JPH03194122A - Composite-type supercharging device for vehicular internal combustion engine - Google Patents
Composite-type supercharging device for vehicular internal combustion engineInfo
- Publication number
- JPH03194122A JPH03194122A JP1332348A JP33234889A JPH03194122A JP H03194122 A JPH03194122 A JP H03194122A JP 1332348 A JP1332348 A JP 1332348A JP 33234889 A JP33234889 A JP 33234889A JP H03194122 A JPH03194122 A JP H03194122A
- Authority
- JP
- Japan
- Prior art keywords
- mechanical supercharger
- passage
- internal combustion
- combustion engine
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 49
- 230000005540 biological transmission Effects 0.000 claims abstract description 31
- 239000002131 composite material Substances 0.000 claims description 15
- 230000001105 regulatory effect Effects 0.000 abstract description 5
- 238000004891 communication Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/04—Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/32—Engines with pumps other than of reciprocating-piston type
- F02B33/34—Engines with pumps other than of reciprocating-piston type with rotary pumps
- F02B33/36—Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type
- F02B33/38—Engines with pumps other than of reciprocating-piston type with rotary pumps of positive-displacement type of Roots type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B33/00—Engines characterised by provision of pumps for charging or scavenging
- F02B33/44—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
- F02B33/446—Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs having valves for admission of atmospheric air to engine, e.g. at starting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、車両に搭載した内燃機関に対する過給に、内
燃機関における排気ガスによって駆動される排気ターボ
過給機と、内燃機関からの動力伝達によって駆動される
機械式過給機との両方を直列に使用して成るいわゆる複
合型の過給装置に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention uses an exhaust turbo supercharger driven by exhaust gas in the internal combustion engine and a power source from the internal combustion engine to supercharge an internal combustion engine installed in a vehicle. This invention relates to a so-called composite type supercharging device that uses both a mechanical supercharger and a mechanical supercharger driven by transmission in series.
一般に、内燃機関に対する過給に、排気ターボ過給機と
機械式過給機との両方を直列に使用して成る複合型過給
装置は良く知られており、先行技術としての特開昭62
−87618号公報は、エアクリーナから内燃機関に至
る吸気経路中に、エアクリーナから車両に搭載した内燃
機関に至る吸気経路中に、中速回転より以下の低速回転
域において内燃機関からの動力伝達にて回転駆動する機
械式過給機と、排気ガスによって駆動される排気ターボ
過給機とを直列状に配設し、前記機械式過給機を迂回す
る吸気バイパス通路中に、前記機械式過給機の回転駆動
時において閉じるようにした開閉弁を設けて成る複合型
過給装置を提案している。In general, a composite supercharging system that uses both an exhaust turbo supercharger and a mechanical supercharger in series for supercharging an internal combustion engine is well known, and Japanese Patent Laid-Open No. 62
Publication No. 87618 discloses that in the intake path from the air cleaner to the internal combustion engine, and in the intake path from the air cleaner to the internal combustion engine mounted on the vehicle, power is transmitted from the internal combustion engine in the low speed rotation range below medium speed rotation. A rotationally driven mechanical supercharger and an exhaust turbo supercharger driven by exhaust gas are arranged in series, and the mechanical supercharger is installed in an intake bypass passage that bypasses the mechanical supercharger. We have proposed a composite supercharging device that is equipped with an on-off valve that closes when the machine is rotating.
また、他の先行技術としての特開昭54−35 I
−
516号公報は、排気ターボ過給機を備えた内燃機関を
車両に搭載する場合において、前記排気ターボ過給機を
迂回する吸気バイパス通路中に、車両における走行速度
が所定の最高設定走行速度を越えたとき開くようにした
ブローオフ弁を設けることによって、車両における最高
走行速度を規制制御することと、前記排気ターボ過給機
を迂回する排気バイパス通路中に、車両における走行速
度が所定の最高設定走行速度を越えたとき開くようにし
たウェストゲート弁を設けることによって、車両におけ
る最高走行速度を規制制御することとを提案している。Further, as another prior art, Japanese Patent Application Laid-Open No. 54-35 I-516 discloses that when an internal combustion engine equipped with an exhaust turbo supercharger is installed in a vehicle, an intake bypass that bypasses the exhaust turbo supercharger is disclosed. By providing a blow-off valve in the passage that opens when the vehicle travel speed exceeds a predetermined maximum set travel speed, the maximum travel speed of the vehicle is regulated and the exhaust turbo supercharger is bypassed. It is proposed that the maximum running speed of a vehicle be regulated and controlled by providing a wastegate valve in the exhaust bypass passage that opens when the running speed of the vehicle exceeds a predetermined maximum set running speed. .
しかし、前記した前者の先行技術における複合型過給装
置を備えた車両用の内燃機関に、後者の先行技術におけ
る最高走行速度規制装置を適用した場合には、以下に述
べるような問題を有する。However, when the maximum traveling speed regulating device in the latter prior art is applied to a vehicle internal combustion engine equipped with the composite supercharging device in the former prior art described above, the following problems arise.
すなわち、複合型過給装置では、その排気ターボ過給機
に対するブローオフ弁を必要としないので、前記複合型
過給装置を備えた車両用の内燃機関において、その吸気
経路に対して、車両における走行速度に関連したブロー
オフ弁を備えた吸気バイパス通路を設けることは、大型
化、重量の増大を招来するばかりか、部品点数が多くな
り、価格の大幅なアップを招来するのである。That is, since the composite supercharging device does not require a blow-off valve for its exhaust turbo supercharger, in an internal combustion engine for a vehicle equipped with the composite supercharging device, the intake path of the vehicle is Providing an intake bypass passage with a speed-related blow-off valve not only increases size and weight, but also increases the number of parts and significantly increases cost.
また、複合型過給装置では、その排気ターボ過給機に対
するウェストゲート弁は必要であるから、このウェスト
ゲート弁を、最高走行速度の規制制御に利用できる利点
を有する反面、排気ターボ過給機は、その排気バイパス
通路中のウェストゲート弁を開いた状態においても惰性
によって高速回転を暫くの間持続するので、走行速度の
規制制御の応答性が低いのである。In addition, in a composite supercharging system, a wastegate valve is required for the exhaust turbosupercharger, so while this wastegate valve has the advantage of being able to be used to regulate and control the maximum running speed, Even when the wastegate valve in the exhaust bypass passage is open, the engine continues to rotate at high speed for a while due to inertia, so the responsiveness of the regulation control of the traveling speed is low.
本発明は、前記複合型過給装置を車両用の内燃機関に適
用する場合において、車両における最高走行速度を、前
記のような問題を生じることなく、至極簡単に且つ迅速
、確実に規制制御できるようにした複合型過給装置を提
供することを目的とするものである。The present invention makes it possible to regulate and control the maximum running speed of a vehicle very simply, quickly, and reliably without causing the above-mentioned problems when the composite supercharging device is applied to an internal combustion engine for a vehicle. It is an object of the present invention to provide a composite supercharging device as described above.
この目的を達成するため本発明は、エアクリーナから車
両に搭載した内燃機関に至る吸気経路中に、中速回転よ
り以下の低速回転域において内燃機関からの動力伝達に
て回転駆動する機械式過給機と、排気ガスによって駆動
される排気ターボ過給機とを直列状に配設し、前記機械
式過給機を迂回する吸気バイパス通路中に、前記機械式
過給機の回転駆動時において閉じるようにした開閉弁を
設けて成る複合型過給装置において、前記開閉弁に、前
記車両の走行速度が、所定の最高設定走行速度よりも越
えたとき、当該開閉弁を閉じるようにした制御手段を設
ける構成にした。In order to achieve this object, the present invention provides a mechanical supercharging device that is rotatably driven by power transmission from the internal combustion engine in the low speed rotation range below medium speed rotation, in the intake path from the air cleaner to the internal combustion engine installed in the vehicle. and an exhaust turbo supercharger driven by exhaust gas are arranged in series, and an intake bypass passage that bypasses the mechanical supercharger is closed when the mechanical supercharger is driven to rotate. In the composite supercharging device comprising an on-off valve as described above, the on-off valve is configured to have a control means that closes the on-off valve when the traveling speed of the vehicle exceeds a predetermined maximum set traveling speed. The structure was designed to provide the following.
このような構成において、低速回転域では、機械式過給
機が回転駆動されると共に、吸気バイパス通路中の開閉
弁が閉じることにより、内燃機関に対する過給は、機械
式過給機及び排気ターボ過給機との両方によって行なわ
れるが、高速回転域では、前記機械式過給機への動力伝
達が遮断されると共に、吸気バイパス通路中の開閉弁が
開くことにより、内燃機関に対する過給は、排気ターボ
過給機のみによって行なわれる。In such a configuration, in a low speed rotation range, the mechanical supercharger is rotationally driven and the on-off valve in the intake bypass passage is closed, so that supercharging of the internal combustion engine is performed by the mechanical supercharger and the exhaust turbo. However, in high-speed rotation ranges, the power transmission to the mechanical supercharger is cut off, and the on-off valve in the intake bypass passage opens, so that supercharging of the internal combustion engine is not performed. , carried out solely by the exhaust turbocharger.
そして、この高速回転域において、車両における走行速
度が、予め設定した所定の最高走行速度に達すると、前
記機械式過給機への動力伝達が遮断されている状態で、
前記吸気バイパス通路中の開閉弁が閉じることにより、
内燃機関への吸入空気が、内燃機関からの動力伝達が遮
断されている状態の機械式過給機を通過するようになっ
て、吸入空気の流れに対して前記機械式過給機によって
抵抗を付与でき、この抵抗の分だけ内燃機関に対する過
給吸気圧が下がり、内燃機関の回転数が低下することに
なるから、車両における走行速度を、所定の最高設定走
行速度を越えることがないように規制制御できるのであ
る。In this high-speed rotation range, when the running speed of the vehicle reaches a predetermined maximum running speed, with the power transmission to the mechanical supercharger being cut off,
By closing the on-off valve in the intake bypass passage,
Intake air to the internal combustion engine passes through the mechanical supercharger in a state where power transmission from the internal combustion engine is cut off, so that the mechanical supercharger provides resistance to the flow of intake air. The supercharging intake pressure to the internal combustion engine decreases by this amount of resistance, and the rotational speed of the internal combustion engine decreases, so that the running speed of the vehicle does not exceed the predetermined maximum set running speed. It can be regulated and controlled.
以上の通り本発明は、複合型過給装置付き内燃機関を搭
載した車両における最高走行速度を、内燃機関への吸入
空気が回転停止中の機械式過給機を通過するときの流れ
抵抗を利用して規制制御す −
6−
るものであって、前記複合型過給装置において必要であ
る吸気バイパス通路中の開閉弁を、車両の走行速度に応
じて開閉するように構成するのみで良いから、大型化、
重量の増大及び価格の大幅なアップを招来することがな
いのであり、しかも、前記開閉弁の閉作動により内燃機
関に対する過給吸気圧を直接的に下げるものであるから
、最高走行速度の規制制御の応答性が著しく高く、最高
走行速度を迅速且つ的確に規制制御できるのである。As described above, the present invention utilizes the flow resistance when intake air to the internal combustion engine passes through a mechanical supercharger whose rotation is stopped to determine the maximum running speed of a vehicle equipped with an internal combustion engine equipped with a composite supercharger. This is because it is only necessary to configure the on-off valve in the intake bypass passage, which is necessary in the composite supercharging device, to open and close according to the running speed of the vehicle. ,Upsizing,
This method does not cause an increase in weight or a significant increase in price, and since the closing operation of the on-off valve directly lowers the supercharging intake pressure to the internal combustion engine, it is possible to control the maximum running speed. The responsiveness of the system is extremely high, and the maximum travel speed can be controlled quickly and accurately.
以下、本発明の実施例を図面について説明すると、図に
おいて符号1は、燃焼室2への吸気ポート3と燃焼室か
らの排気ポート4とを備えた内燃機関を、符号5は、排
気タービン6とブロワ−圧縮機7とを直結して成る排気
ターボ過給機を、そして、符号8は、前記内燃機関1か
らの動力伝達によって回転駆動するようにした機械式過
給機を各々示す。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, reference numeral 1 indicates an internal combustion engine equipped with an intake port 3 to a combustion chamber 2 and an exhaust port 4 from the combustion chamber, and reference numeral 5 indicates an exhaust turbine 6. and a blower-compressor 7 are directly connected to each other, and numeral 8 indicates a mechanical supercharger which is rotationally driven by power transmitted from the internal combustion engine 1.
前記排気ターボ過給機5における排気タービン6の入口
側には、前記内燃機関lにおける排気ポート4からの排
気通路9が、排気タービン6の出口には、排気ガスを大
気中に放出するための排気管路10が各々接続されてお
り、前記排気通路9と前記排気管路10との間には、前
記排気タービン6を迂回する排気バイパス通路11か設
けられ、この排気バイパス通路lI内には、ダイヤフラ
ム機構12内におけるばね12aにて常時閉の状態に保
持されるウェストゲート弁13が設けられている。また
、前記排気ターボ過給機5におけるブロワ−圧縮機7の
入口には、大気空気を取り入れるためのエアクリーナ1
4が接続され、更にまた、前記内燃機関1から前記機械
式過給機8への動力伝達部には、機械式過給機8への動
力伝達をON・OFFするための電磁クラッチ機構15
が設けられている。On the inlet side of the exhaust turbine 6 in the exhaust turbocharger 5, there is an exhaust passage 9 from the exhaust port 4 in the internal combustion engine l, and on the outlet side of the exhaust turbine 6, there is an exhaust passage 9 for discharging exhaust gas into the atmosphere. Exhaust pipes 10 are connected to each other, and an exhaust bypass passage 11 that bypasses the exhaust turbine 6 is provided between the exhaust passage 9 and the exhaust pipe 10. A wastegate valve 13 is provided which is normally held closed by a spring 12a within the diaphragm mechanism 12. Further, an air cleaner 1 for taking in atmospheric air is provided at the inlet of the blower compressor 7 in the exhaust turbo supercharger 5.
Furthermore, the power transmission section from the internal combustion engine 1 to the mechanical supercharger 8 includes an electromagnetic clutch mechanism 15 for turning on and off the power transmission to the mechanical supercharger 8.
is provided.
前記内燃機関1における吸気ポート3には、スロットル
弁16内蔵のスロットルボデー17を備えたサージタン
ク18が接続されている一方、前記排気ターボ過給機5
におけるブロワ−圧縮機7の吐出口からの吸気通路19
を、前記機械式過給機8における入口に接続し、機械式
過給機8における出口を、インタークーラ20を備えた
過給通路21を介して前記サージタンク18におけるス
ロットルボデー17に接続する。また、前記吸気通路1
9と前記過給通路21との間には、前記機械式過給機8
を迂回する吸気バイパス通路22を設けて、この吸気バ
イパス通路22中に、ダイヤフラム機構23におけるば
ね23aにて常時閉の状態に保持される開閉弁24が設
けられている。A surge tank 18 having a throttle body 17 with a built-in throttle valve 16 is connected to the intake port 3 of the internal combustion engine 1, while a surge tank 18 is connected to the intake port 3 of the internal combustion engine 1.
Intake passage 19 from the discharge port of the blower compressor 7 in
is connected to the inlet of the mechanical supercharger 8, and the outlet of the mechanical supercharger 8 is connected to the throttle body 17 of the surge tank 18 via a supercharging passage 21 provided with an intercooler 20. Further, the intake passage 1
9 and the supercharging passage 21, the mechanical supercharger 8
An intake bypass passage 22 is provided to bypass the intake air, and an on-off valve 24 that is normally kept closed by a spring 23a of a diaphragm mechanism 23 is provided in the intake bypass passage 22.
一方、前記ウェストゲート弁13のダイヤフラム機構1
2における圧力室12bには、前記過給通路21からの
絞りオリフィス26付き圧力伝達通路25を接続して、
その圧力室]、2bに作用する圧力が予め設定した所定
の過給吸気圧を越えて高くなると前記ウェストゲート弁
13が開くように構成し、前記圧力伝達通路25に、前
記エアクリーナ14等の大気連通箇所からの絞りオリフ
ィス28付き大気連通通路27を接続して、この大気連
通通路27中に、当該大気連通通路27を開閉するよう
にした電磁式の切換弁29を設ける。On the other hand, the diaphragm mechanism 1 of the waste gate valve 13
A pressure transmission passage 25 with a throttle orifice 26 from the supercharging passage 21 is connected to the pressure chamber 12b in 2,
The waste gate valve 13 is configured to open when the pressure acting on the pressure chamber], 2b becomes higher than a predetermined supercharging intake pressure, and the pressure transmission passage 25 is connected to the air cleaner 14, etc. An atmosphere communication passage 27 with a throttle orifice 28 from the communication point is connected to the atmosphere communication passage 27, and an electromagnetic switching valve 29 for opening and closing the atmosphere communication passage 27 is provided in the atmosphere communication passage 27.
また、前記開閉弁24に対するダイヤフラム機構23に
おいて、ダイヤフラム23bにて区画された一方の圧力
室23cに、前記過給通路21からの圧力伝達通路30
を接続して、過給通路21内における過給吸気圧が高く
なると前記開閉弁24がばね23aに抗して開くように
構成する一方、ダイヤフラム機構23における他方の圧
力室23dへの圧力伝達通路31と、前記サージタンク
18からの圧力伝達通路32及び前記過給通路21から
の圧力伝達通路33との間に、三方式の第1電磁切換弁
34を設ける。Further, in the diaphragm mechanism 23 for the on-off valve 24, a pressure transmission passage 30 from the supercharging passage 21 is connected to one pressure chamber 23c partitioned by the diaphragm 23b.
The on-off valve 24 is configured to open against the spring 23a when the supercharging intake pressure in the supercharging passage 21 increases, while the pressure transmission passage to the other pressure chamber 23d in the diaphragm mechanism 23 is connected to the 31 and a pressure transmission passage 32 from the surge tank 18 and a pressure transmission passage 33 from the supercharging passage 21, three types of first electromagnetic switching valves 34 are provided.
更にまた、前記サージタンク18には、通路36を介し
て真空保持タンク35を接続し、この通路36中にサー
ジタンク18への方向にのみ開くようにした逆止弁37
を設けることによって、前記真空保持タンク内に大気圧
以下の真空圧を保持するようにし、この真空保持タンク
35からの真空伝達通路38と、前記第1電磁切換弁3
4への圧力伝達通路33との間に、三方式の第2電磁切
換弁39を設ける。Furthermore, a vacuum holding tank 35 is connected to the surge tank 18 through a passage 36, and a check valve 37 is provided in the passage 36, which opens only in the direction toward the surge tank 18.
By providing a vacuum pressure lower than atmospheric pressure in the vacuum holding tank 35, a vacuum transmission passage 38 from the vacuum holding tank 35 and the first electromagnetic switching valve 3 are provided.
A second electromagnetic switching valve 39 of three types is provided between the pressure transmitting passage 33 and the pressure transmission passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33 to the pressure transmitting passage 33.
0
そして、符号40は、前記内燃機関1に対する回転セン
サー41、前記スロットル弁16に対する開度センサー
42、及び前記サージタンクI8に対する圧力センサー
43、並び車両の走行速度に対する走行速度センサー4
4からの検出信号に応じて、前記電磁クラッチ機構15
及び前記三方式の電磁切換弁29並びに前記三方式の両
電磁切換弁34.39を、以下に述べるように作動する
ための制御回路である。Reference numeral 40 denotes a rotation sensor 41 for the internal combustion engine 1, an opening sensor 42 for the throttle valve 16, a pressure sensor 43 for the surge tank I8, and a running speed sensor 4 for the running speed of the vehicle.
4, the electromagnetic clutch mechanism 15
and a control circuit for operating the three types of electromagnetic switching valve 29 and the two types of electromagnetic switching valves 34 and 39 as described below.
ずわなち、この制御回路40は、
(1)、内燃機関1における回転数が3500〜400
0rpm程度の中速回転数より低い低速回転で且つ高負
荷の運転域のときには、電磁クラッチ機構15をONに
し、三方式の電磁切換弁29を閉にする一方、第1電磁
切換弁34を圧力伝達通路31.32の相互間のみを連
通ずる第1切換え状態にする。In other words, this control circuit 40 operates as follows: (1) When the rotational speed of the internal combustion engine 1 is 3500 to 400;
When the operating speed is low, lower than a medium rotation speed of about 0 rpm, and the operating load is high, the electromagnetic clutch mechanism 15 is turned on, the three types of electromagnetic switching valves 29 are closed, and the first electromagnetic switching valve 34 is set to pressure. A first switching state is established in which only the transmission passages 31 and 32 communicate with each other.
(■)、低負荷で且つ回転数が前記中速回転数よりも低
い低速回転の運転域のときには、電磁クラッチ機構15
をOFFにし、三方式の電磁切換弁29を閉にする一方
、第1電磁切換弁34を圧力伝達通路31..32の相
互間の連通を遮断して圧力伝達通路31.33の相互間
のみを連通ずる第2切換え状態にし、且つ、第2電磁切
換弁39を圧力伝達通路33と真空伝達通路38との連
通を遮断して圧力伝達通路33を連通状態にする第1切
換え状態にする。(■) When the load is low and the rotational speed is in a low-speed operation range lower than the medium-speed rotational speed, the electromagnetic clutch mechanism 15
is turned OFF, and the three types of electromagnetic switching valves 29 are closed, while the first electromagnetic switching valve 34 is switched to the pressure transmission passage 31. .. A second switching state is established in which the communication between the pressure transmission passages 31 and 32 is cut off and only the pressure transmission passages 31 and 33 are communicated with each other, and the second electromagnetic switching valve 39 is placed in a second switching state in which communication between the pressure transmission passages 33 and the vacuum transmission passage 38 is cut off. A first switching state is established in which the pressure transmission passage 33 is placed in a communicating state.
(■)、高負荷で且つ回転数が前記中速回転数よりも高
い高速回転の運転域のときには、電磁クラッチ機構15
をOFFにし、三方式の電磁切換弁29を開くように切
換える一方、第1電磁切換弁34を第2切換え状態にし
たままで、第2電磁切換弁39を圧力伝達通路33と真
空伝達通路38とを連通ずる第2切換え状態にする。(■) When the load is high and the rotation speed is in a high speed operation range higher than the medium speed rotation speed, the electromagnetic clutch mechanism 15
OFF and switch the three-way electromagnetic switching valve 29 to open, while keeping the first electromagnetic switching valve 34 in the second switching state, and switch the second electromagnetic switching valve 39 between the pressure transmission passage 33 and the vacuum transmission passage 38. A second switching state is established in which the two terminals are in communication with each other.
(■)、低負荷で且つ高速回転の運転域のときには、電
磁クラッチ機構15をOFFにし、三方式の電磁切換弁
29を開くように切換える一方、第1電磁切換弁34を
第2切換え状態にしたままで、第2電磁切換弁39を第
1切換え状態にする。(■) When operating under low load and high speed rotation, the electromagnetic clutch mechanism 15 is turned OFF and the three-way electromagnetic switching valve 29 is switched to open, while the first electromagnetic switching valve 34 is switched to the second switching state. While keeping the switch in place, the second electromagnetic switching valve 39 is set to the first switching state.
(■)、前記(III)における高速回転・高負荷運転
域において、車両における走行速度が、予め設定した所
定の最高設定走行速度になったときには、電磁クラッチ
機構15をOFFにし、三方式の電磁切換弁29を開く
ように切換えた状態で、第1電磁切換弁34を第2切換
え状態に、第2電磁切換弁39を第1切換え状態するか
、或いは、第1電磁切換弁34を第1切換え状態に、第
2電磁切換弁39を第2切換え状態する。(■) In the high-speed rotation/high-load operating range in (III) above, when the running speed of the vehicle reaches a predetermined maximum set running speed, the electromagnetic clutch mechanism 15 is turned OFF, and the three electromagnetic With the switching valve 29 switched to open, the first electromagnetic switching valve 34 is set to the second switching state and the second electromagnetic switching valve 39 is set to the first switching state, or the first electromagnetic switching valve 34 is switched to the first switching state. The second electromagnetic switching valve 39 is placed in the second switching state.
ように構成されている。It is configured as follows.
この構成において、内燃機関が低速回転で且つ高負荷の
運転域のときには、電磁クラッチ機構15がONになっ
て機械式過給機8が回転駆動される一方、第1電磁切換
弁34が第1切換え状態になって、開閉弁24に対する
ダイヤフラム機構23における他方の圧力室23dにサ
ー゛ノ゛タンク18内における過給吸気圧(このとき、
−ジタンク■8内における過給吸気圧は、スロットル
弁I6が略全開であることにより、過給通路21内にお
ける過給吸気圧と略等しい)が作用し、当該他方の圧力
室23bと、前記過給通路21内における過給吸気圧が
圧力伝達通路30を介して常時作用している一方の圧力
室23cとの間におりる圧力差がなくなることにより、
開閉弁24がばね23aにて閉じることになるから、内
燃機関1に対する過給が、排気ターボ過給機5と機械式
過給機8との両方によって行なわれる。In this configuration, when the internal combustion engine rotates at low speed and is in a high load operating range, the electromagnetic clutch mechanism 15 is turned on and the mechanical supercharger 8 is rotationally driven, while the first electromagnetic switching valve 34 is In the switching state, the supercharging intake pressure in the sensor tank 18 (at this time,
- Since the throttle valve I6 is substantially fully open, the supercharging intake pressure in the tank 8 is approximately equal to the supercharging intake pressure in the supercharging passage 21, and the other pressure chamber 23b and the By eliminating the pressure difference between the supercharging intake pressure in the supercharging passage 21 and one pressure chamber 23c that is constantly acting via the pressure transmission passage 30,
Since the on-off valve 24 is closed by the spring 23a, the internal combustion engine 1 is supercharged by both the exhaust turbo supercharger 5 and the mechanical supercharger 8.
一方、この運転域では、三方式の電磁切換弁29が閉じ
ていることにより、ウェストゲート弁13に対するダイ
ヤフラム機構12における圧力室12bには、過給通路
21内における過給吸気圧がそのまま作用するから、ウ
ェストゲート弁13は、前記過給通路21内における過
給吸気圧が、当該ウェストゲート弁13を閉に付勢する
ばねI2aの設定値を越えたときにおいて大きく開いて
、過給吸気圧が上昇しないように制御する。On the other hand, in this operating range, the three-way electromagnetic switching valve 29 is closed, so that the supercharging intake pressure in the supercharging passage 21 directly acts on the pressure chamber 12b in the diaphragm mechanism 12 for the waste gate valve 13. Therefore, when the supercharging intake pressure in the supercharging passage 21 exceeds the set value of the spring I2a that urges the wastegate valve 13 to close, the wastegate valve 13 opens wide and the supercharging intake pressure increases. control so that it does not rise.
次に、内燃機関1が低速回転で且つ低負荷の運3
4
転減になると、電磁クラッチ機構15がOFFになって
機械式過給機8への動力伝達が遮断される一方、第1電
磁切換弁34が第2切換え状態に、第2電磁切換弁39
が第1切換え状態になり、開閉弁24に対するダイヤフ
ラム機構23における他方の圧力室23dに過給通路2
1内における過給吸気圧が作用し、当該他方の圧力室2
3dと一方の圧力室23cとの間における圧力差がなく
なり、開閉弁24がばね23aにて閉じることにより、
排気ターボ過給機5において圧縮された過給空気が、機
械式過給機8に送られるから、これにより、機械式過給
機8を、適宜速度で追従回転することができる一方、こ
の運転域での過給吸気圧も、前記と同様に、過給通路2
1内におけ過給吸気圧のみによって制御される。Next, when the internal combustion engine 1 is operated at low speed and low load, the electromagnetic clutch mechanism 15 is turned OFF and power transmission to the mechanical supercharger 8 is cut off, while the first electromagnetic The switching valve 34 is in the second switching state, and the second electromagnetic switching valve 39 is in the second switching state.
is in the first switching state, and the supercharging passage 2 is connected to the other pressure chamber 23d in the diaphragm mechanism 23 for the on-off valve 24.
The supercharging intake pressure in 1 acts, and the other pressure chamber 2
3d and one pressure chamber 23c disappears, and the on-off valve 24 is closed by the spring 23a, so that
Since the supercharged air compressed in the exhaust turbo supercharger 5 is sent to the mechanical supercharger 8, the mechanical supercharger 8 can be rotated at an appropriate speed, while this operation Similarly to the above, the supercharging intake pressure in the supercharging passage 2
1 and is controlled only by the boost intake pressure.
また、内燃機関1が高速回転で且つ低負荷の運転域にな
ると、電磁クラッチ機構15がOFFになって機械式過
給機8への動力伝達が遮断される一方、第1電磁切換弁
34が第2切換え状態に、第2電磁切換弁39が第1切
換え状態になり、開閉弁24がばね23aにて閉じるこ
とにより、排気ターボ過給機5において圧縮された過給
空気が、機械式過給機8に送られるから、これにより、
機械式過給機8を、適宜速度で追従回転することができ
るのである。Further, when the internal combustion engine 1 is in a high-speed rotation and low-load operating range, the electromagnetic clutch mechanism 15 is turned off and power transmission to the mechanical supercharger 8 is cut off, while the first electromagnetic switching valve 34 is turned off. In the second switching state, the second electromagnetic switching valve 39 becomes the first switching state, and the on-off valve 24 is closed by the spring 23a, so that the supercharged air compressed in the exhaust turbo supercharger 5 is transferred to the mechanical supercharger. Since it is sent to feeder 8, as a result,
The mechanical supercharger 8 can follow the rotation at an appropriate speed.
一方、この運転域になると、三方式の電磁切換弁29が
開くことにより、ウェストゲート弁13に対するダイヤ
フラム機構12における圧力室12bに、前記過給通路
21内における過給吸気圧と大気圧との合成圧力が作用
し、この合成圧力が、ウェストゲート弁13を閉に付勢
するばね12aの設定値を越えたとき、前記ウェストゲ
ート弁13が開いて、排気ガスを排気バイパス通路11
から放出することになるから、これにより、過給通路2
1内における過給吸気圧を、前記合成圧力によって、所
定の設定過給吸気圧を越えることがないように制御でき
るのである。On the other hand, in this operating range, the three-way electromagnetic switching valve 29 opens, so that the pressure chamber 12b in the diaphragm mechanism 12 for the wastegate valve 13 is connected to the supercharging intake pressure in the supercharging passage 21 and the atmospheric pressure. When a composite pressure is applied and this composite pressure exceeds the set value of the spring 12a that urges the wastegate valve 13 to close, the wastegate valve 13 opens and exhaust gas is transferred to the exhaust bypass passage 11.
As a result, the supercharging passage 2
The supercharging intake pressure in the engine 1 can be controlled by the combined pressure so that it does not exceed a predetermined set supercharging intake pressure.
そして、内燃機関1が高速回転で且つ高負荷の運転域に
なると、電磁クラッチ機構15がOFFになって機械式
過給機8への動力伝達が遮断される一方、第1電磁切換
弁34が第2切換え状態に、第2電磁切換弁39が第2
切換え状態になって、開閉弁24に対するダイヤフラム
機構23における他方の圧力室23dに真空保持タンク
35における真空が伝達して、当該他方の圧力室23d
と一方の圧力室23cとの間に圧力差ができ、この圧力
差によって開閉弁24が開くことになるから、排気ター
ボ過給機5からの過給空気は、機械式過給機8を経るこ
となく、吸気バイパス通路22を介して内燃機関1に吸
気されることになり、排気ターボ過給機5のみによる過
給が行なわれ、前記機械式過給機8の追従回転は行なわ
れないのであり、このときにおける過給吸気圧も、前記
と同様に、合成圧力によって、所定の設定過給吸気圧を
越えることがないように制御できるのである。When the internal combustion engine 1 is in a high-speed rotation and high-load operating range, the electromagnetic clutch mechanism 15 is turned off and power transmission to the mechanical supercharger 8 is cut off, while the first electromagnetic switching valve 34 is turned off. In the second switching state, the second electromagnetic switching valve 39 is in the second switching state.
In the switching state, the vacuum in the vacuum holding tank 35 is transmitted to the other pressure chamber 23d in the diaphragm mechanism 23 for the on-off valve 24, and the vacuum in the vacuum holding tank 35 is transferred to the other pressure chamber 23d.
A pressure difference is created between the two pressure chambers 23c and 23c, and this pressure difference opens the on-off valve 24, so the supercharged air from the exhaust turbocharger 5 passes through the mechanical supercharger 8. Therefore, air is taken into the internal combustion engine 1 via the intake bypass passage 22, and supercharging is performed only by the exhaust turbo supercharger 5, and the following rotation of the mechanical supercharger 8 is not performed. Similarly to the above, the supercharging intake pressure at this time can also be controlled by the combined pressure so that it does not exceed a predetermined set supercharging intake pressure.
更に、前記内燃機関1における高速回転で且つ高負荷の
運転域において、車両における走行速度が、予め設定さ
れている所定の最高設定走行速度に達すると、第1電磁
切換弁34が第2切換え状態に、第2電磁切換弁39が
第1切換え状態なるか、或いは、第1電磁切換弁34が
第1切換え状態に、第2電磁切換弁39が第2切換え状
態になることにより、開閉弁24に対するダイヤフラム
機構23における他方の圧力室23dと一方の圧力室2
3cとの間における圧力差がなくなり、開閉弁24がば
ね23aにて閉じ、排気ターボ過給機5において圧縮さ
れた過給空気が、機械式過給機8に送られることになり
、これにより、機械式過給機8を、適宜速度で追従回転
することができると共に、前記排気ターボ過給機5によ
る過給吸気圧が、前記のように機械式過給機8を追従回
転するための流れ抵抗の分だけ下がり、内燃機関1の回
転数が低下することになるから、車両における走行速度
を、所定の最高設定走行速度を越えることがないように
規制制御することができるのである。Further, when the running speed of the vehicle reaches a predetermined maximum set running speed in a high-speed rotation and high-load operating range of the internal combustion engine 1, the first electromagnetic switching valve 34 is switched to the second switching state. Then, the second electromagnetic switching valve 39 enters the first switching state, or the first electromagnetic switching valve 34 enters the first switching state and the second electromagnetic switching valve 39 enters the second switching state. The other pressure chamber 23d and one pressure chamber 2 in the diaphragm mechanism 23 for
3c is eliminated, the on-off valve 24 is closed by the spring 23a, and the supercharged air compressed in the exhaust turbo supercharger 5 is sent to the mechanical supercharger 8. , the mechanical supercharger 8 can be rotated at an appropriate speed, and the supercharging intake pressure by the exhaust turbo supercharger 5 is sufficient to cause the mechanical supercharger 8 to follow the rotation as described above. Since the rotational speed of the internal combustion engine 1 decreases by an amount corresponding to the flow resistance, the traveling speed of the vehicle can be controlled so as not to exceed a predetermined maximum set traveling speed.
なお、前記機械式過給機8からの過給通路21中に、絞
りオリフィス45を設けておけば、車両の走行速度が所
定の最高走行速度に達した場合において、内燃機関1に
対する過給吸気圧をより下7
8
げることかできるので、最高走行速度の規制制御をより
効果的に行うことができるのであり、この絞りオリフィ
ス45の口径は、内燃機関への吸入空気量が最も多い場
合に合せて設定すれば良いから、走行速度の規制制御を
行なわない場合における内燃機関Iの出力の低下を招来
することはないのである。Note that if a throttle orifice 45 is provided in the supercharging passage 21 from the mechanical supercharger 8, the supercharging intake to the internal combustion engine 1 will be restricted when the vehicle travel speed reaches a predetermined maximum speed. Since the atmospheric pressure can be lowered to a lower level, the maximum running speed can be controlled more effectively. Therefore, the output of the internal combustion engine I will not be reduced in the case where the traveling speed regulation control is not performed.
図面は本発明の実施例を示す図である。
1・・・・内燃機関、5・・・・排気ターボ過給機、8
・・・・機械式過給機、11・・・・排気バイパス通路
、13・・・・ウェストゲート弁、14・・・・エアク
リーナ、15・・・・電磁クラッチ機構、16・・・・
スロットル弁、18・・・・サージタンク、19・・・
・吸気通路、21・・・・過給通路、22・・・・吸気
バイパス通路、24・・・・開閉弁、23・・・・ダイ
ヤフラム機構、34・・・・第1電磁切換弁、39・・
・・第2電磁切換弁、40・・・・制御回路、41・・
・・回転センサー42・・・・スロットル弁の開度セン
サー 43・・・・圧力センサー 44・・・・走行速
度センサー9The drawings are diagrams showing embodiments of the invention. 1... Internal combustion engine, 5... Exhaust turbo supercharger, 8
... Mechanical supercharger, 11 ... Exhaust bypass passage, 13 ... Waste gate valve, 14 ... Air cleaner, 15 ... Electromagnetic clutch mechanism, 16 ...
Throttle valve, 18...Surge tank, 19...
・Intake passage, 21...Supercharging passage, 22...Intake bypass passage, 24...Opening/closing valve, 23...Diaphragm mechanism, 34...First electromagnetic switching valve, 39・・・
...Second electromagnetic switching valve, 40...Control circuit, 41...
... Rotation sensor 42 ... Throttle valve opening sensor 43 ... Pressure sensor 44 ... Traveling speed sensor 9
Claims (1)
る吸気経路中に、中速回転より以下の低速回転域におい
て内燃機関からの動力伝達にて回転駆動する機械式過給
機と、排気ガスによって駆動される排気ターボ過給機と
を直列状に配設し、前記機械式過給機を迂回する吸気バ
イパス通路中に、前記機械式過給機の回転駆動時におい
て閉じるようにした開閉弁を設けて成る複合型過給装置
において、前記開閉弁に、前記車両の走行速度が、所定
の最高設定走行速度よりも越えたとき、当該開閉弁を閉
じるようにした制御手段を設けたことを特徴とする車両
用内燃機関の複合型過給装置。(1) In the intake path from the air cleaner to the internal combustion engine installed in the vehicle, there is a mechanical supercharger that is driven to rotate by power transmission from the internal combustion engine in the low speed range below medium speed rotation, and a mechanical supercharger that is driven by the power transmitted from the internal combustion engine. A driven exhaust turbo supercharger is arranged in series, and an on-off valve is provided in an intake bypass passage that bypasses the mechanical supercharger and is closed when the mechanical supercharger is driven to rotate. The combined supercharging device is characterized in that the on-off valve is provided with a control means that closes the on-off valve when the traveling speed of the vehicle exceeds a predetermined maximum set traveling speed. A composite supercharging device for internal combustion engines for vehicles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1332348A JPH03194122A (en) | 1989-12-20 | 1989-12-20 | Composite-type supercharging device for vehicular internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1332348A JPH03194122A (en) | 1989-12-20 | 1989-12-20 | Composite-type supercharging device for vehicular internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03194122A true JPH03194122A (en) | 1991-08-23 |
Family
ID=18253957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1332348A Pending JPH03194122A (en) | 1989-12-20 | 1989-12-20 | Composite-type supercharging device for vehicular internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03194122A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6920756B2 (en) * | 2000-05-11 | 2005-07-26 | Borgwarner Inc. | Charged internal combustion engine |
AT501417B1 (en) * | 2006-04-26 | 2008-01-15 | Avl List Gmbh | Internal combustion engine e.g. otto-internal combustion engine, has charge-air intercooler provided between compressors and another charge-air intercooler provided downstream of one compressor that can be bypassed |
-
1989
- 1989-12-20 JP JP1332348A patent/JPH03194122A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6920756B2 (en) * | 2000-05-11 | 2005-07-26 | Borgwarner Inc. | Charged internal combustion engine |
AT501417B1 (en) * | 2006-04-26 | 2008-01-15 | Avl List Gmbh | Internal combustion engine e.g. otto-internal combustion engine, has charge-air intercooler provided between compressors and another charge-air intercooler provided downstream of one compressor that can be bypassed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5982526A (en) | Supercharger for internal-combustion engine | |
US4637210A (en) | Supercharge pressure control apparatus of a supercharged engine | |
JPS60169630A (en) | Supercharger for internal-combustion engine | |
JPH0751897B2 (en) | Control device for turbocharger | |
JPH03194122A (en) | Composite-type supercharging device for vehicular internal combustion engine | |
JPS624679Y2 (en) | ||
JPH03225031A (en) | Combined type supercharger of internal combustion engine | |
JPS62335B2 (en) | ||
JPS58195023A (en) | Internal-combustion engine with exhaust turbo supercharger | |
JPH0326826A (en) | Supercharger for engine and device therefor | |
JPS58170827A (en) | Supercharging device for internal-combustion engine | |
JPS61207826A (en) | Engine equipped with exhaust turbosupercharger | |
JPS6291626A (en) | Compound supercharger of internal combustion engine | |
JPS5951648B2 (en) | Exhaust turbocharged engine | |
JPS63246416A (en) | Supercharging device for internal combustion engine | |
JPH03225030A (en) | Combined type supercharger of internal combustion engine | |
JPH0415954Y2 (en) | ||
JPH04175424A (en) | Compound type supercharger in internal combustion engine | |
JPS62248827A (en) | Supercharging device for engine | |
JPS62189326A (en) | Supercharger of engine | |
JPH02256830A (en) | Internal combustion engine with supercharger | |
JPH0529768B2 (en) | ||
JPS5951651B2 (en) | Exhaust turbocharged engine | |
JPH02153226A (en) | Supercharging device of engine | |
JPS59134326A (en) | Device for controlling super-charged pressure of engine provided with turbo-supercharger |