JPS61207826A - Engine equipped with exhaust turbosupercharger - Google Patents

Engine equipped with exhaust turbosupercharger

Info

Publication number
JPS61207826A
JPS61207826A JP60049623A JP4962385A JPS61207826A JP S61207826 A JPS61207826 A JP S61207826A JP 60049623 A JP60049623 A JP 60049623A JP 4962385 A JP4962385 A JP 4962385A JP S61207826 A JPS61207826 A JP S61207826A
Authority
JP
Japan
Prior art keywords
exhaust
valve
bypass passage
engine
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60049623A
Other languages
Japanese (ja)
Other versions
JPH0654093B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Fumio Hitase
日當瀬 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60049623A priority Critical patent/JPH0654093B2/en
Publication of JPS61207826A publication Critical patent/JPS61207826A/en
Publication of JPH0654093B2 publication Critical patent/JPH0654093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To improve the output in high-speed region without incurring the reduction of the output in low speed region by installing the second bypass passage separately from a bypass passage into an exhaust passage and reducing the dimension of a waiste gate valve. CONSTITUTION:The first valve 9a opens at the number N1 of engine revolution, and the opening degree gradually increases with the increase of the number of engine revolution, and the valve 9a is perfectly opened at the number N2 of engine revolution. The second valve 9b is switched from the perfect opening to the perfect closing when the number of revolution of the engine 9b reaches N2. A waiste gate valve 5 gradually increases its opening degree with the increase of the number of engine revolution after the number N2 of engine revolution is reached.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気により駆動されて過給する排気ターボ過
給機を設けるとともに、排気通路に前記排気ターボ過給
機のタービンを迂回するバイパス路を接続し、かつ、こ
のバイパス路を過給圧に応じて開閉するウェストゲート
バルブを設けてある排気ターボ過給機付エンジンに関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an exhaust turbo supercharger that is driven by exhaust gas for supercharging, and a bypass that bypasses the turbine of the exhaust turbo supercharger in the exhaust passage. The present invention relates to an engine with an exhaust turbo supercharger, which is provided with a wastegate valve that connects the bypass passage and opens and closes the bypass passage according to boost pressure.

(従来の技術) 従来のこの種の排気ターボ過給機付ヱンジンにおいては
、過給圧のコントロールを前記ウェストゲートバルブの
開閉のみによって行うように構成されていた(例えば、
実開昭58−20335号公報)。
(Prior Art) In a conventional engine with an exhaust turbo supercharger of this kind, the supercharging pressure was controlled only by opening and closing the waste gate valve (for example,
Utility Model Application Publication No. 58-20335).

しかしながら、前記従来の排気ターボ過給機付エンジン
においては、過給圧が設定値−となってウェストゲート
バルブが開き、バイパス路から排気が逃げ為とき、ウェ
ストゲートバルブがその排気の絞り抵抗として作用する
。そのため、高速域となって排気の量が増大すればする
ほど、エンジンに作用する排圧が増大して、第6図に示
すように、過給圧(Pg)よりも排圧(pto)が大き
くなって、ポンピングロスが大きくなり、かつ、残留ガ
ス量が増大して高速域で大巾な出力低下が生じていた。
However, in the conventional exhaust turbocharged engine, when the supercharging pressure reaches the set value and the wastegate valve opens and exhaust gas escapes from the bypass path, the wastegate valve acts as a throttle resistance for the exhaust gas. act. Therefore, as the exhaust volume increases in the high-speed range, the exhaust pressure acting on the engine increases, and as shown in Figure 6, the exhaust pressure (PTO) becomes higher than the boost pressure (Pg). This resulted in an increase in pumping loss, an increase in the amount of residual gas, and a significant drop in output at high speeds.

しかし、だからといって、ウェストゲートバルブの大型
化等により高速域での排圧上昇を抑制して出力低下を防
止した場合には、ウェストゲートバルブによる低速域で
の過給圧のコントロールを精度良く正確に行うことがむ
ずかしくなって、低速域での出力が低下する。
However, if the increase in exhaust pressure in the high speed range is suppressed by increasing the size of the wastegate valve to prevent a drop in output, the control of boost pressure in the low speed range by the wastegate valve must be accurate and accurate. It becomes difficult to do so, and the output at low speeds decreases.

(発明が解決しようとする問題点) 本発明は、かかる実状にかんがみて開発されたものであ
って、その目的は、低速域での出力低下を招来すること
なく、高速域での排圧上昇を抑制して高速域での出力を
向上する点にある。
(Problems to be Solved by the Invention) The present invention was developed in view of the above circumstances, and its purpose is to increase the exhaust pressure in the high speed range without causing a decrease in output in the low speed range. The purpose of this is to improve output in the high-speed range by suppressing the

(問題点を解決するための手段) 上記目的達成のために講じた本発明による排気ターボ過
給機付エンジンの特徴構成は、前記排気通路に、前記タ
ービンおよびバイパス路を迂回する第2バイパス路を接
続するとともに、この第2バイパス路からの排気の排出
量を制御する弁機構を設けてある点にあり、それによる
作用効果は次の通りである。
(Means for Solving the Problems) A characteristic configuration of the exhaust turbo supercharged engine according to the present invention taken to achieve the above object is that the exhaust passage has a second bypass passage that bypasses the turbine and the bypass passage. The second bypass passage is connected to the second bypass passage and is provided with a valve mechanism for controlling the amount of exhaust gas discharged from the second bypass passage, and the effects thereof are as follows.

(作 用) 弁機構を制御して第2バイパス路を開放させることによ
り、バイパス路のみならず、第2バイパス路からも排気
を逃がすことができるから、過給機やエンジン本体の特
性等に基づいて前記弁機構を適切に制御し、かつ、第2
バイパス路からの排気の逃がし量を適宜設定することに
より、ウェストゲートバルブを小型なものにする等して
このウェストゲートバルブによる低速域での過給圧のコ
ントロールを精度良く、がっ、正確に行うようにしなが
らも、高速域においては、第2バイパス路から排気を逃
がして排気抵抗を減少させ、排圧の上昇を抑制または防
止することができる。
(Function) By controlling the valve mechanism and opening the second bypass path, exhaust gas can be released not only from the bypass path but also from the second bypass path, which will affect the characteristics of the supercharger and engine body. and controlling the valve mechanism appropriately based on the second
By appropriately setting the amount of exhaust gas released from the bypass path, the wastegate valve can be made smaller, and the boost pressure can be controlled accurately in the low speed range by this wastegate valve. However, in the high speed range, the exhaust gas can be released from the second bypass path to reduce the exhaust resistance and suppress or prevent an increase in the exhaust pressure.

(発明の効果) 従って、本発明によれば、偏速域での出力低下を招来す
ることなく、高速域での出力を向上でき、もって、全体
として、全域において良好な出力特性を発揮できる排気
ターボ過給機付エンジンを提供できるようになった。
(Effects of the Invention) Therefore, according to the present invention, the output in the high speed range can be improved without causing a decrease in output in the eccentric speed range, and as a whole, the exhaust gas can exhibit good output characteristics over the entire range. Now we can offer turbocharged engines.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

〔第1実施例〕 第1図において、(1)は吸気通路、(2)は排気通路
であり、(3)は、排気により駆動されて過給する、つ
まり、排気により駆動されるタービン(3a)とこれに
直結して吸気を加圧するコンプレッサ(3b)とを備え
た排気ターボ過給機であり、(4)は、前記タービン(
3a)を迂回する状態で前記排気通路(2)に接続する
バイパス路であり、(5)は、過給圧(pm。)および
エンジン回転数(N)に基づく制御機(6)からの過給
圧制御信号により前記バイパス路(4)を開閉して前記
タービン(3a)への排気供給量を制御するウェストゲ
ートバルブである。また、(7)は、前記タービン(3
a)およびバイパス路(4)をともに迂回する状態で前
記排気通路(2)に接続していて、4つの気筒(8)の
うち、第3気筒(8)の排気を前記タービン(3a)お
よびバイパス路(4)を通さずに排出可能な第2バイパ
ス路であり、(9)は、前記制御器(6)からの過給圧
制御信号により前記第2バイパス路(7)からの排気の
排出量を制御する弁機構である。 (10)はエアーク
リーナ、(11)はエアーフローセンサ、(12)はア
クセルペダルに連動するスロットルバルブ、(13)は
消音器である。
[First Embodiment] In FIG. 1, (1) is an intake passage, (2) is an exhaust passage, and (3) is a turbine driven by exhaust gas for supercharging, that is, a turbine ( 3a) and a compressor (3b) directly connected to the compressor (3b) for pressurizing intake air;
3a), and (5) is a bypass passage that connects to the exhaust passage (2) while bypassing the This is a wastegate valve that opens and closes the bypass passage (4) in response to a supply pressure control signal to control the amount of exhaust gas supplied to the turbine (3a). Further, (7) is the turbine (3).
a) and the bypass passage (4) are both connected to the exhaust passage (2) in a detour manner, and the exhaust gas of the third cylinder (8) among the four cylinders (8) is routed to the turbine (3a) and the bypass passage (4). This is a second bypass path that allows exhaust to be discharged without passing through the bypass path (4), and (9) is a second bypass path that allows exhaust from the second bypass path (7) to be discharged by the boost pressure control signal from the controller (6). It is a valve mechanism that controls the amount of discharge. (10) is an air cleaner, (11) is an air flow sensor, (12) is a throttle valve linked to an accelerator pedal, and (13) is a silencer.

前記過給圧(P、)、を設定過給圧(p、。)に制御す
るために排気ターボ過給機(3)が必要とする排気の量
(Q)は、第2図中の実線(イ)で示すように、エンジ
ン回転数(N)に応じて変化する。つまり、エンジン回
転数(N)が過給圧(Pa)を設定過給圧(pm。)に
させるインターセプト点(N1)に上昇するまでは、過
給圧(pH)の上昇を速くする上で、4気筒分の排気は
必要であるが、それ以後、エンジン回転数(N)が上昇
するにつれて、3気筒分、或いは、2気筒分の排気で良
いようになる。第2図において、(N、)および(N、
)は、それぞれ、3気筒分および2気筒分の排気で設定
過給圧(pso)を得るようにタービン(3a)を駆動
できるエンジン回転数である。
The amount of exhaust gas (Q) required by the exhaust turbo supercharger (3) in order to control the supercharging pressure (P,) to the set supercharging pressure (p,.) is shown by the solid line in FIG. As shown in (a), it changes depending on the engine speed (N). In other words, until the engine speed (N) rises to the intercept point (N1) that makes the boost pressure (Pa) reach the set boost pressure (pm), there is no way to increase the boost pressure (pH) faster. , exhaust gas for four cylinders is required, but as the engine speed (N) increases thereafter, exhaust gas for three cylinders or two cylinders becomes sufficient. In FIG. 2, (N, ) and (N,
) are the engine rotational speeds at which the turbine (3a) can be driven so as to obtain the set supercharging pressure (pso) with exhaust gas from three cylinders and two cylinders, respectively.

前記弁機構(9)は、第2バイパス路(7)を開閉する
第1バルブ(9a)と、第3気筒(8)の排気がタービ
ン(3a)およびバイパス路(4)に行かないように排
気通路(2)を閉塞可能な第2バルブ(9b)とを備え
ている。このバルブ(9a) 。
The valve mechanism (9) includes a first valve (9a) that opens and closes the second bypass passage (7), and a valve mechanism that prevents exhaust gas from the third cylinder (8) from going to the turbine (3a) and the bypass passage (4). A second valve (9b) capable of closing the exhaust passage (2) is provided. This valve (9a).

(9b)は、排圧の上昇を極力抑制するものであり、外
部信号により全開、全閉制御されるものである。
(9b) is to suppress the increase in exhaust pressure as much as possible, and is controlled to be fully open or fully closed by an external signal.

そして、第3図(イ)、([り+(ハ)、(ニ)に示す
よに、前記第1バルブ(9a)は、インターセプト点(
N1)以後のエンジン回転数の上昇に伴って次第に開度
を大きくし、かつ、エンジン回転数(N)が前述した点
(N1)に達したとき、全開するように制御され、第2
バルブ(9b)は、エンジン回転数(N)が前述した点
(N、)に達したとき、全開から全開に切替わるように
制御され、前記ウェストゲートバルブ(5)は、前述し
た点(N、)以後のエンジン回転数(N)の上昇に伴っ
て次第に開度を大きくするように制御される。
As shown in FIG. 3 (A), (C), and (D), the first valve (9a)
N1) The opening degree is gradually increased as the engine speed increases thereafter, and when the engine speed (N) reaches the above-mentioned point (N1), the second
The valve (9b) is controlled to switch from fully open to fully open when the engine speed (N) reaches the aforementioned point (N,), and the wastegate valve (5) is controlled to switch from fully open to fully open when the engine speed (N) reaches the aforementioned point (N,). , ) The opening degree is controlled to gradually increase as the engine speed (N) increases thereafter.

従って、過給圧(Pl)は、エンジン回転数(N)がイ
ンターセプト点(N1)と点(N、)とのあいだにある
ときにおいては、第1バルブ(9a)の開度調節により
設定過給圧(pmo)に維持され、エンジン回転数(N
)が点(N、)よりも上にあるときにおいては、ウェス
トゲートバルブ(5)の開度調節により設定過給圧(P
IIO)に維持されるのである。そして、エンジン回転
数(N)が点(N、)よりも上にある高速領域において
は、第1バルブ(9a)が全開し、第2バルブ(9b)
が全閉して、第3気筒(8)の排気が第2バイパス路(
7)を通して排出され、タービン(3a)には、3気筒
分の排気のみが供給される。その結果、第3気筒(8)
に、タービン(3a)の駆動に起因した排圧が作用しな
いことはもちろん、タービン(3a)側に供給される排
気が3気筒分で、過給圧(pm)を設定過給圧(pm。
Therefore, when the engine speed (N) is between the intercept point (N1) and the point (N, ), the supercharging pressure (Pl) can be adjusted to exceed the set value by adjusting the opening degree of the first valve (9a). The supply pressure (pmo) is maintained at the engine speed (N
) is above the point (N, ), the set boost pressure (P
IIO). In a high-speed region where the engine speed (N) is above the point (N, ), the first valve (9a) is fully opened and the second valve (9b) is fully opened.
is fully closed, and the exhaust from the third cylinder (8) flows through the second bypass path (
7), and only the exhaust gas for three cylinders is supplied to the turbine (3a). As a result, the third cylinder (8)
Of course, the exhaust pressure caused by the drive of the turbine (3a) does not act, and the exhaust gas supplied to the turbine (3a) side is for three cylinders, and the boost pressure (pm) is set to the boost pressure (pm).

)に維持するようにタービン(3a)を駆動しながらも
、残る気筒(8)に作用する排圧を小さくし、もって、
全体として、ポンピングロスを小さくし、かつ、残留ガ
スを少なくできるのである。
) while driving the turbine (3a) to maintain the cylinder (8), the exhaust pressure acting on the remaining cylinder (8) is reduced.
Overall, pumping loss and residual gas can be reduced.

〔第2実施例〕 第4図に示すように、弁機構(9)を構成するに、第2
バイパス路(7)を開閉する第1バルブ(9a)と、第
4気筒(8)の排気がタービン(3a)およびバイパス
路(4)に行かないように排気通路(2)を閉塞可能な
第2バルブ(9b’)と、第3気筒(8)の排気がター
ビン(3a)およびバイパス路(4)に行かないように
排気通路(2)を閉塞可能な第3バルブ(9c)とを設
ける。この弁機構(9)によるときは、各バルブ(9a
) 。
[Second Embodiment] As shown in FIG. 4, the valve mechanism (9) includes a second embodiment.
A first valve (9a) that opens and closes the bypass passage (7), and a first valve that can close the exhaust passage (2) so that the exhaust gas from the fourth cylinder (8) does not go to the turbine (3a) and the bypass passage (4). 2 valves (9b') and a third valve (9c) capable of closing the exhaust passage (2) so that the exhaust gas of the third cylinder (8) does not go to the turbine (3a) and the bypass passage (4). . When using this valve mechanism (9), each valve (9a
).

(9b’)、 (9c)を適宜、開閉制御することによ
り、タービン(3a)側への排気の供給量を4気筒分と
する第1状態と、第4気筒(8)の排気を第2バイパス
路(7)を通して排出させてタービン(3a)側への排
気の供給量を3気筒分とする第2状態と、第3、第4気
筒(8)の排気を第2バイパス路(7)を通して排出さ
せてタービン(3a)への排気の供給量を2気筒分とす
る第3状態とに切替えることができるのであって、エン
ジン回転数(N)が前述した点(N、)に達したときに
第2状態に切替え、エンジン回転(N)が前述した点(
N、)に達したときに第3状態に切替えるのが一般的で
ある。そして、第3状態に切替えた場合、第1、第2気
筒(8)の排圧(Pえ。)は、第6図に示すように、従
来と同様に過給圧(P、)よりも高くなるが、第3、第
4気筒(8)の排圧(Pt+)は、第5図に示すように
過給圧(pm)よりも低くなり、全体として、ボンピン
グロスが小さくなる。
By controlling the opening and closing of (9b') and (9c) as appropriate, the first state in which the amount of exhaust gas supplied to the turbine (3a) side is equal to that of four cylinders, and the second state in which the exhaust gas from the fourth cylinder (8) is A second state in which the amount of exhaust gas supplied to the turbine (3a) side is equal to that of three cylinders by discharging through the bypass passage (7), and a second state in which the exhaust gas from the third and fourth cylinders (8) is discharged through the second bypass passage (7). It is possible to switch to the third state in which the amount of exhaust gas supplied to the turbine (3a) is equal to that of two cylinders by discharging the exhaust gas through the engine, and when the engine speed (N) reaches the above-mentioned point (N, When it switches to the second state, the engine rotation (N) reaches the above-mentioned point (
It is common to switch to the third state when N, ) is reached. Then, when switching to the third state, the exhaust pressure (P) of the first and second cylinders (8) is lower than the supercharging pressure (P), as in the conventional case, as shown in Fig. 6. However, the exhaust pressure (Pt+) of the third and fourth cylinders (8) becomes lower than the supercharging pressure (pm) as shown in FIG. 5, and the pumping loss becomes smaller as a whole.

なお、実施例では、第1バルブ(9a)、第2バルブ(
9b)を外部信号により開閉制御されるものとしだが、
これは、過給圧により開閉制御される既存のウェストゲ
ートバルブタイプのものであっても良い。また、実施例
では、4気筒のエンジンへの適用例を示したが、本発明
は、単気筒、6気筒等、各種気筒数のエンジンにも適用
でき、また、ガソリンエンジン、ディーゼルエンジンの
区別やピストンエンジン、ロータリーエンジンの区別な
く適用することができる。
In addition, in the example, the first valve (9a) and the second valve (
9b) shall be controlled to open and close by an external signal, but
This may be an existing wastegate valve type whose opening and closing are controlled by boost pressure. Further, in the embodiment, an example of application to a four-cylinder engine is shown, but the present invention can also be applied to engines with various numbers of cylinders, such as a single cylinder and six cylinders, and can also be used to distinguish between gasoline engines and diesel engines. It can be applied to both piston and rotary engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の実施例を示し、第1図は
概略構成図、第2図はエンジン回転数と排気の量との関
係を示すグラフ、第3図(イ)は過給圧の変化を示すグ
ラフ、第3図(II) 、 (ハ) 。 (ニ)はそれぞれ各バルブの開閉動作を示すグラフであ
る。第4図は本発明の第2実施例を示す概略構成図であ
り、第5図は第2実施例における第3、第4気筒のp−
v線図であり、第6図は第2実施例における第1、第2
気筒および従来エンジンのP−v線図である。 (3)・・・・・・排気ターボ過給機、(2)・・・・
・・排気通路、(3a)・・・・・・タービン、(4)
・・・・・・バイパス路、(5)・・・・・・ウェスト
ゲートバルブ、(7)・・・・・・第2バイパス路、(
9)・・・・・・弁機構、(9a)・・・・・・第1パ
ル7’、(9b)・・・・・・第2バルブ。
Figures 1 to 3 show embodiments of the present invention, with Figure 1 being a schematic diagram, Figure 2 being a graph showing the relationship between engine speed and exhaust volume, and Figure 3 (A) being a graph showing the relationship between engine speed and exhaust volume. Graphs showing changes in supply pressure, Figures 3 (II) and (C). (D) is a graph showing the opening/closing operation of each valve. FIG. 4 is a schematic configuration diagram showing a second embodiment of the present invention, and FIG. 5 is a p-type diagram of the third and fourth cylinders in the second embodiment.
FIG. 6 is a v diagram, and FIG. 6 shows the first and second
It is a P-v diagram of a cylinder and a conventional engine. (3)... Exhaust turbo supercharger, (2)...
...Exhaust passage, (3a)...Turbine, (4)
...Bypass path, (5) ... Waste gate valve, (7) ... Second bypass path, (
9)...Valve mechanism, (9a)...First pulse 7', (9b)...Second valve.

Claims (2)

【特許請求の範囲】[Claims] (1)排気により駆動されて過給する排気ターボ過給機
を設けるとともに、排気通路に前記排気ターボ過給機の
タービンを迂回するバイパス路を接続し、かつ、このバ
イパス路を過給圧に応じて開閉するウェストゲートバル
ブを設けてある排気ターボ過給機付エンジンにおいて、
前記排気通路に、前記タービンおよびバイパス路を迂回
する第2バイパス路を接続するとともに、この第2バイ
パス路からの排気の排出量を制御する弁機構を設けてあ
る排気ターボ過給機付エンジン。
(1) An exhaust turbo supercharger that is driven by exhaust gas for supercharging is provided, a bypass passage that bypasses the turbine of the exhaust turbo supercharger is connected to the exhaust passage, and this bypass passage is set to supercharging pressure. In an engine with an exhaust turbo supercharger that is equipped with a wastegate valve that opens and closes accordingly,
An engine with an exhaust turbo supercharger, wherein a second bypass passage that detours around the turbine and the bypass passage is connected to the exhaust passage, and a valve mechanism is provided for controlling the amount of exhaust gas discharged from the second bypass passage.
(2)気筒数が、複雑で、かつ、前記弁機構が、第2バ
イパス路を開閉する第1バルブと、特定気筒の排気が前
記タービンおよびバイパス路に行かないように排気通路
を閉塞可能な第2バルブとを備えている特許請求の範囲
第(1)項に記載の排気ターボ過給機付エンジン。
(2) The number of cylinders is complicated, and the valve mechanism is capable of closing the first valve that opens and closes the second bypass passage and the exhaust passage so that the exhaust gas of a specific cylinder does not go to the turbine and the bypass passage. The engine with an exhaust turbo supercharger according to claim 1, further comprising a second valve.
JP60049623A 1985-03-12 1985-03-12 Exhaust turbocharged engine Expired - Lifetime JPH0654093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60049623A JPH0654093B2 (en) 1985-03-12 1985-03-12 Exhaust turbocharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60049623A JPH0654093B2 (en) 1985-03-12 1985-03-12 Exhaust turbocharged engine

Publications (2)

Publication Number Publication Date
JPS61207826A true JPS61207826A (en) 1986-09-16
JPH0654093B2 JPH0654093B2 (en) 1994-07-20

Family

ID=12836354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60049623A Expired - Lifetime JPH0654093B2 (en) 1985-03-12 1985-03-12 Exhaust turbocharged engine

Country Status (1)

Country Link
JP (1) JPH0654093B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571356A (en) * 1991-09-04 1993-03-23 Isuzu Ceramics Kenkyusho:Kk Control device for exhaust gas flow to turbo-charger
WO2006050896A1 (en) * 2004-11-12 2006-05-18 Daimlerchrysler Ag Supercharged internal combustion engine
JP2017082741A (en) * 2015-10-30 2017-05-18 マツダ株式会社 Exhaust device of engine with turbo supercharger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744934U (en) * 1980-08-29 1982-03-12
JPS5744934A (en) * 1980-07-08 1982-03-13 Bbc Brown Boveri & Cie Time switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744934A (en) * 1980-07-08 1982-03-13 Bbc Brown Boveri & Cie Time switch
JPS5744934U (en) * 1980-08-29 1982-03-12

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571356A (en) * 1991-09-04 1993-03-23 Isuzu Ceramics Kenkyusho:Kk Control device for exhaust gas flow to turbo-charger
WO2006050896A1 (en) * 2004-11-12 2006-05-18 Daimlerchrysler Ag Supercharged internal combustion engine
JP2008519931A (en) * 2004-11-12 2008-06-12 ダイムラー・アクチェンゲゼルシャフト Supercharged internal combustion engine
US7610758B2 (en) 2004-11-12 2009-11-03 Daimler Ag Supercharged internal combustion engine
JP2017082741A (en) * 2015-10-30 2017-05-18 マツダ株式会社 Exhaust device of engine with turbo supercharger

Also Published As

Publication number Publication date
JPH0654093B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JPH06257519A (en) Exhaust reflux device of engine with turbo supercharger
JPS60169630A (en) Supercharger for internal-combustion engine
JPH02112618A (en) Supercharge pressure control device for twin turbo engine
JPS61207826A (en) Engine equipped with exhaust turbosupercharger
JPS63309725A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JPS61164041A (en) Internal-combustion engine with turbo charger
JPS6316130A (en) Exhaust turbo supercharger for internal combustion engine
JPH0121136Y2 (en)
JPS59145329A (en) Control device for engine fitted with turbosuperchrager
JPH0125883B2 (en)
JP2764742B2 (en) Control device for engine with turbocharged turbocharger
JPS62267524A (en) Internal combustion engine with variable displacement type turbocharger
JP2605053B2 (en) Engine boost pressure control device
JPS58170827A (en) Supercharging device for internal-combustion engine
JPH03194122A (en) Composite-type supercharging device for vehicular internal combustion engine
JPS6291626A (en) Compound supercharger of internal combustion engine
JPS6361496B2 (en)
JPH0545773B2 (en)
JPS61294147A (en) Intake device of diesel engine with supercharger
JPS5823243A (en) Suction device of engine
JPS61294126A (en) Intake device of diesel engine with turbosupercharger
JPH0529768B2 (en)
JPS61160523A (en) Turbo supercharged engine equipped with intercooler
KR20020058783A (en) Method for driving turbo-charger
JPH0214527B2 (en)