JPS59136531A - Supercharging pressure controlling apparatus for engine with turbocharger - Google Patents

Supercharging pressure controlling apparatus for engine with turbocharger

Info

Publication number
JPS59136531A
JPS59136531A JP58010349A JP1034983A JPS59136531A JP S59136531 A JPS59136531 A JP S59136531A JP 58010349 A JP58010349 A JP 58010349A JP 1034983 A JP1034983 A JP 1034983A JP S59136531 A JPS59136531 A JP S59136531A
Authority
JP
Japan
Prior art keywords
intake
passage
engine
supercharging pressure
supercharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58010349A
Other languages
Japanese (ja)
Other versions
JPH0424535B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Misao Fujimoto
藤本 操
Yasuyuki Morita
泰之 森田
Hirobumi Nishimura
博文 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58010349A priority Critical patent/JPS59136531A/en
Publication of JPS59136531A publication Critical patent/JPS59136531A/en
Publication of JPH0424535B2 publication Critical patent/JPH0424535B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To enable to control the maximum supercharging pressure with ease and effectively in an apparatus comprising a plurality of turbochargers disposed in parallel with each other, by forming an intake-air relief passage by-passing all of blowers of each supercharger, and providing a supercharging pressure control valve in said intake- air relief passage. CONSTITUTION:A low-speed turbocharger 8 and a high-speed turbocharger 9 are constituted respectively by blowers 8a, 9a disposed in a first and a second branch intake passages 5, 6 formed in an intake passage 2 between an air-flow meter 4 and a throttle valve 7 in parallel with each other and turbines 8b, 9b disposed in a first and a second branch exhaust passages 10, 11 branched from an intermediate portion of an exhaust passage 3. In such an arrangement, an intake-air relief passage 21 is formed for communicating an intake passage 2d located on the downstream side of a joining portion 2a of the above two branch intake passages 5, 6 with an intake passage 2u located on the upstream side of the same. Further, a supercharging pressure control valve 22 is provided at an intermediate portion of the relief passage 21. With such an arrangement, the maximum supercharging pressure is limited by opening the control valve 22 when the supercharging pressure becomes higher than a prescribed value.

Description

【発明の詳細な説明】 本発明は、エンジンの排気ガスにより駆動されるタービ
ンと、該タービンに回転軸によ1)連結されたブロアと
からなるターボ過給機を複数個(liiiえ、上記各タ
ービンおよびブロアをエンジンの排気通路および吸気通
路に夫々並列配設してなるターボ過給機はエンジンに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a plurality of turbo superchargers (liii) comprising a turbine driven by engine exhaust gas and a blower connected to the turbine through a rotating shaft. 2. Description of the Related Art A turbo supercharger in which a turbine and a blower are arranged in parallel in an exhaust passage and an intake passage of an engine is related to an engine.

従来より、ターボ過給機を用いて吸気を昇圧して充填効
率を向上させることによl)、エンノンの出力性能の向
上を図る技術思想はよく知られており、現今では、エン
ノンの高速運転時のみならず、1氏速運転時に第3いて
も過給1こよって出力性能を向上させたいという要求が
ある。
The technical concept of improving the output performance of Ennon by increasing the pressure of intake air using a turbo supercharger and improving charging efficiency has been well known, and currently, high-speed operation of Ennon is There is a demand for improving output performance by supercharging 1 not only when operating at 1 Fahrenheit, but also when operating at 1 Fahrenheit.

ところで、単一のターボ過給(幾によって」1記の要求
を満足することは、ターボ過給(戊の効率という面から
実際上きわめて困難であり、複数個のターボ過給(幾を
並設することによって、かがる要求に対処しようとする
技術思想が提案されている(実開昭56−159626
号公報、特開昭50−118117号公報参照)。
By the way, it is actually extremely difficult to satisfy the requirement 1 with a single turbocharger from the viewpoint of turbocharging efficiency, and it is difficult to satisfy the requirements of item 1 with a single turbocharger. A technical idea has been proposed that attempts to meet these requirements by
(see Japanese Patent Application Laid-open No. 118117/1983).

また、ターボ過給機は、エンジン回転数の増大にほぼ比
例して過給圧も」1昇する特性を有するが、過給圧をむ
やみに増大することはエンジンの信頼性という面から好
ましいものではなく、通常は、過給圧か所定値以」二に
上昇しないように、その最高過給圧を制御する必要があ
る。かかる最高過給圧の制御は、」−記のように低速域
、高速域両方において過給を行なう場合においては、高
速域のみならず、低速域においてもノッキングの発生を
防止するうえで必要となる。
Additionally, a turbocharger has the characteristic that the supercharging pressure increases approximately in proportion to the increase in engine speed, but increasing the supercharging pressure unnecessarily is not desirable from the standpoint of engine reliability. Instead, it is usually necessary to control the maximum boost pressure so that it does not rise above a predetermined value. Such control of the maximum boost pressure is necessary to prevent knocking not only in the high speed range but also in the low speed range when supercharging is performed in both the low speed range and the high speed range as described in "-". Become.

しかして、上記のよう5二複数個のターボ過給敗を並設
したエンノンでは、各ターボ過給機のタービンおよびブ
ロアを夫々エンジンの排気通路および吸気通路に並列に
配置、接続しなけれはならないため、吸、排気通路構造
かそちそち複雑となるうえ、とりわけ、上記した如き低
速用ターボ過給(幾および高速用ターボ過給(幾を切換
えて使用する型式のエンジンでは、個々のター爪過給機
に月してその過給圧を制御しようとすると、個々に過給
圧を1氏下させるための装置、例えばターボ過給(代の
70アをバイパスする吸気リリーフ通路か必要となって
通路構造かより一層複雑化し、その制御も困難になると
いった問題がある。
Therefore, in the case of an ennon in which multiple turbo superchargers are installed in parallel as described above, the turbine and blower of each turbo supercharger must be arranged and connected in parallel to the exhaust passage and intake passage of the engine, respectively. Therefore, the structure of the intake and exhaust passages becomes rather complicated, and in particular, in the type of engine that uses turbo supercharging for low speeds and turbo supercharging for high speeds (switching) as described above, the individual turbo supercharging If you try to control the supercharging pressure on the charger, you will need a device to individually lower the supercharging pressure by 1 degree, such as an intake relief passage that bypasses the turbo supercharging (70A). There are problems in that the passage structure becomes even more complex and its control becomes difficult.

即ち、上記型式の過給機イ;1エンンンにおいて、低速
用ターボ過給機に対し、その最高過給圧を制限するため
の吸気リリーフ通路を設けたとすると、低速用ターボ過
給(戊はエンジンの高速運転時には停止されるから、高
速用ターボ過給(幾に対しても、その最高過給圧を制限
するための吸気リリーフ通路を設けなければならない。
That is, in the above-mentioned type of supercharger A;1 engine, if an intake relief passage is provided for the low-speed turbocharger to limit its maximum boost pressure, then the low-speed turbocharger (or the engine Since the engine is stopped during high-speed operation, an intake relief passage must be provided to limit the maximum boost pressure for high-speed turbocharging.

この事情は、1次、2次ターボ過給敗を(jl用し、吸
気量の少ない低速時には、1次ターボ過給磯を、吸気量
か増大する高速時には、1次、2次両方のターボ過給(
幾を使用する型式のエンジンにおいても本質的に異なる
ものではない。
This situation causes the failure of primary and secondary turbo supercharging (jl).At low speeds when the intake air amount is small, the primary turbo supercharging is used, and at high speeds when the intake air amount increases, both the primary and secondary turbos are used. Supercharging (
There is no essential difference in the type of engine used.

本発明は、かかる問題に鑑みてなされたものであって、
並列配設した複数個のター叡過給磯の各ブロア下流の吸
気通路が合流する合流部とエンジンとの間の吸気通路か
ら複数のブロアを同時にバイパスして吸気通路上流に連
通する吸気リリーフ通路を設けるとともに、該吸気リリ
ーフ通路に過給圧に応答する制御弁を介設し、過給圧が
設定値以上に上昇する際、吸気リリーフ通路を介して過
給気の一部を吸気通路」二部にバイパスさせて最高過給
圧を制限するようにし、単一の吸気リリーフ通路によっ
て最高過給圧を有効かつ確実に制御することができるタ
ーボ過給機1寸エンノンの過給圧制御装置を提供せんと
するもので))る。
The present invention has been made in view of such problems, and includes:
An intake relief passage that simultaneously bypasses the plurality of blowers and communicates with the upstream intake passage from the intake passage between the engine and the confluence where the intake passages downstream of each blower of a plurality of turbochargers arranged in parallel merge. At the same time, a control valve that responds to the boost pressure is interposed in the intake relief passage, and when the boost pressure rises above a set value, a part of the supercharged air is sent to the intake passage through the intake relief passage. Boost pressure control device for turbocharger 1 inch Ennon, which limits the maximum boost pressure by bypassing two parts, and can effectively and reliably control the maximum boost pressure with a single intake relief passage. )).

以下、図示の実施例に基づいて本発明をより具内的に1
悦明する。
Hereinafter, the present invention will be described more specifically based on the illustrated embodiments.
Be happy.

〈第 1実施例〉 @[1こおいて、11土エンン゛ン、21土エンノン1
の吸気通路、3はエンジン1の排気通路、11はエンジ
ン1の時々刻々の吸気量を計量するため吸気通路2の最
上流部に介設したエアフローセンサ、5.6は吸気通路
2のエアフローセンサバ1下流と又ロントル弁7の上i
tとの間で並列に形成した第1、第2分岐吸気通路、8
,9は夫々第1.第2分岐吸気通路5,6の途中に介設
したブロア8a、9aを、排気通路3の途中を二叉に分
岐して形成した第1、第2分岐排気通路10,1.1に
夫々介設したタービン8b、9bに回転軸8c+9cに
より連結してなる低速用、高速用ターボ過給(幾である
<First example>
3 is an exhaust passage of the engine 1; 11 is an air flow sensor installed at the most upstream part of the intake passage 2 to measure the amount of intake air from the engine 1; and 5.6 is an air flow sensor of the intake passage 2. downstream of valve 1 and above rontre valve 7 i
first and second branch intake passages formed in parallel with t;
, 9 are the 1st. The blowers 8a, 9a interposed in the middle of the second branch intake passages 5, 6 are inserted in the first and second branch exhaust passages 10, 1.1, which are formed by bifurcating the exhaust passage 3 in the middle, respectively. Low-speed and high-speed turbo supercharging (how many) are connected to installed turbines 8b and 9b by rotating shafts 8c+9c.

」ユ記低連用ターボ過給俄8は、エンジン1の低速域に
おいて良好な効率を有するターボ過給機であって、エン
ジンの低速運転時において第1分岐排気通路10と第2
分岐排気通路11との分岐部3aに設けtこ排気切換弁
12か第2分岐排気通路11を閉じた状態で、第1分岐
排気通路10を流下する排気力スによってタービン81
)か駆動されると、タービン81〕の回転に連動するブ
ロア8aで吸気を昇圧して、エンジン1の低速時におけ
る過給を行なう。
The low continuous use turbo supercharger 8 is a turbo supercharger that has good efficiency in the low speed range of the engine 1, and when the engine is running at low speed, the first branch exhaust passage 10 and the second
When the exhaust switching valve 12 provided at the branch part 3a with the branch exhaust passage 11 closes the second branch exhaust passage 11, the turbine 81 is activated by the exhaust force flowing down the first branch exhaust passage 10.
) is driven, the blower 8a, which is linked to the rotation of the turbine 81], boosts the pressure of the intake air to provide supercharging when the engine 1 is running at low speed.

また、高速用ターボ過給磯9は、エンジン1の高速域に
おいて良好な効率を有するターボ過給1戊であって、エ
ンジン1の高速運転時において、上記排気切換弁12お
よび第1.第2分岐吸気通路5.6の合流部2aに設け
た吸気切換弁13が、図に点線で示すように、第1分岐
排気通路10および第1分岐吸気通路5を閉しる一方、
第2分岐排気通路11および第2分岐吸気通路6を開く
と、第2分1駿排気通路11を流下する排気ガスによっ
てタービン9bが駆動され、これに連動するブロア9a
で吸気を昇圧し、第2分岐吸気通路6を介してエンジン
1に過給を行なう。換言すれば、エンジン1の高速運転
時には、高速用ターボ過給機53か、低速用ターボ過給
機8に代って過給を行なう。
Further, the high-speed turbocharger 9 is a turbocharger having good efficiency in the high-speed range of the engine 1, and is connected to the exhaust switching valve 12 and the first turbocharger when the engine 1 is operated at high speed. While the intake switching valve 13 provided at the merging portion 2a of the second branch intake passage 5.6 closes the first branch exhaust passage 10 and the first branch intake passage 5, as shown by the dotted line in the figure,
When the second branch exhaust passage 11 and the second branch intake passage 6 are opened, the exhaust gas flowing down the second exhaust passage 11 drives the turbine 9b, and the blower 9a is interlocked with the turbine 9b.
The pressure of the intake air is increased, and the engine 1 is supercharged via the second branch intake passage 6. In other words, when the engine 1 is operating at high speed, supercharging is performed in place of the high speed turbocharger 53 or the low speed turbocharger 8.

また、コ4は前記エアフローセンサ4の出力信号を基本
人力信号として、吸気通路2の又ロツトル弁7の下流に
臨設した燃料噴射弁15の開弁時間および」二記俳気、
吸気切換弁12.13に対して夫々設けた電磁作動のア
クチュエータ16+17の切換を制御する制御回路で、
第2図に示すように、噴射パルス発生回路18によりエ
アフローセンサ4によって検出される吸気量に応して開
弁時間の間燃料噴射弁15を1)1作動する一力、比較
回路ISJにおいて吸気量と設定値とを比較し、吸気量
か設定値に達していないエンジン1の低速時には、ii
j記各アクチュエータ16.17を不作動に保持し、設
定値以上tこ達すると、各アクチュエータ16,17を
増幅回路20を介して作動して、各切換弁12.13を
、第1図の実線位置から点線位置に切換える。
4 uses the output signal of the air flow sensor 4 as a basic human input signal to determine the opening time of the fuel injection valve 15 installed downstream of the intake passage 2 and the rotor valve 7.
A control circuit that controls switching of electromagnetic actuators 16 and 17 provided for the intake switching valves 12 and 13, respectively.
As shown in FIG. 2, the injection pulse generation circuit 18 operates the fuel injection valve 15 during the valve opening time according to the intake air amount detected by the air flow sensor 4. Compare the amount of intake air with the set value, and when the engine 1 is running at low speed, when the intake air volume has not reached the set value, ii
Each actuator 16, 17 is held inoperative, and when the set value t or more is reached, each actuator 16, 17 is operated via the amplifier circuit 20, and each switching valve 12, 13 is set to the state shown in FIG. Switch from the solid line position to the dotted line position.

再び、第1図において、21は第1.第2分岐吸気通路
5,6の合流部2aとエンジン1の間の下流側吸気通路
2dと、エア70−センサ・・[下流の上流側吸気通路
2uとを、低速用、高速用ターボ過給機8,9の各ブロ
ア8a、9aを同時にバイパスして連通する吸気リリー
フ通路、22は吸気リリーフ通路21の途中に設けた弁
座23を開閉する過給圧制御弁、24は過給圧制御弁2
2をロンド2 =・l aを介してダイヤフラム241
〕に支持した過給圧制御弁22の制御用ダイヤフラム装
置、25は制御用ダイヤフラム装置24の正jT−,室
24cに、下流側吸気通路2dの過給圧を導入する過給
圧導入通路である。この制御用ダイヤフラム装置24の
ダイヤフラム24bによって正圧室24cとは仕切られ
たいま一つの室21[dは大気開放孔24eによって大
気に連通された大気室として形成され、この大気室24
d内には、コイルスプリング24fを縮装しこのコイル
スプリング2・4Fの設定荷重を、制御目標である最高
過給圧に応じて設定する。
Again, in FIG. 1, 21 is the first . The downstream intake passage 2d between the confluence part 2a of the second branch intake passages 5 and 6 and the engine 1, and the upstream intake passage 2u downstream of the air 70-sensor... An intake relief passage that simultaneously bypasses and communicates with the blowers 8a and 9a of the machines 8 and 9; 22 is a supercharging pressure control valve that opens and closes a valve seat 23 provided in the middle of the intake relief passage 21; 24 is a supercharging pressure control valve valve 2
2 to the diaphragm 241 via Rondo 2 = l a
25 is a supercharging pressure introduction passage that introduces the supercharging pressure of the downstream intake passage 2d into the positive chamber 24c of the control diaphragm device 24. be. Another chamber 21[d, which is separated from the positive pressure chamber 24c by the diaphragm 24b of the control diaphragm device 24, is formed as an atmospheric chamber communicated with the atmosphere through the atmospheric opening hole 24e.
A coil spring 24f is compressed in d, and the set loads of the coil springs 2 and 4F are set according to the maximum boost pressure that is the control target.

この最高過給圧は、前述した如く、基本的にはエンノン
1の信頼性を考慮して設定する。
As mentioned above, this maximum boost pressure is basically set in consideration of the reliability of Ennon 1.

1−記の構成とすれば、エンジン1の低速運転時には低
速用ターボ過給機8によって、また高速運転時には高速
用ターボ過給(幾9によって、下)光測吸気通路2dに
生成される過給圧が、上記最高過給圧に達すると、制御
用グイヤ7ラム装置2・′Vの正圧室24(二に導入さ
れる過給圧がコイルスプリング241の設定荷重を」二
廻って、ダイヤプラム24bが変位され、過給圧制御弁
22か開作動される結果、吸気リリーフ通路21を一連
に連通する。このため、過給気の一部は吸気リリーフ通
路21によってほぼ大気圧である」二部側吸気通路2u
に還流され、下流側吸気通路2dの過給圧を最高過給圧
以下に低下させる。したがって、エンジン1に供給され
る過給気は、最高過給圧以下に維持され、エンジン1は
その信頼性が損なわれることなく、良好に運転され、過
給による良好な出力性能を示す。
With the configuration described in 1-1, the supercharge generated in the low-speed turbo supercharger 8 during low-speed operation of the engine 1, and the supercharge generated in the high-speed turbo supercharge (lower by number 9) in the photometric intake passage 2d during high-speed operation. When the supply pressure reaches the maximum supercharging pressure, the supercharging pressure introduced into the positive pressure chamber 24 (2) of the control Guyar 7 ram device 2'V turns the set load of the coil spring 241, As the diaphragm 24b is displaced and the supercharging pressure control valve 22 is opened, the intake relief passage 21 is continuously communicated with.Therefore, a part of the supercharging air is kept at approximately atmospheric pressure by the intake relief passage 21. ”Second side intake passage 2u
The supercharging pressure in the downstream intake passage 2d is reduced to below the maximum supercharging pressure. Therefore, the supercharging air supplied to the engine 1 is maintained below the maximum supercharging pressure, and the engine 1 is operated satisfactorily without deteriorating its reliability, and exhibits good output performance due to supercharging.

即ち、第1実施例では、第1.第2分岐吸気通路5.6
の合流部2aとエンノン1との間の下流側吸気通路2d
から、1氏速用、高速用ターボ過給機8,9のブロア8
a、9aを同時にバイパスレ〔上流側吸気通路2uに連
通する吸気リリーフ通路21を設けることにより、低速
用、高速用ターボ過給Big、9をエンジン1の運転状
態に応じて切換えて使用する場合においても、通路構造
の複雑化を伴なうことなしに有効かつ確天に最高過給圧
の制御か行なえるのである。
That is, in the first embodiment, the first. Second branch intake passage 5.6
A downstream intake passage 2d between the confluence part 2a and the ennon 1
From, 1 degree speed, high speed turbo supercharger 8, 9 blower 8
By providing an intake relief passage 21 that communicates with the upstream intake passage 2u, a and 9a can be bypassed at the same time. Also, the maximum boost pressure can be controlled effectively and reliably without complicating the passage structure.

なお、」1記実施例では、過給圧制御弁22の制御I1
1グイヤ7ラム装置24を合流illζ2a下流の下流
側吸気通路2dの過給圧によって作動させるようにした
か、第1図に仮想線26で示すように、排気通路3の分
岐部3a上流の排圧を上記制御用ダイヤフラム装置24
の正圧室24cに導入する排圧導入通路26を前記過給
圧導入通路25に代えて設け、過給圧の上昇に応じて上
昇する排圧か、制御目標である最高過給圧に対応する排
圧(設定値)まで上昇したときに過給圧制御弁22を開
作動させるようにしてもよい。
In addition, in the first embodiment, the control I1 of the boost pressure control valve 22
The ram device 24 is operated by the supercharging pressure of the downstream side intake passage 2d downstream of the confluence illζ2a, or is operated by the boost pressure of the downstream side intake passage 2d downstream of the confluence illζ2a, or The diaphragm device 24 for controlling the pressure
An exhaust pressure introduction passage 26 that is introduced into the positive pressure chamber 24c is provided in place of the supercharging pressure introduction passage 25, and the exhaust pressure increases as the supercharging pressure increases, or corresponds to the maximum supercharging pressure that is the control target. The supercharging pressure control valve 22 may be opened when the exhaust pressure (set value) reaches a certain level.

〈第2実施例〉 第3図(こ示す第2の実施例は、基本的に等価な1次、
2次ターボ過給機30.31を並設し、吸気量が少ない
エンジン1の低速運転時には、1次ターボ過給哉30を
用い、吸気量が増大するエンジン1の高速運転時には、
1次、2次ターボ過給過給を行なう型式のターボ過給機
1τ[エンジンに本発明を適用したものである。
<Second Embodiment> Fig. 3 (The second embodiment shown here is basically an equivalent linear
The secondary turbo superchargers 30 and 31 are installed in parallel, and the primary turbo supercharger 30 is used when the engine 1 is operating at low speed with a small intake air amount, and when the engine 1 is operating at high speed when the intake air amount is large.
The present invention is applied to a turbocharger 1τ [engine] that performs primary and secondary turbocharging.

このため、2次ターボ過給 を介設した第2分岐吸気通路6のブロア下流(こけ、逆
止弁32を介設する一方、2次ターボ過給のタービン3
11)を介設した第2分岐排気通路11のタービン上流
には、排気制御弁33を設けて2次ターボ過給 即ち、制御回路14は、第4図にも示すように、エア7
0−センサ4の吸%量検出信号を設定値と比較し、吸気
量が設定値を越えたときには、比較回路19が増幅回路
2()を介して、排気制御弁33に対して設けたアクチ
ュエータ34を作動して排気制御弁33を開作動し、第
2分岐排気通路11を開くようにしている。
For this reason, the blower downstream of the second branch intake passage 6 in which the secondary turbocharging is provided (the moss), while the check valve 32 is provided, the turbine 3 of the secondary turbocharging
11), an exhaust control valve 33 is provided upstream of the turbine in the second branch exhaust passage 11 in which the secondary turbo supercharging, that is, the control circuit 14 is performed, as shown in FIG.
The intake amount detection signal of the 0-sensor 4 is compared with the set value, and when the intake amount exceeds the set value, the comparison circuit 19 controls the actuator provided for the exhaust control valve 33 via the amplifier circuit 2 (). 34 to open the exhaust control valve 33, thereby opening the second branch exhaust passage 11.

第2分岐排気通路11が開かれると、この通路11を流
下する排気ガ゛スによって、タービン311〕が駆動さ
れ、2次ターボ過給 する。2次ターボ過給 と、逆止弁32が開かれ、第1,第2分岐吸気通路5,
6が合流する合流部2aより下流の下流側吸気通路2d
(こけ1次ターボ過給()文3すしよって与えられる過
給圧と、2次ターボ過給t+文3 ]によって与えられ
る過給圧との合成圧が生成される。
When the second branch exhaust passage 11 is opened, the exhaust gas flowing down this passage 11 drives the turbine 311 to perform secondary turbocharging. The secondary turbo supercharging and the check valve 32 are opened, and the first and second branch intake passages 5,
A downstream intake passage 2d downstream of the merging section 2a where 6 merges.
A composite pressure of the supercharging pressure given by moss primary turbo supercharging () statement 3 and the supercharging pressure given by secondary turbo supercharging t + statement 3] is generated.

したかって、エンジン]の低速運転時には、1次ターボ
過給 またエンジン1の高速運転時には、1次,2次ターボ過
給B’J30,31によって与えられる合成過給圧が、
予しめ定めた最高過給圧に達すると、制御用グイヤフラ
ム装置24が過給圧制御弁22を開作動して吸気リリー
フ通路21を開通させ、過給圧を最高過給圧以下に制御
することかでトる。
Therefore, when the engine is running at low speed, the primary turbo supercharging, and when the engine 1 is running at high speed, the combined supercharging pressure given by the primary and secondary turbo supercharging B'J30, 31 is
When the predetermined maximum boost pressure is reached, the control Guyafram device 24 opens the boost pressure control valve 22 to open the intake relief passage 21 and control the boost pressure to below the maximum boost pressure. It's fun to play.

即ち、1次,2次ターボ過給(¥13(、1.31を併
用する型式のターボ過給()灯」エンジンにおいて、単
独使用時、併用時の別なく単一の吸気リリーフ通路21
によって最高過給圧を有効かつ確実に制御することかで
きる。
In other words, in engines with primary and secondary turbo supercharging (¥13, 1.31 turbo supercharging lights), a single intake relief passage 21 is used regardless of whether it is used alone or in combination.
The maximum boost pressure can be controlled effectively and reliably.

なお、第1図に示す第1実施例について説明したと同様
、この第2実施例においても、排圧導入通路2Gによっ
て取出した排圧に基ついて最高過給圧制御を行なうよう
にしてもよい。
Note that, in the same way as described for the first embodiment shown in FIG. 1, in this second embodiment as well, the maximum boost pressure control may be performed based on the exhaust pressure taken out by the exhaust pressure introduction passage 2G. .

以」二の第2実施例について、第1実施例と異なるとこ
ろがないものには同一番号を1:]シて重複した説明を
省略する。
Regarding the second embodiment described below, parts that are not different from the first embodiment are designated by the same numbers, and redundant explanation will be omitted.

以−にの説明から明らかなように、本発明によれば、単
一・の吸気リリーフ通路によって21E列に配設する複
数のターボ過給機の最高過給圧を有効に制御することか
でb、吸,排気通路の通路構造を複雑化することなしに
最高過給圧の制御が行なえる。
As is clear from the above description, according to the present invention, it is possible to effectively control the maximum boost pressure of a plurality of turbochargers arranged in row 21E using a single intake relief passage. b. The maximum boost pressure can be controlled without complicating the structure of the intake and exhaust passages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のfJS1実施例を示すエンジン系統説
明図、第2図は第1図の制御回路のブロック説明図、第
3図は本発明の第2実施例を示すエンジン系統説明図、
第4図は第2図と同(1−の制御回路のフロック図であ
る。 1 ・・・エンジン 2・・・吸気通路 5、6・・・第1,第2分岐吸気通路 2a・・・合流部、 2u 、 2d・・司二部側,下流側吸気通路3 ・・
・排気通路 10、 ]1・・・第1,第2分岐排気通路8、9・・
・低速用,高速用ターボ過給機Sa, 9a・・・フロ
ア、811. 91]・・・タービン、Sc, 9c・
・・回転軸 2】・・・吸気リリーフ通路 22・・・過給圧制御弁 24・・・制御用グイヤ7ラム装置 25・・・過給圧導入通路 26・・・排圧導入通路
FIG. 1 is an explanatory diagram of an engine system showing an fJS1 embodiment of the present invention, FIG. 2 is an explanatory block diagram of the control circuit of FIG. 1, and FIG. 3 is an explanatory diagram of an engine system showing a second embodiment of the present invention.
FIG. 4 is a block diagram of the control circuit of FIG. 2 (1-). Merging section, 2u, 2d... Second section side, downstream intake passage 3...
・Exhaust passage 10, ]1...first and second branch exhaust passages 8, 9...
・Low speed, high speed turbocharger Sa, 9a...Floor, 811. 91]...Turbine, Sc, 9c・
...Rotating shaft 2]...Intake relief passage 22...Supercharging pressure control valve 24...Control Guya 7 ram device 25...Supercharging pressure introduction passage 26...Exhaust pressure introduction passage

Claims (1)

【特許請求の範囲】[Claims] (1) エンジンの排気力スにより駆動されるタービン
と、該タービンに回転軸により連結されたブロアとから
なるターボ過給機を複数個備え、」二記各タービンおよ
びブロアをエンシ゛ンの七1気通路および吸気通路に夫
々並列配設してなるターボ過給機付エンジン1.二おい
て、 上記各ブロア下流の吸気通路の合流部とエンジンとの間
の吸気通路から複数のブロアを同時にバイパスし゛て吸
気通路−に流に連通する吸気リリーフ通路を設けるとと
もに、該吸気リリーフ通路に過給圧に応答する制御弁を
介設し、過給圧が設定値以」二に−1−71する際、吸
気リリーフ通路を介して過給気の一部を吸気通路」1流
にバイパスさせて最高過給圧を制限するようにしたこと
を特徴とするターボ過給機付エンジンの過給圧制御装置
(1) Equipped with a plurality of turbo superchargers each consisting of a turbine driven by the exhaust power of the engine and a blower connected to the turbine by a rotating shaft, Engine with a turbo supercharger arranged in parallel in a passage and an intake passage, respectively 1. 2, an intake relief passage is provided which simultaneously bypasses a plurality of blowers from the intake passage between the confluence of the intake passages downstream of each of the blowers and the engine and communicates with the intake passage; A control valve that responds to the boost pressure is installed in the system, and when the boost pressure falls below the set value, a part of the boost air is sent to the intake passage through the intake relief passage. A supercharging pressure control device for a turbocharged engine, characterized in that the maximum supercharging pressure is limited by bypass.
JP58010349A 1983-01-24 1983-01-24 Supercharging pressure controlling apparatus for engine with turbocharger Granted JPS59136531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58010349A JPS59136531A (en) 1983-01-24 1983-01-24 Supercharging pressure controlling apparatus for engine with turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010349A JPS59136531A (en) 1983-01-24 1983-01-24 Supercharging pressure controlling apparatus for engine with turbocharger

Publications (2)

Publication Number Publication Date
JPS59136531A true JPS59136531A (en) 1984-08-06
JPH0424535B2 JPH0424535B2 (en) 1992-04-27

Family

ID=11747709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010349A Granted JPS59136531A (en) 1983-01-24 1983-01-24 Supercharging pressure controlling apparatus for engine with turbocharger

Country Status (1)

Country Link
JP (1) JPS59136531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334228A2 (en) * 1988-03-19 1989-09-27 Mazda Motor Corporation Air supply control systems for internal combustion engines
DE4007574A1 (en) * 1989-03-09 1990-09-13 Mazda Motor AIR AND FUEL SUPPLY CONTROL SYSTEMS FOR COMBUSTION ENGINES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632448A (en) * 1979-08-20 1981-04-01 Ici Ltd Manufacture of aminosulfonic acid and its derivative
JPS6047455A (en) * 1983-08-26 1985-03-14 Nec Corp Cmos type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632448A (en) * 1979-08-20 1981-04-01 Ici Ltd Manufacture of aminosulfonic acid and its derivative
JPS6047455A (en) * 1983-08-26 1985-03-14 Nec Corp Cmos type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334228A2 (en) * 1988-03-19 1989-09-27 Mazda Motor Corporation Air supply control systems for internal combustion engines
DE4007574A1 (en) * 1989-03-09 1990-09-13 Mazda Motor AIR AND FUEL SUPPLY CONTROL SYSTEMS FOR COMBUSTION ENGINES

Also Published As

Publication number Publication date
JPH0424535B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
JPS6353364B2 (en)
JPS5982526A (en) Supercharger for internal-combustion engine
JPH0472974B2 (en)
JPS59145328A (en) Control device for engine fitted with turbosupercharger
JP3664181B2 (en) EGR supercharging system
JPS59136531A (en) Supercharging pressure controlling apparatus for engine with turbocharger
JPS59141709A (en) Exhaust gas purifying device for engine equipped with turbosupercharger
JPS61182421A (en) Engine equipped with a plurality of turbosupercharger
JPS62101834A (en) Combined supercharger device for engine of vehicle
JPS6248051B2 (en)
JPS6120294Y2 (en)
JPS61291725A (en) S-step type superchaging device
JPS5968521A (en) Multi-turbo charger device for internal-combustion engine
JPS61277817A (en) Engine equipped with exhaust turbosupercharger
JPS59134327A (en) Device for controlling super-charged pressure for engine provided with turbo-supercharger
JPS58190516A (en) Supercharger for internal-combustion engine
JPS59108824A (en) Supercharging pressure control device in engine with supercharger
JPS58113535A (en) Turbocharger
JPS59136519A (en) Supercharging pressure controlling apparatus for engine with turbocharger
JPS59134326A (en) Device for controlling super-charged pressure of engine provided with turbo-supercharger
JPH0326826A (en) Supercharger for engine and device therefor
JPS58190519A (en) Supercharger for internal-combustion engine
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPS5843568B2 (en) Internal combustion engine exhaust turbocharger
JPS5882020A (en) Turbosupercharger for internal combustion engine