claim 2, wherein each of the intake ports is formed in a shape that generates a vertical vortex in a cylinder.
【請求項13】シリンダ内で縦渦を生起する形状の吸気
ポートは、機関の燃焼室に接続する曲線部分とその上流
側の直線部分とを有し、前記曲線部分の中心線の平均半
径が50mm以上であり、前記直線部分の中心線が水平
面となす角度が10〜30度の範囲内であることを特徴
とする請求項12に記載の火花点火式内燃機関。
13. An intake port having a shape that generates a vertical vortex in a cylinder has a curved portion connected to a combustion chamber of the engine and a straight portion on an upstream side of the curved portion. 13. The spark ignition type internal combustion engine according to claim 12, wherein the angle is 50 mm or more, and an angle between a center line of the straight portion and a horizontal plane is within a range of 10 to 30 degrees.
JP32378993A 1993-12-22 1993-12-22 Spark ignition internal combustion engine Expired - Fee Related JP3332177B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32378993A JP3332177B2 (en) 1993-12-22 1993-12-22 Spark ignition internal combustion engine
DE4445777A DE4445777B4 (en) 1993-12-22 1994-12-21 gasoline engine
KR1019940036508A KR0167381B1 (en) 1993-12-22 1994-12-21 Spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32378993A JP3332177B2 (en) 1993-12-22 1993-12-22 Spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07180559A JPH07180559A (en) 1995-07-18
JP3332177B2 true JP3332177B2 (en) 2002-10-07

Family

ID=18158638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32378993A Expired - Fee Related JP3332177B2 (en) 1993-12-22 1993-12-22 Spark ignition internal combustion engine

Country Status (3)

Country Link
JP (1) JP3332177B2 (en)
KR (1) KR0167381B1 (en)
DE (1) DE4445777B4 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743419A1 (en) * 1997-10-01 1999-04-15 Ford Global Tech Inc Inlet arrangement of an internal combustion engine
JP3611471B2 (en) * 1999-01-28 2005-01-19 株式会社日立製作所 In-cylinder internal combustion engine
WO2001036796A1 (en) 1999-11-12 2001-05-25 Siemens Canada Limited Integrated swirl control valve
US6155229A (en) * 1999-12-21 2000-12-05 Ford Global Technologies, Inc. Charge motion control valve in upper intake manifold
US6394066B1 (en) * 2000-07-11 2002-05-28 Ford Global Tech., Inc. Charge motion control valve
JP3723086B2 (en) 2001-03-16 2005-12-07 トヨタ自動車株式会社 Intake device for internal combustion engine
DE10207914A1 (en) 2002-02-23 2003-09-04 Porsche Ag Cylinder head for an internal combustion engine
JP4523456B2 (en) * 2005-03-01 2010-08-11 本田技研工業株式会社 Variable valve engine
CN204060916U (en) 2014-02-26 2014-12-31 西港能源有限公司 For the intake duct of gaseous fuel explosive motor and the configuration of valve seat
CN108457777B (en) * 2017-02-17 2023-09-29 宇通客车股份有限公司 Air inlet box, air inlet system and vehicle
JP7306832B2 (en) * 2019-01-29 2023-07-11 ダイハツ工業株式会社 cylinder head

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076395B2 (en) * 1985-11-08 1995-01-30 トヨタ自動車株式会社 Internal combustion engine intake system
JPH0242122A (en) * 1988-08-03 1990-02-13 Toyota Motor Corp Intake device for internal combustion engine with turbocharger
JP2995200B2 (en) * 1990-09-06 1999-12-27 株式会社日本気化器製作所 Engine air supply

Also Published As

Publication number Publication date
JPH07180559A (en) 1995-07-18
KR0167381B1 (en) 1998-12-15
DE4445777A1 (en) 1995-06-29
KR950019106A (en) 1995-07-22
DE4445777B4 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
EP0137394B1 (en) Intake arrangement for internal combustion engine
JPH07119472A (en) Intake device for engine
JP3332177B2 (en) Spark ignition internal combustion engine
JPH09112284A (en) Reciprocation-piston internal combusion engine
US6904891B2 (en) Intake system of internal combustion engine
JP3494284B2 (en) Intake port structure of 4-stroke cycle internal combustion engine
US4625687A (en) Intake arrangement for internal combustion engine
JPH0745817B2 (en) Direct injection multi-cylinder diesel engine
US4520776A (en) Intake port structure for internal combustion engines
CN101523018A (en) Internal combustion engine
JPH0861072A (en) Intake controller for engine
JPS6282222A (en) Combustion chamber structure in engine
JPH08135455A (en) Intake control device for engine
US5934246A (en) Intake and exhaust method for achieving lean combustion in an engine
JP3104499B2 (en) Stratified combustion internal combustion engine
JP2001173513A (en) Intake system of engine and its valve seat
EP0982481A2 (en) In-cylinder injection type of engine
JPH0415939Y2 (en)
JP2003502550A (en) Piston type internal combustion engine equipped with secondary air supply flow generating means
JP2936988B2 (en) Stratified combustion internal combustion engine
JP2906932B2 (en) Internal combustion engine
JP3427614B2 (en) Intake device for internal combustion engine
JPH0232826Y2 (en)
JPH109050A (en) Direct fuel cylinder injection type spark ignition engine
JP3500701B2 (en) Engine intake system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees