JPS58220923A - Air intake control device of internal-combustion engine - Google Patents

Air intake control device of internal-combustion engine

Info

Publication number
JPS58220923A
JPS58220923A JP57105019A JP10501982A JPS58220923A JP S58220923 A JPS58220923 A JP S58220923A JP 57105019 A JP57105019 A JP 57105019A JP 10501982 A JP10501982 A JP 10501982A JP S58220923 A JPS58220923 A JP S58220923A
Authority
JP
Japan
Prior art keywords
intake
combustion engine
valve
internal combustion
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57105019A
Other languages
Japanese (ja)
Other versions
JPS6350530B2 (en
Inventor
Hidemi Onaka
大仲 英巳
Nobuki Uchitani
内谷 信喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57105019A priority Critical patent/JPS58220923A/en
Priority to US06/504,323 priority patent/US4527519A/en
Publication of JPS58220923A publication Critical patent/JPS58220923A/en
Publication of JPS6350530B2 publication Critical patent/JPS6350530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To improve warming performance of an exhaust system without deteriorating the idle operation property at engine cooling by connecting a fluid pressure operating chamber to a suction delivery port when the rate of warming is less than a prescribed value and also in an idle operation, and otherwise connecting it to the atmosphere. CONSTITUTION:When the cooling water temperature of an internal-combustion engine is lower than a prescribed value, a solenoid valve 27 is turned on at idle operation, and a diaphragm chamber 23 is connected to a suction pipe negative pressure delivery port 29, allowing a valve element 17 to be fully closed. In other operating state except the case described above, power supply to the solenoid valve 27 is stopped, and the atmospheric pressure is fed into the diaphragm chamber 23, allowing the valve element 17 to be fully opened. With the engine cooling water temperature over the prescribed value, the solenoid valve 27 is always turned on, allowing the pressure appearing at the negative pressure delivery port 29 in the suction pipe to be introduced into the diaphragm chamber 23. At the idle operation and a low load operation, negative pressure over the prescribed value is fed into the diaphragm chamber 23.

Description

【発明の詳細な説明】 本発明は、内燃機関の吸気制御l@置に係り、特に可変
吸気スワール方式の吸気ボート構造を有づる内燃機関の
吸気制御装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake control system for an internal combustion engine, and more particularly to an intake control device for an internal combustion engine having a variable intake swirl type intake boat structure.

内燃機関に用いられる可変吸気スワール方式の吸気ボー
ト構造の一つとして、燃焼室への開口端の周りに旋回し
たヘリカル通路と前記ffflrJ端に直線状に通ずる
ストレート通路とを有し、前記ストレート通路の途中に
該ストレート通路を開閉層る吸気制御弁が設けられた吸
気ボー1−構造が本願出願人と同一の出願人により特願
@56−51149号及び特願昭56−120634号
に於て提案されている。
One of the intake boat structures of the variable intake swirl system used in internal combustion engines has a helical passage swirling around an opening end to the combustion chamber and a straight passage leading straight to the ffflrJ end. An intake bow 1 structure in which an intake control valve for opening and closing the straight passage is provided in the middle of the straight passage has been proposed in Japanese Patent Application No. 56-51149 and Japanese Patent Application No. 56-120634 by the same applicant as the present applicant. Proposed.

この吸気ポート構造を備えた内燃機関に於ては、吸気制
御弁によりストレート通路が閉じられている時には吸気
(混合気)の全てがヘリカル通路を流れて燃焼室内へ流
入することにより燃焼室内に強力な暖気スワールが生じ
、これにより見掛は上の火炎速度が速まり、S*混合気
による運転が可能になり、またアイドル運転時の如く内
燃機関が低回転数にて運転されでも安定した運転性が得
られ、アイドル回転数を低く設定することが可能になり
、これに対し吸気制御弁によりストレート通路が間かれ
ている時には吸犠がヘリカル通路に加えてストレー1−
通路を流れて燃焼室内に流入することにより燃焼室内に
強力な吸気スワールが生じなくなるが、吸気ポー1−の
吸気流に対重る流れ抵抗が低下し、充填効率が低下する
ことが回避される。
In an internal combustion engine equipped with this intake port structure, when the straight passage is closed by the intake control valve, all of the intake air (air mixture) flows through the helical passage and into the combustion chamber, creating a powerful flow inside the combustion chamber. A warm air swirl is generated, which increases the apparent flame speed, making it possible to operate with an S* mixture, and also to maintain stable operation even when the internal combustion engine is operated at low rotational speeds, such as when running at idle. On the other hand, when the straight passage is separated by the intake control valve, the intake sacrifice is added to the helical passage and allows the idle speed to be set low.
By flowing through the passage and flowing into the combustion chamber, a strong intake swirl is no longer generated in the combustion chamber, but the flow resistance against the intake air flow at intake port 1- is reduced, and a decrease in charging efficiency is avoided. .

上述の如き吸気ボート構造はこれを有効に利用するlこ
めに、即ら機iの出力を低下づることなくアイドル乃至
低負荷運転時の燃焼を改善層るために、内燃機間がアイ
ドル乃至低負荷にて運転されている時には吸気制御弁に
よりス1−レート通路を閉じ、内燃機関が中乃至高負荷
にて運転されている時には吸気制御弁を開弁1’l b
てス1−レート通路を開くと云う制御を行う制御装置と
組合せて用いられる。
The above-mentioned intake boat structure makes effective use of this, in other words, in order to improve combustion during idle or low load operation without reducing the output of the engine i, the internal combustion engine is When the internal combustion engine is operating at medium to high load, the intake control valve closes the slate passage, and when the internal combustion engine is operating at medium to high load, the intake control valve is opened.
It is used in combination with a control device that controls opening of the slate passage.

土)ホの如く見掛は上の火炎速度が速まると、燃焼速度
が速まり、機関の熱効率が向上4るが、それに伴い排気
ガス温度が低下する。このため機関冷間時もアイドル乃
至低負荷運転時には吸気制御弁によりストレート通路が
閉じられると、^瀉の排気ガスが得られず、機関の排気
系のIIJ!機が遅れるようになる。このため機関排気
系に排気ガス浄化用の触媒コンバータを備えた内燃機関
に於ては、その触媒コンバータの暖機が遅れ、大気中に
放出する排気ガス中の有害成分が増大覆るという問題が
生じる。
As shown in (e), when the apparent flame speed increases, the combustion speed increases and the thermal efficiency of the engine improves, but the exhaust gas temperature decreases accordingly. For this reason, if the straight passage is closed by the intake control valve during idling or low-load operation even when the engine is cold, no exhaust gas will be obtained, and the engine exhaust system will be damaged. The plane will be delayed. For this reason, in internal combustion engines equipped with a catalytic converter for exhaust gas purification in the engine exhaust system, the warm-up of the catalytic converter is delayed, resulting in an increase in harmful components in the exhaust gas released into the atmosphere. .

機関冷間時には機関負荷に拘らず吸気制御弁が常に全開
されれば、排気ガス温度が上昇し、排気系の暖機が早ま
るが、しかしこの場合には本来、運転性が悪い機関冷間
時のアイドル運転性がより一層悪化し、機関冷間時のア
イドル回転数を相当高く設定しなければならなくなる。
If the intake control valve is always fully opened when the engine is cold, regardless of the engine load, the exhaust gas temperature will rise and the exhaust system will warm up more quickly. The idling performance of the engine deteriorates further, and the idling speed when the engine is cold must be set considerably high.

本発明は機関冷間時のアイドル運転性を悪化覆ることな
く可及的に排気系の#機が向上づるように図った吸気制
御方法装置を提供せんとザるものである。
SUMMARY OF THE INVENTION The present invention seeks to provide an intake air control method and device which is designed to improve the performance of the exhaust system as much as possible without deteriorating the idling performance when the engine is cold.

以下に添付の図を参照して本発明を実施例について詳細
に説明づる。
The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.

まず第1図乃至第7図を参照して本発明による吸気制御
装置の実施に使用する吸気ポート構造の一実施例を説明
する。第1図乃至第7図に於て、1は内燃機関のシリン
ダヘッドを示しており、該シリンダヘッドは燃焼室2へ
空気と燃料との混合気を導く吸気ボート3を有している
。吸気ポート3はその一端にてシリンダヘッド1の側壁
部に開1−1シ、他端にてシリンダヘッド1の下底壁よ
り燃焼室2へ開口している。ここで吸気ボート3の前記
一端を入口開口端4と称し、また他端を出口開L1端5
と称する。入口開口端4は図示されていない吸気マニホ
ールドに接続され、出口開口端5は核間[1@に取付け
られた円環状の弁座部材6と吸気弁7とにより選択的に
開閉されるようになっている。
First, an embodiment of an intake port structure used to implement an intake control device according to the present invention will be described with reference to FIGS. 1 to 7. 1 to 7, reference numeral 1 indicates a cylinder head of an internal combustion engine, and the cylinder head has an intake boat 3 that guides a mixture of air and fuel into a combustion chamber 2. As shown in FIG. The intake port 3 opens at one end into the side wall of the cylinder head 1 and opens into the combustion chamber 2 from the lower bottom wall of the cylinder head 1 at the other end. Here, one end of the intake boat 3 is referred to as an inlet opening end 4, and the other end is referred to as an outlet opening L1 end 5.
It is called. The inlet opening end 4 is connected to an intake manifold (not shown), and the outlet opening end 5 is selectively opened and closed by an annular valve seat member 6 attached to the internuclear space [1@] and an intake valve 7. It has become.

吸気ボート3は入口開口端4より出口開口端5へ向かう
に従いその出口開口端5の側へ傾斜し、出口開口端5の
近くにて大きく折曲してこれに通じている。出口開口@
5に対向づるボート内壁部(ボート天井壁部)にはガイ
ドベーン10が膨出形成されている。このガイドベーン
の膨出量はその入口開口端4の側より出口開口端5へ向
かうに従い次第に多くなっており、出口開口端5の中心
軸線に対応する部分にてその膨出量が最大になっている
。この最大膨出部分には吸気弁7のステム8が貫通して
おり、またこの部分には弁リテーノ−9が装着されてい
る。ガイドベーン10はその一側部に吸気ポート3の延
在方向に対し入目間【」端4より出口開口端5へ向かう
に従い吸気ボート3の外側へ向けて傾斜した傾斜壁部1
1を有し、また他側部に吸気ポート3の延在方向に対し
平行な直線壁部12を有している。このガイドベーン1
0により吸気ボート3はその断面の一部、即ち図にて上
部空間領域が傾斜壁部11により一側を郭定されて出口
開口端5の周りに旋回したヘリカル通路13と直線’4
112により一側を郭定されて出口開口端5に直線状に
通ずるストレート通路14とに区分されている。
The intake boat 3 is inclined toward the outlet opening end 5 as it goes from the inlet opening end 4 to the outlet opening end 5, and is bent sharply near the outlet opening end 5 to communicate therewith. Exit opening @
A guide vane 10 is formed in a bulging manner on the inner wall of the boat (the ceiling wall of the boat) facing the boat. The amount of bulge of this guide vane gradually increases from the inlet opening end 4 toward the outlet opening end 5, and the amount of bulge reaches its maximum at a portion corresponding to the central axis of the outlet opening end 5. ing. A stem 8 of the intake valve 7 passes through this maximum bulging portion, and a valve retainer 9 is attached to this portion. The guide vane 10 has an inclined wall part 1 on one side thereof which is inclined toward the outside of the intake boat 3 as it goes from the entrance end 4 to the outlet opening end 5 with respect to the extending direction of the intake port 3.
1, and a straight wall portion 12 parallel to the extending direction of the intake port 3 on the other side. This guide vane 1
0, the intake boat 3 has a part of its cross section, that is, the upper space region in the figure is defined on one side by the inclined wall part 11, and the helical passage 13 that turns around the outlet opening end 5 and the straight line '4.
It is divided into a straight passage 14 defined on one side by 112 and communicating linearly with the outlet opening end 5.

シリンダヘッド1には吸気制御弁組立体15が取付Gノ
られている。吸気制御弁組立体15は、シリンダヘッド
1にねじ結合された弁ケース16と、該弁クースに回転
可能に支持されストレート通路14の途中を横切って延
在する板状の弁要素−17と、弁要素17の弁軸18に
取付けられた駆動レバー19とを含んでいる。弁要素1
7は図示されている如き開度位置にあるときストレート
通路14を全開とし、この開度位置よりほぼ90度回動
された位置にあるときストレート通路14を全開にする
An intake control valve assembly 15 is attached to the cylinder head 1. The intake control valve assembly 15 includes a valve case 16 screwed to the cylinder head 1, a plate-shaped valve element 17 rotatably supported by the valve case and extending across the middle of the straight passage 14. and a drive lever 19 attached to the valve stem 18 of the valve element 17. Valve element 1
7 fully opens the straight passage 14 when it is in the opening position as shown, and fully opens the straight passage 14 when it is in a position rotated approximately 90 degrees from this opening position.

ストレート通路14が全開状態にあるときには混合気の
実質的に全てがヘリカル通路13を流れて出口間1」端
5より燃焼室2内に吸入されることにより燃焼室2内に
強力な吸気スワールが生じる。
When the straight passage 14 is fully open, substantially all of the air-fuel mixture flows through the helical passage 13 and is drawn into the combustion chamber 2 from the end 5 between the outlets, creating a strong intake swirl within the combustion chamber 2. arise.

このときにはその吸気スワールに乗って火炎が伝播−4
ることにより見掛U上?火炎速度が速まり、燃焼速度が
速くなる。
At this time, the flame propagates on the intake swirl-4
Is it above the apparent U? The flame speed increases and the combustion rate increases.

弁要素17が開弁し、ストレート通路14が開いている
ときにはそのpH度に応じて混合気の一部がストレート
通路14を流れて出口間口端5より燃焼室2内へ流入す
るようになり、これによりヘリカル通路13を流れる混
合気のヘリカル流が減少し、また減衰され、これに応じ
て燃焼室2内に生じる吸気スワールが減少し、またこれ
と同時に吸気ボート3の吸気流れに対(る流れ抵抗が低
下づる。
When the valve element 17 is opened and the straight passage 14 is open, a part of the air-fuel mixture flows through the straight passage 14 and flows into the combustion chamber 2 from the outlet end 5, depending on the pH level. As a result, the helical flow of the air-fuel mixture flowing through the helical passage 13 is reduced and attenuated, and the intake swirl generated in the combustion chamber 2 is accordingly reduced. Flow resistance decreases.

本発明装置は弁要素17の開閉制御に開するものであり
、本発明装置の一つの実施例が第8図に示されている。
The device of the present invention is used to control the opening and closing of the valve element 17, and one embodiment of the device of the present invention is shown in FIG.

尚、第8図に於て、40は吸気マニホールドを、41は
排気ボートを、42は排気弁を、43は排気マニホール
ドを各々示している。
In FIG. 8, 40 represents an intake manifold, 41 represents an exhaust boat, 42 represents an exhaust valve, and 43 represents an exhaust manifold.

吸気制御弁組立体15の駆動レバー19はダイヤフラム
14[20のロッド21に駆動連結され、該ダイヤフラ
ム装置により回動駆動されるようにな°1いる・ダイヤ
ごうl″装置20はダイit 7ラム22を有し、そ、
のダイヤフラム室23に所定値以上の負圧が導入されて
いない時には圧縮コイルばね24のばね力によりダイヤ
フラム22が図にて下りへ(=J勢されることにより弁
要素17を図示されている如き全開位置にもたらし、こ
れに対しダイ曳7ノラム室23に負圧が導入されている
時にはその負圧の大きさに応じてダイヤフラム22が圧
縮」イルばね24のばね力暢抗して上方へ移動りること
により弁要素17を閉弁方向へ駆動して、イの開度を減
少し、その負圧が所定値以上のとき弁要素17を全閉位
置にもたらづようになっている。ダイヤフラム室23の
ボート25は導管26を軽て電磁切換弁27のポーl−
aに接続されている。
The drive lever 19 of the intake control valve assembly 15 is drivingly connected to the rod 21 of the diaphragm 14 [20] and is rotatably driven by the diaphragm device. 22, and
When a negative pressure of a predetermined value or more is not introduced into the diaphragm chamber 23 of In contrast, when negative pressure is introduced into the noram chamber 23 of the die pulling 7, the diaphragm 22 is compressed according to the magnitude of the negative pressure and moves upward against the spring force of the spring 24. By this, the valve element 17 is driven in the valve closing direction, the opening degree of A is reduced, and when the negative pressure is equal to or higher than a predetermined value, the valve element 17 is brought to the fully closed position. The boat 25 of the diaphragm chamber 23 connects the conduit 26 to the port of the electromagnetic switching valve 27.
connected to a.

%i磁切切換弁27ポートa以外に負圧ボートbと大気
ボートCとを有しており、通電時にはポー1− aをh
圧ポートbに接続し、これに対し非通電時にはボートa
を負圧ポートbに代えて大気ポー1−cに接続づるよう
になっている。大気ボートCは人気に開放され、ポー+
−bは導管28を経て吸気ンーホールド40に設Ltら
れた吸気管負圧取出ポーl−29に接続されている。
%i Magnetic switching valve 27 In addition to port a, it has a negative pressure boat b and an atmospheric boat C, and when energized, port 1-a is connected to h.
Connected to pressure port b, whereas when de-energized, port a
is connected to the atmospheric port 1-c instead of the negative pressure port b. Atmospheric boat C is popularly released, Po+
-b is connected via a conduit 28 to an intake pipe negative pressure outlet port Lt provided in the intake hold 40.

電磁切換弁27に対−4る通電は制卸装置30により制
御されるようになっている。制帥装置30は内燃11間
の冷却水、温度に感応する水温スイッチ31の開閉と車
速センサ32により検出される車速に応じ、冷却水温度
が所定値以下で水温スイッチ31が開いており且申速セ
ンザ32により検出される車速が零に近い所定値以下の
時、即ち機関がアイドル運転されている時のみ電磁切換
弁27に対づる通電を停止し、イれ以外の時には電磁切
換弁27に通電を行うようになっている。
The supply of electricity to the electromagnetic switching valve 27 is controlled by a control device 30. The throttle device 30 operates according to the opening/closing of a water temperature switch 31 that is sensitive to the temperature of the cooling water between the internal combustion engines 11 and the vehicle speed detected by the vehicle speed sensor 32. Only when the vehicle speed detected by the speed sensor 32 is below a predetermined value close to zero, that is, when the engine is running at idle, does the electromagnetic switching valve 27 stop being energized. It is designed to be energized.

内燃機関の冷却水温度が所定値以下の時、即ち機関冷間
時に於ては、内燃機関がアイドル運転されている時には
電磁切換弁27に通電が行われるが、内燃機関がアイド
ル運転以外の運転状態にて運転されている時には電磁切
換弁27に対づる通電が停止される。従って、この時に
は内燃機関がアイドル運転されていれば、ダイヤフラム
室23が吸気管負圧取出ボート29に接続され、イれ以
外の時にはダイヤフラム室23に大気圧が導入される。
When the cooling water temperature of the internal combustion engine is below a predetermined value, that is, when the engine is cold, the electromagnetic switching valve 27 is energized when the internal combustion engine is in idle operation, but when the internal combustion engine is in operation other than idle operation. When the motor is operated in this state, the energization to the electromagnetic switching valve 27 is stopped. Therefore, at this time, if the internal combustion engine is in idle operation, the diaphragm chamber 23 is connected to the intake pipe negative pressure extraction boat 29, and when the engine is not idle, atmospheric pressure is introduced into the diaphragm chamber 23.

従って内燃i開がアイドル運転されている時には弁要素
17が全開位置にもたらされ、混合気の全てがl\リカ
ル通路13を経′I燃焼室2内に流れ、燃焼室2内に強
力な吸気スワールが生じ、見1) Get十の火炎速度
が速まり、燃焼速度が速くなる。これにより混合気の燃
焼性が改善され、機関冷間時のアイドル運転性が改善さ
れるようになる。
Therefore, when the internal combustion engine is idling, the valve element 17 is brought to the fully open position, and all of the mixture flows through the linear passage 13 into the combustion chamber 2, causing a powerful flow inside the combustion chamber 2. An intake swirl occurs, and the flame speed increases, resulting in a faster combustion rate. This improves the combustibility of the air-fuel mixture and improves the idling performance when the engine is cold.

これに対し機関がアイドル運転以外の運転状態にて運転
されている時には弁要素17が全開位置に6たらされ、
混合気がヘリカル通路13とストレート通路の双方を流
れて燃焼室2内に流入し、燃焼室2内に強力な吸気スワ
ールが発生づることがない。これにより燃焼速度は燃焼
室2内に強力な吸気ス1ノールが発生している時に比し
て遅くなり、内燃機関は燃焼速度が速い時に比して高温
の排気ガスを排出づるようになり、排気系に設番ノられ
ている触媒」ンバータ等の暖機が促進される。
On the other hand, when the engine is operating in an operating state other than idling, the valve element 17 is brought to the fully open position.
The air-fuel mixture flows through both the helical passage 13 and the straight passage and flows into the combustion chamber 2, and no strong intake swirl occurs within the combustion chamber 2. As a result, the combustion speed becomes slower than when a strong intake snort is generated in the combustion chamber 2, and the internal combustion engine begins to exhaust exhaust gas at a higher temperature than when the combustion speed is high. Warming up of catalysts, inverters, etc. installed in the exhaust system is promoted.

機関の冷却水温良が所定値以上になると、即ちva開の
111機が完了すると、□;−磁切換弁27に常に通電
が行われることにより、ダイヤフラム室23には吸気管
負圧取出ボート29に現れる圧力が常に尋人されるよう
になる。これにより内燃機関がアイドル乃至低負荷にて
運転されている時にはダイヤフラム室23に前記所定値
以上の負圧が導入され、それより負荷が増大(るに従っ
てダイヤフラム室23に導入される負圧が減少づる。従
って内燃機関がアイドル乃至低負荷にて運転されている
ときには弁要素17がストレート通路14を閉じる全閉
位置に位@1#ルようになる。このときには混合気の全
てがヘリカル通路13を絆て燃焼室2内に流れ、燃焼室
2内に強力な吸気スワールが生じ、これによって見掛は
上の火炎速度が速まり、燃焼速度が速くなる。これによ
り混合気の燃焼性が改善され、内燃機関はアイドル回転
数が低くとも、また希薄混合気を供給されても失火を生
じることなく良好な燃焼作動を行なう。内燃機関の負荷
が増大し、それに伴い吸気管負圧が低下してイれが所定
値以下になると、弁要素17は開弁する。
When the coolant temperature of the engine reaches a predetermined value or higher, that is, when the 111 VA opening is completed, the □;-magnetic switching valve 27 is constantly energized, and the diaphragm chamber 23 is filled with the intake pipe negative pressure take-out boat 29. The pressure that appears will always be felt. As a result, when the internal combustion engine is operating at idle or at low load, a negative pressure equal to or higher than the predetermined value is introduced into the diaphragm chamber 23, and as the load increases (as the load increases, the negative pressure introduced into the diaphragm chamber 23 decreases). Therefore, when the internal combustion engine is operating at idle or at low load, the valve element 17 is in the fully closed position that closes the straight passage 14. At this time, all of the air-fuel mixture flows through the helical passage 13. The air flows into the combustion chamber 2, creating a strong intake swirl in the combustion chamber 2, which apparently increases the upper flame speed and increases the combustion rate.This improves the combustibility of the air-fuel mixture. The internal combustion engine performs good combustion without misfire even at low idle speeds or when supplied with a lean mixture.As the load on the internal combustion engine increases, the negative pressure in the intake pipe decreases. When the leakage becomes less than a predetermined value, the valve element 17 opens.

このときには混合気がヘリカル通路13とストレート通
路14の双方を流れて燃焼室2内に流入することにより
吸気ボート3がその混合気の流れに対して大きい流れ抵
抗を与えなくなり、内m機関の充用効率の低トが回避さ
れる。
At this time, the air-fuel mixture flows through both the helical passage 13 and the straight passage 14 and flows into the combustion chamber 2, so that the intake boat 3 no longer provides a large flow resistance to the flow of the air-fuel mixture, and the inner engine is used. Low efficiency is avoided.

第9図は本発明方法の実施に使用する@置の他の一つの
実施例を示している。尚、第9図に於て第8図に対15
4る部分は第8図に付した符号と同一の符号により示さ
れている。かかる実施例に於ては、制御装置30は水温
スイッチ31と一ユートラルスイッチ33とクラツブ−
スイッチ34とスロツトルスーイツブ−35の各々より
の開閉信号を与えられ、冷M1水潟度が所定値以下で水
温スイッチ31がRnき、内燃機関に接続されている変
速装置の変速段が二1−トラル以外の走行変速段でニュ
ートラルスイッチ33が開き、クラッチが接続されてい
゛くクラッチスイッチ34が間き、しかも機関吸気系の
スロットル゛バルブがアイドル開度位置以外の開度位置
にあってスUットルスイツヂ35が開いている時のみ、
即ら機関冷間時で内燃機関がノアイドル運転以外の運転
以外の運転状態にて運転されている時のみN切切換弁2
7に対づる通電を停止1シ、それ以外の時には電磁切換
弁27に通電を行うようになっている。従−)tlこの
実施例に於ても1達した実施例と同様の作用効果が冑ら
れる。
FIG. 9 shows another embodiment of the @ position used for carrying out the method of the present invention. In addition, in Figure 9, 15 is compared to Figure 8.
4 are designated by the same reference numerals as in FIG. In such an embodiment, the control device 30 includes a water temperature switch 31, a utility switch 33, and a club switch.
When open/close signals are given from each of the switch 34 and the throttle switch 35, when the cold M1 water level is below a predetermined value, the water temperature switch 31 is set to Rn, and the gear position of the transmission connected to the internal combustion engine is set to second. When the neutral switch 33 is open at a traveling gear other than 1-tral, the clutch switch 34 is closed when the clutch is connected, and the engine intake system throttle valve is at an opening position other than the idle opening position. Only when the switch 35 is open,
In other words, the N switching valve 2 is activated only when the engine is cold and the internal combustion engine is operated in an operating state other than no-idling operation.
The energization to the electromagnetic switching valve 27 is stopped at one time, and the electromagnetic switching valve 27 is energized at other times. tl In this example, the same effects as in the example in which the number reached 1 are achieved.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はこれに限られるものではなく、本発明
の範囲内にて種々の実施例が可能であることは当業者に
とって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, it will be appreciated by those skilled in the art that the present invention is not limited thereto, and that various embodiments are possible within the scope of the present invention. It should be obvious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による吸気制御@芦を適用4る帳気承−
ト構造の一つの実施例を示1縦断面図、第2図乃至第7
図は各々第1図の轢■−■〜■■〜V■に沿う断面図、
第8図及び第9図は本発明による吸気制nveIlil
の実施に使用する装置の実施例を示1概略構成図である
。 1・・・シリンダヘッド、2・・・燃焼室、3・・・吸
気ボート、4・・・入D n [1端、 5− 出D 
1m O端、 6− 弁座部材、7・・・吸気弁、8・
・・弁ステム、9・・・弁リテーナ、10・・・ガイド
ベーン、11・・・傾斜壁部、12・・・貴flAv部
、13・・・ヘリカル通路、14・・・ス1−レート通
路、15・・・吸気制御弁朝立体、16・・・弁ケース
、17・・・弁要素、18・・・弁軸、19・・・駆動
レバー、20・・・ダイ12ノラムRtN、21・・・
ロッド。 22・・・り(−7ノラム、23・・・グイ17ノラム
室、24・・・圧縮」イルばね、25・・・ボーh、2
6・・・導管。 27・・・電磁切換弁、28・・・導管、29・・・吸
気管角11取出ポート、30・・・制御装置、31・・
・水温スイップ−132・・・11速セン号、33・・
・−コートラルスイッf−,34・・・クラツブスイッ
チ、35・・・スロワ1−ルスイツチ、40・・・吸気
マーホールド、41・・・+11気ポー1−.42・・
・排気弁、43・・・排気マーホールド 特i′1出願人    トヨタ自動車工業株式会社代 
 理  人       弁理士    明  石  
昌  毅(自 ブt) 手続補正轡 昭和57年10月13日 持訂庁長官若杉和夫 殿 1、事f[の表示 昭和57年特許願第105019号
2、発明の名称 内燃機関の吸気制御III@ F/ 3、補正をづる者 事件との関係  特許出願人 住 所  愛知県豊田市トヨタ町1番地名 称  (3
20) j−ヨタ自動l11−業株式会社4、代理人 居 所  帰104東京都中央区新川1丁目51i19
月茅場町長岡ビル3階 電話551−41716、補正
により増加する発明の数   07 補正の対象  図
面 8、補正の内容  図面の第8図及び第9図を添付の図
の如く補正する。
Figure 1 shows the application of intake control @Ashi according to the present invention.
1 longitudinal sectional view, FIGS. 2 to 7 show one embodiment of the structure.
The figures are cross-sectional views along the track ■-■~■■~V■ in Fig. 1, respectively.
FIGS. 8 and 9 show the intake control system according to the present invention.
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used for implementing the method. 1... Cylinder head, 2... Combustion chamber, 3... Intake boat, 4... Input D n [1 end, 5- Output D
1m O end, 6- Valve seat member, 7... Intake valve, 8-
... Valve stem, 9... Valve retainer, 10... Guide vane, 11... Inclined wall portion, 12... Precious flAv portion, 13... Helical passage, 14... Slate Passage, 15... Intake control valve body, 16... Valve case, 17... Valve element, 18... Valve shaft, 19... Drive lever, 20... Die 12 noram RtN, 21 ...
rod. 22...ri (-7 noram, 23...gui 17 noram chamber, 24...compression" spring, 25...baud h, 2
6... Conduit. 27... Solenoid switching valve, 28... Conduit, 29... Intake pipe angle 11 extraction port, 30... Control device, 31...
・Water temperature switch-132...11 speed sensor, 33...
・-Courtral switch f-, 34...Club switch, 35...Thrower 1-le switch, 40...Intake marhold, 41...+11 air port 1-. 42...
・Exhaust valve, 43...Exhaust Merhold Special i'1 Applicant: Toyota Motor Corporation representative
Attorney Patent Attorney Akashi
Takeshi Masa (self-button) Procedural amendment October 13, 1980 Kazuo Wakasugi, Director-General of the Revision Agency, 1, Indication of Patent Application No. 105019, 1982, 2, Title of Invention: Intake Control of Internal Combustion Engine III @ F/ 3. Relationship with the amendment filer case Patent applicant address 1 Toyota-cho, Toyota City, Aichi Prefecture Name (3)
20) J-YOTA AUTOMATIC L11-GYO Co., Ltd. 4, Agent Address: 51-19 Shinkawa 1-chome, Chuo-ku, Tokyo 104
3rd floor, Nagaoka Building, Tsukihayaba-cho Telephone: 551-41716 Number of inventions increased by amendment 07 Target of amendment Drawing 8, contents of amendment Drawings 8 and 9 of the drawings are amended as shown in the attached drawings.

Claims (1)

【特許請求の範囲】[Claims] 燃焼室への開口端の周りに旋回したヘリカル通路と前記
開口端に直線状に通ずるストレート通路とを有し、前記
ストレート通路の途中に該ストレート通路を開閉する吸
気制御弁が設けられている如き吸気ボート構造を有する
内燃機関の吸気制御装置にして、流体圧作動室を有し該
流体圧作動室に作用づる負圧の増大に応じて前記吸気制
御弁を閉弁方向へ駆動覆る流体圧式アクチュエータと、
内燃機間の暖機間を検出する暖機度検出手段と、内燃機
関の運転状態を検出する運転状態検出手段と、前記暖機
度検出手段により暖機間が所定値以下で且前記運転状態
検出手段により内燃機関が非アイドル運転状態にあるこ
とが検出された時には前記流体圧作動室を大気に開放し
それ以外の時には前記流体圧作動室を内燃機関の吸気管
負圧取出ボートに接続する制御弁とを有している吸気制
御装置。
It has a helical passage that turns around an opening end to the combustion chamber and a straight passage that linearly communicates with the opening end, and an intake control valve that opens and closes the straight passage is provided in the middle of the straight passage. An intake control device for an internal combustion engine having an intake boat structure, wherein the fluid pressure actuator has a fluid pressure working chamber and drives and closes the intake control valve in the valve closing direction in response to an increase in negative pressure acting on the fluid pressure working chamber. and,
a warm-up degree detecting means for detecting a warm-up interval between internal combustion engines; an operating state detecting means for detecting an operating state of the internal combustion engine; Control for opening the fluid pressure working chamber to the atmosphere when the internal combustion engine is detected to be in a non-idling operating state by the means, and otherwise connecting the fluid pressure working chamber to an intake pipe negative pressure takeoff boat of the internal combustion engine. An intake control device having a valve.
JP57105019A 1982-06-17 1982-06-17 Air intake control device of internal-combustion engine Granted JPS58220923A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57105019A JPS58220923A (en) 1982-06-17 1982-06-17 Air intake control device of internal-combustion engine
US06/504,323 US4527519A (en) 1982-06-17 1983-06-14 Method and system for controlling intake flow between direct and helical intake passages of intake port of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105019A JPS58220923A (en) 1982-06-17 1982-06-17 Air intake control device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58220923A true JPS58220923A (en) 1983-12-22
JPS6350530B2 JPS6350530B2 (en) 1988-10-11

Family

ID=14396344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105019A Granted JPS58220923A (en) 1982-06-17 1982-06-17 Air intake control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58220923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173025U (en) * 1984-10-19 1986-05-17
US4765294A (en) * 1984-07-18 1988-08-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Intake device for internal combustion engine
US5740778A (en) * 1996-03-22 1998-04-21 Ford Global Technologies, Inc. Variable geometry intake system for an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765294A (en) * 1984-07-18 1988-08-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Intake device for internal combustion engine
JPS6173025U (en) * 1984-10-19 1986-05-17
JPH0346185Y2 (en) * 1984-10-19 1991-09-30
US5740778A (en) * 1996-03-22 1998-04-21 Ford Global Technologies, Inc. Variable geometry intake system for an internal combustion engine

Also Published As

Publication number Publication date
JPS6350530B2 (en) 1988-10-11

Similar Documents

Publication Publication Date Title
US3978831A (en) Control device for a vacuum advancer
US4700676A (en) Intake control device
JPS58220923A (en) Air intake control device of internal-combustion engine
US4231336A (en) Exhaust gas recirculation system for an internal combustion engine
JP3538860B2 (en) Engine intake system
JPH04153524A (en) Intake device of engine
JP2713803B2 (en) Exhaust gas recirculation system using water-cooled EGR valve
JPH03199627A (en) Intake air device for engine
JPH0343447B2 (en)
JP2995200B2 (en) Engine air supply
JPH07233761A (en) Exhaust reflux device for engine
JPH05240057A (en) Engine for vehicle
JPS6244097Y2 (en)
JPS6350529B2 (en)
JPS6131147Y2 (en)
JPS6350528B2 (en)
JPH027250Y2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPS6034765Y2 (en) Engine exhaust gas recirculation control device
JPH0345216B2 (en)
JPS6111480Y2 (en)
JP2606285Y2 (en) Swirl control device for diesel engine
JPH0242121A (en) Intake control device for vehicle engine
JPS6224612B2 (en)
JPH07293257A (en) Intake device of internal combustion engine