JPS59134326A - Device for controlling super-charged pressure of engine provided with turbo-supercharger - Google Patents

Device for controlling super-charged pressure of engine provided with turbo-supercharger

Info

Publication number
JPS59134326A
JPS59134326A JP58008187A JP818783A JPS59134326A JP S59134326 A JPS59134326 A JP S59134326A JP 58008187 A JP58008187 A JP 58008187A JP 818783 A JP818783 A JP 818783A JP S59134326 A JPS59134326 A JP S59134326A
Authority
JP
Japan
Prior art keywords
pressure
engine
exhaust
exhaust gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58008187A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Misao Fujimoto
藤本 操
Yasuyuki Morita
泰之 森田
Hirobumi Nishimura
博文 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58008187A priority Critical patent/JPS59134326A/en
Publication of JPS59134326A publication Critical patent/JPS59134326A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To control maximum super-charged pressure by a single signal source, by providing such an arrangement that, when the pressure of exhaust gas reaches a set vaue, the exhaust gas pressure is lowered to the set value in accordance with the exhaust gas pressure. CONSTITUTION:By means of selector valves, an engine 1 is operated with the assistance of a low speed turbo-supercharger 8 upon low speed operation, but is operated with the assistance of a high speed turbo-supercharger 9 upon high speed operation. When super-charged pressure produced in a downstream side intake-air passage 2d becomes maximum, the exhaust gas pressure of an upstream side exhaust gas passsage 3u also increasses accordingly, and therefore, a super-charging control valve 22 is operated to be opened since the exhaust gas pressure introduced into a positive pressure chamber 24c in a control diaphragm device 24 overcomes the set load of a coil spring 24f.

Description

【発明の詳細な説明】 本発明は、エンジンの排気ガスにより駆動されるタービ
ンと、該タービンに回転軸により連結されたブロアとか
らなるターボ過給機を複数個備え、上記各タービンおよ
びブロアをエンジンの排気通路および吸気通路に夫々並
列配設してなるターボ過給機付エンジンに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a plurality of turbo superchargers each comprising a turbine driven by engine exhaust gas and a blower connected to the turbine by a rotating shaft, and each of the turbines and the blower is connected to the turbine. This invention relates to an engine with a turbo supercharger arranged in parallel in an exhaust passage and an intake passage of the engine.

従来より、ターボ過給機を用いて吸気を昇圧して充填効
率を向上させることにより、エンジンの出力性能の向」
二を図る技術思想はよく知られており、現今では、エン
ジンの高速運転時のみならず、低速運転時においても過
給によって出力性能を向上させたいという要求がある。
Conventionally, engine output performance has been improved by using a turbocharger to boost intake air pressure and improve charging efficiency.
The technical idea of achieving the second goal is well known, and there is currently a demand for improving output performance by supercharging not only when the engine is operating at high speeds but also when operating at low speeds.

ところで、単一のターボ過給機によって」二記の要求を
満足することは、ターボ過給機の効率という面から実際
−にキわめで困難であり、複数個のターボ過給機を並設
することによって、かがる要求に対処しようとする技術
思想が提案されている(実開昭56−15≦〕626号
公報、特開昭5 +’l −] 18117号公報参照
)。
By the way, it is actually extremely difficult to satisfy the above two requirements with a single turbocharger from the standpoint of turbocharger efficiency, and it is difficult to satisfy the requirements listed in the following paragraphs with a single turbocharger. A technical idea has been proposed to meet these requirements by doing so (see Japanese Utility Model Application Publication No. 56-15≦]626, and Japanese Patent Application Publication No. 56-15+'l-]18117).

また、ターボ過給機は、エンジン回転数の増大にほぼ比
例して過給圧も上昇する特性を有するが、過給圧をむや
みに増大することはエンジンの信頼性という面から好ま
しいものではなく、通常は、過給圧が所定値以」−(ζ
に昇しないように、その最高過給圧を制御する必要があ
る。かかる最高過給圧の制御は、上記のように低速域、
高速域両方において過給を行なう場合においては、高速
域のみならず、低速域においてもノッキングの発生を防
止するうえで必要となる。
Additionally, a turbocharger has the characteristic that the supercharging pressure increases almost in proportion to the increase in engine speed, but increasing the supercharging pressure unnecessarily is not desirable from the standpoint of engine reliability. , normally the boost pressure is less than a certain value - (ζ
It is necessary to control the maximum boost pressure so that it does not increase. The maximum boost pressure is controlled in the low speed range, as described above.
When supercharging is performed in both high speed ranges, it is necessary to prevent knocking not only in the high speed range but also in the low speed range.

しかして、上記のように複数個のターボ過給機を並設し
たエンジンでは、各ターボ過給機のタービンおよびブロ
アを夫々エンジンの排気通路および吸気通路に並列に配
置、接続しなければならず、吸、排気通路構造が複雑と
なるうえ、各ターボ過給機が配置される各吸気通路およ
び各排気通路において通路抵抗の差異があり、とりわけ
、上記した如き低速用ターボ過給機および高速用ターボ
過給機を切換えて使用する型式のエンジンでは、各ター
ボ過給機の作動領域が異なるといった問題があるため、
過給圧の制御、とくに最高過給圧の制御も複雑化し困難
になるといった問題がある。即ち、単一のターボ過給機
を備えるエンジンの場合のように、ブロア下流に過給圧
を検出する圧力センサを単に設置した場合(市販のもの
は、圧力センサがブロアの直下流に一体に組込まれてい
る。)だけでは、各ターボ過給機の作動域か異なったり
、作動域が異ならないとしても、個々のターボ過給(幾
の性能の相異や通路抵抗の相異等のため、実際にエンジ
ンに供給される過給気の正確な最高過給圧の制御信号を
得ることが困難となり、有効な制御信号を得るためには
、各ターボ過給機の過給圧の相関をとることが必要とな
る等、制御か複雑化するといった不具合かある。
Therefore, in an engine in which multiple turbochargers are installed in parallel as described above, the turbine and blower of each turbocharger must be arranged and connected in parallel to the exhaust passage and intake passage of the engine, respectively. In addition, the structure of the intake and exhaust passages is complicated, and there are differences in passage resistance between each intake passage and each exhaust passage where each turbocharger is arranged. In engines that use turbo superchargers by switching, there is a problem that the operating range of each turbo supercharger is different.
There is a problem in that controlling the boost pressure, especially the maximum boost pressure, becomes complicated and difficult. In other words, when a pressure sensor is simply installed downstream of a blower to detect the boost pressure, as in the case of an engine equipped with a single turbocharger (commercially available models have a pressure sensor integrated directly downstream of the blower), ) alone, the operating range of each turbocharger may be different, or even if the operating range is not different, the individual turbochargers (because of differences in performance, differences in passage resistance, etc.) , it becomes difficult to obtain an accurate control signal for the maximum boost pressure of the supercharge air actually supplied to the engine, and in order to obtain an effective control signal, it is necessary to correlate the boost pressures of each turbocharger. There may be problems with the control system, such as the need to take additional steps, which may complicate the control process.

本発明は、かかる問題に鑑みてなされたものであって、
並列配設した複数個のターボ過給機の各タービン上流の
排気通路が分岐する分岐部とエンジンとの間の排気通路
における排圧を取出して、この排圧が設定値に達すると
、その排圧に応動して排圧を設定値に等しい排圧にまで
低下させることによって過給圧を最高過給圧に制限する
最高過給圧制御装置を設け、単一の信号源によって最高
過給圧を有効かつ確実に制御することができるターボ過
給機付エンジンの過給圧制御装置を提供せんとするもの
である。
The present invention has been made in view of such problems, and includes:
Exhaust pressure in the exhaust passage between the engine and the branch point where the exhaust passages upstream of each turbine of multiple turbochargers arranged in parallel diverge, and when this exhaust pressure reaches a set value, the exhaust A maximum boost pressure control device is provided that limits the boost pressure to the maximum boost pressure by reducing the exhaust pressure to an exhaust pressure equal to the set value in response to the pressure, and the maximum boost pressure is controlled by a single signal source. It is an object of the present invention to provide a supercharging pressure control device for a turbocharged engine that can effectively and reliably control.

以下、図示の実施例に基づν1て本発明をより具体的に
説明する。
Hereinafter, the present invention will be described in more detail with reference to ν1 based on the illustrated embodiments.

〈第1実施例〉 第1図において、1はエンジン、2はエンジン1の吸気
通路、3はエンジン1の排気通路、4はエンジン1の時
々刻々の吸気量を計量するため吸気通路2の最上流部に
介設したエア70−センサ、5.6は吸気通路2のエア
70−センサ4下流とスロットル弁7の上流との間で並
列に形成した第1、第2分岐吸気通路、8,9は夫々第
1.第2分岐吸気通路5,6の途中に介設したブロア8
 a19aを、排気通路3の途中を二叉に分岐して形成
した第1.第2分岐排気通路10.11に夫々介設した
タービン8b、9bに回転軸8c、9cにより連結して
なる低速用、高速用ターボ過給機である。
<First Embodiment> In FIG. 1, 1 is an engine, 2 is an intake passage of the engine 1, 3 is an exhaust passage of the engine 1, and 4 is the highest point of the intake passage 2 for measuring the momentary intake air amount of the engine 1. The air 70-sensor 5.6 interposed in the upstream portion is the first and second branch intake passages formed in parallel between the air 70-sensor 4 downstream of the intake passage 2 and the upstream of the throttle valve 7; 9 is the first. Blower 8 interposed between the second branch intake passages 5 and 6
a19a is formed by bifurcating the exhaust passage 3 into two parts. These are low-speed and high-speed turbo superchargers connected by rotary shafts 8c and 9c to turbines 8b and 9b, respectively, interposed in the second branch exhaust passage 10.11.

」二記低連用ターボ過給磯8は、エンジン1の低速域に
おいて良好な効率を有するターボ過給機であって、エン
ジンの低速運転時において、第1分岐排気通路1()と
第2分岐排気通路11との分岐部3aに設けた排気切換
弁12が第2分岐排気通路11を閉じた状態で、第1分
岐排気通路10を流下する排気ガスによってタービンE
′)I]か駆動されると、タービン81〕の回転に連動
するブロア8aで吸気を昇圧して、エンノン1の低速時
における過給を行なう。
2. The low continuous use turbo supercharger 8 is a turbo supercharger that has good efficiency in the low speed range of the engine 1, and during low speed operation of the engine, the first branch exhaust passage 1 ( ) and the second branch With the exhaust switching valve 12 provided at the branch part 3a with the exhaust passage 11 closing the second branch exhaust passage 11, the exhaust gas flowing down the first branch exhaust passage 10 switches the turbine E.
')I] is driven, the blower 8a, which is linked to the rotation of the turbine 81], boosts the pressure of the intake air, thereby supercharging the ennon 1 at low speed.

、1:た、高速用ターボ過給(幾9は、エンノン1の高
速域において良好な効率を有するターボ過給機であって
、エンジン1の高速運転時において、上記排気切換弁1
2および第1.第2分岐吸気通路5.6の合流部2aに
設けた吸気切換弁13が、図に点線で示すように、第1
分岐排気通路10および第1分岐吸気通路5を閉じる一
方、第2分岐排気通路11および第2分岐吸気通路6を
開くと、第2分岐排気通路11を流下する排気ガスによ
ってタービン9bが駆動され、これに連動するブロア9
aで吸気を昇圧し第2分岐吸気通路6を介してエンジン
1に過給を行なう。換言すれば、エンジン1の高速運転
時には、高速用ターボ過給(幾9が、低速用ターボ過給
8!8に代って過給を行なう。
, 1: Turbo supercharging for high speed (Iku 9 is a turbo supercharger having good efficiency in the high speed range of Ennon 1, and when the engine 1 is operated at high speed, the exhaust switching valve 1
2 and 1st. As shown by the dotted line in the figure, the intake switching valve 13 provided at the confluence section 2a of the second branch intake passage 5.6
When the branch exhaust passage 10 and the first branch intake passage 5 are closed, while the second branch exhaust passage 11 and the second branch intake passage 6 are opened, the turbine 9b is driven by the exhaust gas flowing down the second branch exhaust passage 11. Blower 9 linked to this
At step a, the pressure of intake air is increased and the engine 1 is supercharged via the second branch intake passage 6. In other words, when the engine 1 is operating at high speed, the high-speed turbocharging (Iku 9 performs supercharging instead of the low-speed turbocharging 8!8).

また、14は前記エアフローセンサ4の出力信号を基本
人力信号として、吸気通路2のスロットル弁7の下流に
臨設した燃料噴射弁15の開弁時間および上記排気、吸
気切換弁12,13に対して夫々設けた電磁作動のアク
チュエータ16.17の切換を制御する制御回路で、第
2図に示すように、噴射パルス発生回路18によりエア
70−センサ4によって検出される吸気量に応じて開弁
時間の間燃料噴射弁15を開作動する一方、比較回路1
9において吸気量と設定値とを比較し、吸気量が設定値
に達していないエンジン1の低速時には、前記各アクチ
ュエータ16.17を不作動に保持し、設定値以上に達
すると、各アクチュエータ16+17を増幅回路20を
介して作動して、各切換弁12.13を、第1図の実線
位置から点線位置に切換える。
Reference numeral 14 uses the output signal of the air flow sensor 4 as a basic manual signal to determine the opening time of the fuel injection valve 15 installed downstream of the throttle valve 7 in the intake passage 2 and the exhaust and intake switching valves 12 and 13. As shown in FIG. 2, this is a control circuit that controls switching of the electromagnetically actuated actuators 16 and 17 provided respectively.As shown in FIG. While the fuel injection valve 15 is opened, the comparison circuit 1
9, the intake air amount and the set value are compared, and when the intake air amount does not reach the set value and the engine 1 is running at low speed, each of the actuators 16 and 17 is held inactive, and when it reaches the set value or more, each actuator 16+17 is is actuated via the amplifier circuit 20 to switch each switching valve 12, 13 from the solid line position to the dotted line position in FIG.

再び、第1図において、21は第1.第2分岐排気通路
1o、iiの分岐部3aとエンジン1の間の上流側排気
通路3uから低速用、高速用ターボ過給機8,9の各タ
ービン8b、9bをバイパスして下流側排気通路3d側
に連通する排気バイパス通路、22は排気バイパス通路
21の途中に設けた弁座23を開閉する過給圧制御弁、
24は過給圧制御弁22をロッド24aを介してグイヤ
フラム24bに支持した過給圧制御弁22の制御用グイ
ヤ7ラム装置、25は制御用グイヤフラム装置24の正
圧室24cに、上流側排気通路3uの排圧を導入する排
圧導入通路である。この制御用グイヤ7ラム装置24の
グイヤ7ラム24bによって正圧室24cとは仕切られ
たいま一つの室24dは大気開放孔24eによって大気
に連通された大気室として形成され、この大気室24d
内には、コイルスプリング24f を縮装し、このコイ
ルスプリング24fの設定荷重を、制御目標である最高
過給圧に対応する排圧に応じて設定する。
Again, in FIG. 1, 21 is the first . From the upstream exhaust passage 3u between the branch part 3a of the second branch exhaust passages 1o and ii and the engine 1, the downstream exhaust passage bypasses the turbines 8b and 9b of the low-speed and high-speed turbo superchargers 8 and 9. 3d side, an exhaust bypass passage 22, a supercharging pressure control valve that opens and closes a valve seat 23 provided in the middle of the exhaust bypass passage 21;
24 is a Guya 7 ram device for controlling the supercharging pressure control valve 22 supported by the Guyaflame 24b via a rod 24a, and 25 is a positive pressure chamber 24c of the Guyaflam device 24 for control, and an upstream exhaust This is an exhaust pressure introducing passage that introduces the exhaust pressure of the passage 3u. Another chamber 24d, which is separated from the positive pressure chamber 24c by the Gouya 7 ram 24b of the control Gouya 7 ram device 24, is formed as an atmospheric chamber communicated with the atmosphere through the atmosphere opening hole 24e, and this atmospheric chamber 24d
A coil spring 24f is compressed inside, and the set load of this coil spring 24f is set according to the exhaust pressure corresponding to the maximum boost pressure that is the control target.

この最高過給圧は、前述した如く、基本的にはエンノン
1の信頼性を考慮して設定する。
As mentioned above, this maximum boost pressure is basically set in consideration of the reliability of Ennon 1.

上記の構成とすれば、エンジン1の低速運転時には低速
用ターボ過給機8によって、また高速運転時には高速用
ターボ過給機9によって、下流側吸気通路2dに生成さ
れる過給圧が、上記最高過給圧に達すると、これに応じ
て上流側排気通路3uの排圧も上昇し、制御用ダイヤフ
ラム装置24の正圧室24cに導入されるゼ1圧がコイ
ルスプリング24fの設定荷重を上廻って、グイヤ7ラ
ム241Jが変位され、過給圧制御弁22が開作動され
る結果、排気バイパス通路21を一連に連通する。この
ため、排気の一部は排気バイパス通路21によって各タ
ービン8b、9bをバイパスして下流側排気通路3dに
流され、タービン8b、9bの駆動力が低下する結果下
流側吸気通路2dの過給圧を最高過給圧以下に低下させ
る。したがって、エンノン1に供給される過給気は、最
高過給圧以下に維持され、エンジン1はその信頼性が損
なわれることなく、良好に運転され、過給による良好な
出力性能を示す。
With the above configuration, the supercharging pressure generated in the downstream intake passage 2d by the low-speed turbo supercharger 8 during low-speed operation of the engine 1 and by the high-speed turbo supercharger 9 during high-speed operation is as described above. When the maximum boost pressure is reached, the exhaust pressure in the upstream exhaust passage 3u increases accordingly, and the Z1 pressure introduced into the positive pressure chamber 24c of the control diaphragm device 24 exceeds the set load of the coil spring 24f. As a result, the Guya 7 ram 241J is displaced and the supercharging pressure control valve 22 is opened, thereby communicating the exhaust bypass passage 21 in series. Therefore, part of the exhaust gas bypasses each turbine 8b, 9b by the exhaust bypass passage 21 and flows into the downstream exhaust passage 3d, reducing the driving force of the turbines 8b, 9b, resulting in supercharging of the downstream intake passage 2d. Reduce the pressure to below the maximum boost pressure. Therefore, the supercharging air supplied to the engine 1 is maintained below the maximum supercharging pressure, and the engine 1 is operated satisfactorily without deteriorating its reliability, and exhibits good output performance due to supercharging.

即ち、第1実施例では、第1.第2分岐排気通路io、
iiの分岐部3 aとエンジン1との間の上流側排気通
路3uの排圧を用いることにより、低速用、高速用ター
ボ過給機8,9をエンジン1の運転状態に応じて切換え
て使用する場合においても、何んらの制御の複雑化を伴
なうことなしに実際にエンジン1に供給される過給気の
正確な最高過給圧の制御が行なえるのである。
That is, in the first embodiment, the first. second branch exhaust passage io,
By using the exhaust pressure of the upstream exhaust passage 3u between the branch part 3a of ii and the engine 1, the low-speed and high-speed turbo superchargers 8 and 9 are switched and used according to the operating state of the engine 1. Even in this case, the maximum supercharging pressure of the supercharging air actually supplied to the engine 1 can be accurately controlled without any complication of control.

なお、上記実施例では、最高過給圧の制御を排気バイパ
ス通路21を用いて行なったが、第1図に仮想線で示す
ように、吸気バイパス通路26を用いて最高過給圧の制
御を行なうようにしてもよ()I。
In the above embodiment, the maximum boost pressure was controlled using the exhaust bypass passage 21, but as shown by the imaginary line in FIG. 1, the maximum boost pressure was controlled using the intake bypass passage 26. Let's do it ()I.

即ち、吸気切換弁13下流の吸気通路2dと、各ブロア
8a、9a上流の吸気通路2し1とを連通する吸気バイ
パス通路26の途中を開閉する過給圧制御弁27を設け
るとともに、これを上記と同様の制御用グイヤ7ラム装
置28に支持し、この制御用グイヤ7ラム装置28の正
圧室に排圧導入通路29によって上流側排気通路軸の排
圧を導入することにより、過給圧が予しめ設定した最高
過給圧に達したときにブロア8a又は9aをバイパスさ
せて過給気の一部を上流の吸気通路2uに導くことによ
り過給圧を制御するようにしてもよ〈第2実施例〉 第3図に示す第2の実施例は、基本的に等価な1次、2
次ターボ過給機30.31を並設し、吸気量が少ないエ
ンジン1の低速運転時には、1次ターボ過給 ジン1の高速運転時には、1次,2次ターボ過給(幾3
0.31の両方で増大した吸気量を分担して過給を行な
う型式のターボ過給機付エンジンに本発明を適用したも
のである。
That is, a supercharging pressure control valve 27 that opens and closes the intake bypass passage 26 that communicates the intake passage 2d downstream of the intake switching valve 13 with the intake passages 2 and 1 upstream of each blower 8a and 9a is provided. It is supported by the same control Gouya 7 ram device 28 as described above, and the exhaust pressure of the upstream exhaust passage shaft is introduced into the positive pressure chamber of the control Gouya 7 ram device 28 through the exhaust pressure introduction passage 29, thereby achieving supercharging. The supercharging pressure may be controlled by bypassing the blower 8a or 9a and guiding a portion of the supercharging air to the upstream intake passage 2u when the pressure reaches a preset maximum supercharging pressure. <Second Embodiment> The second embodiment shown in FIG.
The secondary turbo superchargers 30 and 31 are installed in parallel, and when the engine 1 is running at low speed with a small intake air amount, when the primary turbo supercharging engine 1 is running at high speed, the primary and secondary turbo supercharging (multiple
The present invention is applied to a type of turbocharged engine that performs supercharging by sharing the intake air amount increased by 0.31.

このため、2次ターボ過給 を介設した第2分岐吸気通路6のブロア下流には、逆止
弁32を介設する一方、2次ターボ過給のタービン31
bを介設した第2分岐排気通路11のタービン上流には
、排気制御弁33を設けて2次ターボ過給 即ち、制御回路14は、第4図にも示すように、エア7
0−センサ4の吸気量検出信号を設定値と比較し、吸気
量が設定値を越えたときには、比較回路19が増幅回路
20を介して、排気制御弁33に対して設けたアクチュ
エータ;(4を作動して排気制御弁33を開作動し、第
2分岐掴気辿路11を開くようにしている。
For this reason, a check valve 32 is provided downstream of the blower in the second branch intake passage 6 in which secondary turbocharging is provided, while a turbine 31 for secondary turbocharging is provided.
An exhaust control valve 33 is provided upstream of the turbine in the second branch exhaust passage 11 in which the second branch exhaust passage 11 is interposed.
0-The intake air amount detection signal of the sensor 4 is compared with the set value, and when the intake air amount exceeds the set value, the comparison circuit 19 connects the actuator provided for the exhaust control valve 33 via the amplifier circuit 20; (4 is actuated to open the exhaust control valve 33, thereby opening the second branch gripping air path 11.

第2分岐排気通路11が開かれると、この通路11を流
下する排気ガスによって、タービン311〕が駆動され
、2次ターボ過給 する。2次ターボ過給 と、逆止弁32が開かれ、第1,第2分岐吸気通路5,
6が合流する合流部2aより下流の下流側吸気通路2d
には1次ターボ過給 与えられる過給圧と、2次ターボ過給 て与えられる過給圧との合成圧が生成される。
When the second branch exhaust passage 11 is opened, the exhaust gas flowing down this passage 11 drives the turbine 311 to perform secondary turbocharging. The secondary turbo supercharging and the check valve 32 are opened, and the first and second branch intake passages 5,
A downstream intake passage 2d downstream of the merging section 2a where 6 merges.
A composite pressure of the supercharging pressure given by the primary turbo supercharging and the supercharging pressure given by the secondary turbo supercharging is generated.

したがって、エンジン1の低速運転時には、1次ターボ
過給 またエンジン1の高速運転時には、1次,2次ターボ過
給機30.31によって与えられる合成過給圧が、予じ
め定めた最高過給圧に達すると、これに応じて排圧も上
昇して設定値に達するので、制御用グイヤ7ラム装置2
4が過給圧制御弁22を開作動して排気バイパス通路2
1を開通させ、タービン30b,31bの駆動力を低ド
させることにより過給圧を最高過給圧以下に制御するこ
とができる。
Therefore, when the engine 1 is operating at low speed, the primary turbo supercharging is applied, and when the engine 1 is operating at high speed, the combined supercharging pressure provided by the primary and secondary turbo superchargers 30 and 31 is the predetermined maximum supercharging pressure. When the supply pressure is reached, the exhaust pressure increases accordingly and reaches the set value, so the control Guya 7 ram device 2
4 opens the boost pressure control valve 22 to open the exhaust bypass passage 2.
1 and lowering the driving force of the turbines 30b and 31b, the boost pressure can be controlled to be below the maximum boost pressure.

即ち、1次,2次ターボ過給130.31を併用する型
式のターボ過給機付エンジンにおいて、単独使用時、併
用時の別なく一定の個所からの信号によって制御用グイ
ヤ7ラム24が制御されるため、第1,第2分岐吸気通
路5,6の通路抵抗および第1,第2分岐排気通路1o
,1tの通路抵抗に相違があっても、実際にエンノン1
に供給される過給気の最高過給圧を有効かつ正確に制御
することができる。
That is, in a type of turbocharged engine that uses both primary and secondary turbocharging 130.31, the control gouya 7 ram 24 is controlled by a signal from a fixed location, regardless of whether it is used alone or in combination. Therefore, the passage resistance of the first and second branch intake passages 5 and 6 and the first and second branch exhaust passages 1o
, 1t, even if there is a difference in the path resistance of Ennon 1
It is possible to effectively and accurately control the maximum boost pressure of the supercharge air supplied to the engine.

なお、第1図に示す第1実施例について説明したと同様
、この第2実施例においても、吸気バイパス通路26を
用いた最高過給圧制御を行なうようにしてもよい。
Incidentally, in the same way as described for the first embodiment shown in FIG. 1, maximum boost pressure control may be performed using the intake bypass passage 26 also in this second embodiment.

以」二の第2実施例について、第1実施例と異なるとこ
ろがないものには同一番号を付して重複した説明を省略
する。
Regarding the following second embodiment, the same reference numerals are given to those parts that are not different from the first embodiment, and redundant explanation will be omitted.

なお、本発明は、並列に配設した2つのターボ過給機の
両方をエンノンの低速、高速に無関係に常時使用する型
式のターボ過給機料エンジンにも適用しうろことはいう
までもない。
It goes without saying that the present invention can also be applied to a type of turbocharged engine that constantly uses two turbochargers arranged in parallel, regardless of whether the engine speed is low or high. .

以上の説明から明らかなように、本発明によれば、■;
列に配設するターボ過給機の個々の特性や作動領域の相
異さらには個々のターボ過給機に関する通路抵抗の相異
等に関係なしに、エンジンに実際に供給される過給気の
過給圧をタービン上流の徘篤通路の分岐部上流の排圧と
して取出すようにしたか呟常に精度の高い最高過給圧の
制御か行なえる。
As is clear from the above description, according to the present invention, ■;
The amount of supercharged air actually supplied to the engine is independent of the individual characteristics and operating ranges of the turbochargers arranged in the row, as well as the differences in passage resistance of the individual turbochargers. By extracting the supercharging pressure as exhaust pressure upstream of the branch of the wandering passage upstream of the turbine, the maximum supercharging pressure can always be controlled with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示すエンジン系統説明図
、第2図は第1図の制御回路のブロック説明図、第3図
は本発明の第2実施例を示すエンジン系統説明図、第4
図は第2図と同様の制御回路のブロック図である。 1 ・・・エンジン 2 ・・・吸気通路 5、6・・・第1,第2分岐吸気通路 2a・・・合流部 3・・・排気通路 10、11・・・第1.第2分岐排気通路3a・・・分
岐部 8.9・・・低速用、高速用ターボ過給機8a、 9a
・・・ブロア、8b、 91)・・・タービン、8c、
 9c・・・回転軸 21・・・排気バイパス通路 22・・・過給圧制御弁 24・・・制御用ダイヤフラム装置 25・・・排圧導入通路
Fig. 1 is an explanatory diagram of an engine system showing a first embodiment of the present invention, Fig. 2 is an explanatory block diagram of the control circuit of Fig. 1, and Fig. 3 is an explanatory diagram of an engine system showing a second embodiment of the invention. , 4th
The figure is a block diagram of a control circuit similar to that in FIG. 2. 1...Engine 2...Intake passages 5, 6...First and second branch intake passages 2a...Merge portion 3...Exhaust passages 10, 11...First. Second branch exhaust passage 3a...branch portion 8.9...low speed, high speed turbo supercharger 8a, 9a
... Blower, 8b, 91) ... Turbine, 8c,
9c... Rotating shaft 21... Exhaust bypass passage 22... Supercharging pressure control valve 24... Control diaphragm device 25... Exhaust pressure introduction passage

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの排気ガスにより駆動されるタービンと
、該タービンに回転軸により連結されたブロアとからな
るターボ過給機を複数個備え、」二記各タービンおよび
ブロアをエンジンの排気通路および吸気通路に夫々並列
配設してなるターボ過給(幾何エンジンにおいて、 上記各タービン上流の排気通路の分岐部とエンジンとの
間の排気通路の排圧に応動し、該排圧が設定値以上のと
き排圧を低下させて最高過給圧を制限する最高過給圧制
御装置を設けたことを特徴とするターボ過給機付エンジ
ンの過給圧制御装置。
(1) Equipped with a plurality of turbo superchargers each consisting of a turbine driven by engine exhaust gas and a blower connected to the turbine by a rotating shaft; Turbocharging (in a geometric engine, turbocharging is provided in parallel with each turbine in response to the exhaust pressure in the exhaust passage between the branch part of the exhaust passage upstream of each turbine and the engine, and the exhaust pressure exceeds a set value) 1. A supercharging pressure control device for a turbocharged engine, comprising a maximum supercharging pressure control device that limits a maximum boost pressure by lowering exhaust pressure.
JP58008187A 1983-01-20 1983-01-20 Device for controlling super-charged pressure of engine provided with turbo-supercharger Pending JPS59134326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008187A JPS59134326A (en) 1983-01-20 1983-01-20 Device for controlling super-charged pressure of engine provided with turbo-supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008187A JPS59134326A (en) 1983-01-20 1983-01-20 Device for controlling super-charged pressure of engine provided with turbo-supercharger

Publications (1)

Publication Number Publication Date
JPS59134326A true JPS59134326A (en) 1984-08-02

Family

ID=11686292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008187A Pending JPS59134326A (en) 1983-01-20 1983-01-20 Device for controlling super-charged pressure of engine provided with turbo-supercharger

Country Status (1)

Country Link
JP (1) JPS59134326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046585A1 (en) * 2010-09-25 2012-03-29 Audi Ag Device for operating six cylinder V-type internal combustion engine of motor car, has air circulation device connected to portions of pressure lines and fixed with compressors with suction line dependent on modes of engine
US20120192559A1 (en) * 2011-01-28 2012-08-02 Ecomotors International, Inc. Exhaust System for an Internal Combustion Engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046585A1 (en) * 2010-09-25 2012-03-29 Audi Ag Device for operating six cylinder V-type internal combustion engine of motor car, has air circulation device connected to portions of pressure lines and fixed with compressors with suction line dependent on modes of engine
US20120192559A1 (en) * 2011-01-28 2012-08-02 Ecomotors International, Inc. Exhaust System for an Internal Combustion Engine
US8677749B2 (en) * 2011-01-28 2014-03-25 EcoMotors International Exhaust system for an internal combustion engine

Similar Documents

Publication Publication Date Title
CN110566341A (en) Series-parallel electric supercharging system and control method thereof
JPS5982526A (en) Supercharger for internal-combustion engine
JPS60169630A (en) Supercharger for internal-combustion engine
JPS6161920A (en) Supercharge pressure controller for supercharged engine
JPS59134326A (en) Device for controlling super-charged pressure of engine provided with turbo-supercharger
JPH09195781A (en) Supercharger for engine
JPS6245056Y2 (en)
JPS6120294Y2 (en)
JP2522376B2 (en) Combined supercharger for internal combustion engine
JPS59134327A (en) Device for controlling super-charged pressure for engine provided with turbo-supercharger
JPS6158918A (en) Intake cooler for engine with supercharger
JPS6316130A (en) Exhaust turbo supercharger for internal combustion engine
JPH066901B2 (en) Engine supercharger
JPS61164041A (en) Internal-combustion engine with turbo charger
JPH0417725A (en) Supercharged pressure control device of two stage supercharged internal combustion engine
JPH0121136Y2 (en)
JP2605053B2 (en) Engine boost pressure control device
JPS59136531A (en) Supercharging pressure controlling apparatus for engine with turbocharger
JPS58170827A (en) Supercharging device for internal-combustion engine
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPH03194122A (en) Composite-type supercharging device for vehicular internal combustion engine
JPH03275939A (en) Control for engine equipped with supercharger
JPH04370324A (en) Deceleration air bypass valve control device for engine having supercharger
JPH04183930A (en) Exhaust device of turbo-supercharging type multiple cylinder engine
JPS59200017A (en) Engine with supercharger