JPS61164041A - Internal-combustion engine with turbo charger - Google Patents

Internal-combustion engine with turbo charger

Info

Publication number
JPS61164041A
JPS61164041A JP60005007A JP500785A JPS61164041A JP S61164041 A JPS61164041 A JP S61164041A JP 60005007 A JP60005007 A JP 60005007A JP 500785 A JP500785 A JP 500785A JP S61164041 A JPS61164041 A JP S61164041A
Authority
JP
Japan
Prior art keywords
turbocharger
capacity
turbo charger
exhaust
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005007A
Other languages
Japanese (ja)
Inventor
Hiroshi Komatsu
宏 小松
Takeshi Yamane
健 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60005007A priority Critical patent/JPS61164041A/en
Publication of JPS61164041A publication Critical patent/JPS61164041A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent torque drop in the range of starting the operation of a second turbo charger by substantially initially operating at least one variable capacity type of a plurality of turbo chargers. CONSTITUTION:An exhaust controlling valve 43 at the second turbo charger 9 side is closed in the low rotation and load of an engine, while the capacity of a first turbo charger 5 is minimized, i.e. the area of a turbine inlet path is minimized by a flap 39 of a variable capacity mechanism 33. Thus, exhaust is not flowed to a second turbine 11 and only the first turbo charger 5 is operated. And when discharge pressure, i.e. supercharging pressure reaches a predetermined value by a first compressor 21 as the engine load is increased, the flap 39 is opened to enlarge the capacity of the first turbo charger 5. Thereafter, when said capacity is maximized, an exhaust controlling valve 43 is opened and exhaust flows also into a second turbine 11, while the capacity of the first turbo charger 5 is lessened.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数のターボチャージャを有するターボチ
ャージャ付内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turbocharged internal combustion engine having a plurality of turbochargers.

[従来技術] 一般に、自動車等に用いられるターボチャージャは、m
関の運転状態により過給効率が異なる。
[Prior Art] Generally, turbochargers used in automobiles etc.
Supercharging efficiency differs depending on the operating condition of the engine.

このため、ある運転域に過給効率が良いターボチャージ
ャを採用すれば、他の運転域については過給効率は悪く
なる。
Therefore, if a turbocharger with good supercharging efficiency is used in a certain operating range, the supercharging efficiency will be poor in other operating ranges.

そこで、ターボチャージャを広回転、広負荷域で有効に
作動させるために、1つの機関に対しターボチャージャ
を複数設けて、III関の運転状態に応じて、作動させ
るターボチャージャの数を変化させたものが、例えば特
開昭59−68521号公報に記載されている。
Therefore, in order to effectively operate the turbocharger over a wide rotation speed and a wide load range, multiple turbochargers are provided for one engine, and the number of turbochargers activated is varied depending on the operating status of the III engine. This is described, for example, in Japanese Patent Laid-Open No. 59-68521.

この公報記載のものは、2つのターボチャージャを並列
に配設してあり、第1ターボチヤージヤを低回転域で作
動させ、この第1ターボチヤージヤのコンプレッサ吐出
圧すなわち過給圧の上昇により、第2ターボチヤージヤ
のタービン入口に設けられた制御弁を開き、第2ターボ
チヤージヤを作動させる構成となっている。
The system described in this publication has two turbochargers arranged in parallel, and the first turbocharger is operated in a low rotation range, and by increasing the compressor discharge pressure, that is, the supercharging pressure, of the first turbocharger, the second turbocharger is activated. The control valve provided at the turbine inlet of the engine is opened to operate the second turbocharger.

しかしながら、このような従来のターボチャージャ付内
燃機関にあっては、第2ターボチヤージヤの作動開始域
すなわち第2ターボチヤージヤのタービン入口制御弁の
開度初期ないし半開付近に至るまでの間には、この制御
弁で圧力降下が起こり、タービン流量特性の急激な変化
やターボチャージャの回転上昇の時間遅れ等により、ト
ルクの落ち込みが発生し、運転性の悪化を招いていた。
However, in such a conventional internal combustion engine with a turbocharger, this control cannot be performed until the operation start range of the second turbocharger, that is, the opening of the turbine inlet control valve of the second turbocharger reaches the initial or half-open position. A pressure drop occurs at the valve, resulting in a sudden change in turbine flow characteristics and a delay in the turbocharger speeding up, causing a drop in torque and deteriorating driveability.

[発明の目的] この発明は、このような従来の問題点に鑑み創案された
もので、第1ターボチャージャ作動後、第2ターボチヤ
ージヤの作動開始領域に、トルクの落ち込みを発生させ
ないターボチャージャ付内燃機関の提供を目的とする。
[Object of the Invention] The present invention has been devised in view of the above conventional problems, and provides an internal combustion engine with a turbocharger that does not cause a drop in torque in the region where the second turbocharger starts operating after the first turbocharger operates. For the purpose of providing institutions.

[発明の構成] この目的を達成するためにこの発明は、複数のターボチ
ャージャのうち少なくとも1つを可変容量型とし、かつ
この可変容量型ターボチャージャを実質的に最初に作動
させる構成とした。
[Configuration of the Invention] In order to achieve this object, the present invention has a configuration in which at least one of the plurality of turbochargers is of a variable displacement type, and the variable displacement type turbocharger is operated substantially first.

[実施例] 以下、図面に基づきこの発明の一実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は2つのターボチャージャが並列に配設された内
燃機関の概略的な全体構成図で、ia本体1の図中で下
部側に連結された排気マニホールド3下流には、可変容
量型の第1ターボチヤージヤ5の第1タービン7と、固
定容量型の第2ターボチヤージヤ9の第2タービン11
とが接続されている。そして、この第1、第2タービン
7.11には、第1.第2排気通路13.15がそれぞ
れ接続されている。
Figure 1 is a schematic overall configuration diagram of an internal combustion engine in which two turbochargers are arranged in parallel. The first turbine 7 of the first turbocharger 5 and the second turbine 11 of the fixed capacity second turbocharger 9
are connected. The first and second turbines 7.11 include a first turbine. A second exhaust passage 13.15 is connected respectively.

機関本体1の図中で上部側に連結された吸気管17は、
途中にインタークーラ19を有し、第1、第2ターボチ
ャージャ5.9の各コンプレッサ21.23の吐出側に
第1.第2吸気通路25.27を介して連結されている
。この第1.第2コンプレッサ21.23の吸入側29
.31はそれぞれ図外のエアクリーナ側に連通されてい
る。
The intake pipe 17 connected to the upper side of the engine body 1 in the figure is
There is an intercooler 19 in the middle, and a first . They are connected via second intake passages 25,27. This first. Suction side 29 of the second compressor 21.23
.. 31 are each communicated with an air cleaner side (not shown).

第1ターボチヤージヤ5は、USP2944786や、
特開昭54−71221号公報等に記載されている可変
容量機構33を備えている。この可変容量機構33は、
アクチュエータ35によりリンク機構37を介して第1
タービン7の排気流入部を開閉し、タービン容量を変化
させるフラップ39を有しており、アクチュエータ35
はコントローラ41により作動するものである。また、
第1ターボチヤージヤ5は、機関の低回転、低負荷時に
第2ターボチヤージヤ9に先がけて作動するものである
The first turbocharger 5 is USP2944786,
The variable capacity mechanism 33 described in Japanese Patent Application Laid-Open No. 54-71221 and the like is provided. This variable capacity mechanism 33 is
The actuator 35 connects the first
It has a flap 39 that opens and closes the exhaust gas inlet of the turbine 7 and changes the turbine capacity, and an actuator 35
is operated by the controller 41. Also,
The first turbocharger 5 operates before the second turbocharger 9 when the engine is running at low speeds and under low load.

第2ターボチヤージヤ9は、可変容量型ではなく、第2
タービン11の排気上流に排気制御弁43が設けられて
おり、第1ターボチヤージヤ5の作動後排気制御弁43
の開弁により排気を第2タービン11に流すことで機関
の中ないし高負荷時に作動するものである。排気制御弁
43は、アクチュエータ45によりリンク機構47を介
して作動し、アクチュエータ45はコントローラ49に
より作動するものである。
The second turbocharger 9 is not a variable displacement type, but a second turbocharger 9.
An exhaust control valve 43 is provided upstream of the exhaust gas of the turbine 11, and the exhaust control valve 43 is provided after the first turbocharger 5 is operated.
The valve is opened to allow exhaust gas to flow to the second turbine 11, thereby operating when the engine is under medium or high load. The exhaust control valve 43 is operated by an actuator 45 via a link mechanism 47, and the actuator 45 is operated by a controller 49.

前記第1排気通路13と第2排気通路15とが合流する
排気管51と、排気マニホールド3とは、排気バイパス
通路53により連通し、このバイパス通路53の排気マ
ニホールド3側には排気バイパス弁55が開閉可能に取
付けられている。排気バイパス弁55は、過給圧を一定
に保持すべく機関の高負荷時に開弁じて排気をバイパス
させるもので、その作動はアクチュエータ57によりリ
ンク機構59を介して行なわれ、アクチュエータ57は
コントローラ61により作動する構成となっている。尚
、第2吸気通路27には、第1ターボチヤージヤ5のみ
が作動しているとき、吸気が該通路27を逆流しないよ
うに公知の逆止弁(図示せず)が設けられている。
The exhaust pipe 51 where the first exhaust passage 13 and the second exhaust passage 15 join together and the exhaust manifold 3 communicate through an exhaust bypass passage 53, and an exhaust bypass valve 55 is provided on the exhaust manifold 3 side of the bypass passage 53. is installed so that it can be opened and closed. The exhaust bypass valve 55 opens to bypass exhaust gas when the engine is under high load in order to keep the supercharging pressure constant. Its operation is performed by an actuator 57 via a link mechanism 59, and the actuator 57 is operated by a controller 61. It is configured to operate by. The second intake passage 27 is provided with a known check valve (not shown) to prevent intake air from flowing backward through the passage 27 when only the first turbocharger 5 is operating.

次に過給圧およびam背圧の変化を示した第2図および
第3図を参照しながら作用を説明する。
Next, the operation will be explained with reference to FIGS. 2 and 3, which show changes in supercharging pressure and am back pressure.

なお、この第2図、第3図では、この実施例を実線で示
し、破線および一点鎖線は従来例を示している。
In FIGS. 2 and 3, this embodiment is shown by solid lines, and the broken lines and dashed-dotted lines show the conventional example.

機関の低回転、低負荷時には、第2ターボチヤージヤ9
側の排気制御弁43は閉じ、第1ターボチヤージヤ5の
容量は最小すなわち可変容量機構33のフラップ39が
タービン入口通路面積を最小にする。したがって、排気
は第2タービン11へは流れず、第1ターボチヤージヤ
5のみが作動することとなる。そして、機関負荷の上昇
に伴なって第1コンプレツサ21により吐出圧すなわち
過給圧が所定値に達したら、(図中A点)、第1ターボ
チヤージヤ5の容量を大きくすべくフラップ39を徐々
に開放する。そして、この容量が最大となった後(図中
B点)、排気制御弁43を開き第2タービン11にも排
気を流すと同時に、第1ターボチヤージヤ5の各間を小
さくすることで、過給圧を略一定に保つ、(図中C点)
、その後、機関負荷が更に上昇すると、これに伴って第
1ターボチヤージヤ5の容量を再び最大にする(図中り
点)。第1ターボチヤージヤ5の容量が最大となったら
、排気バイパス弁55を開き排気をバイパスさせて、過
給圧の過上昇を防ぐ。
When the engine is at low speed and load, the second turbocharger 9
The side exhaust control valve 43 is closed, and the capacity of the first turbocharger 5 is minimized, that is, the flap 39 of the variable displacement mechanism 33 minimizes the turbine inlet passage area. Therefore, the exhaust gas does not flow to the second turbine 11, and only the first turbocharger 5 operates. When the discharge pressure, that is, the supercharging pressure, reaches a predetermined value by the first compressor 21 as the engine load increases (point A in the figure), the flap 39 is gradually opened to increase the capacity of the first turbocharger 5. Open. After this capacity reaches its maximum (point B in the diagram), the exhaust control valve 43 is opened to allow exhaust to flow into the second turbine 11, and at the same time, the distance between each of the first turbochargers 5 is reduced to provide supercharging. Keep the pressure almost constant (point C in the diagram)
Thereafter, when the engine load further increases, the capacity of the first turbocharger 5 is again maximized (point in the figure). When the capacity of the first turbocharger 5 reaches its maximum, the exhaust bypass valve 55 is opened to bypass the exhaust gas to prevent excessive rise in supercharging pressure.

この結果、第2図および第3図に示すように過給圧が一
定に保たれ、機関背圧も従来に比べ段差の少ないものと
なっている。これに対し、従来では、第1ターボチヤー
ジヤのみの作動後、第2ターボチヤージヤをも作動させ
るべく第2ターボチヤージヤ側に排気を流す際には、第
3図一点鎖線図示のように機関背圧が急激に低下し、こ
れに伴うターボチャージャの回転低下により、第2図一
点鎖線図示のように過給圧が低下してしまう。また、過
給圧を一定に保とうとすると、第2ターボチヤージヤの
過給圧(コンプレッサ吐出圧)が第1ターボチヤージヤ
による所定の過給圧(コンプレッサ吐出圧)に達するま
では、第1ターボチヤージヤのみで機関本体に空気を供
給しなければならず、第1ターボチヤージヤを極めて高
い回転数で回転させる必要が生じ、この結果、第3図破
線図示のように機関背圧の上昇が著しいものとなってし
まう。 第4図は他の実施例を示す。なお、ここでは前
述の実施例と同一構成要素には同一符号を付して説明を
簡略化する。この実施例は、第1ターボチヤージヤ5に
加えて第2ターボチヤージ1763をも可変容量型とし
たものである。この第2ターボチヤージヤ63は第1タ
ーボチヤージヤ5と同様なフラップ65を備えた可変容
量機構67を有し、フラップ65はリンク機構69を介
してアクチュエータ71により第2タービン11の排気
流入部を開閉作動する。アクチュエータ71はコントロ
ーラ73により作動するもので、このコントローラ73
は第1ターボチV−ジャ5側のアクチュエータ35をも
作動させる構成となっている。
As a result, as shown in FIGS. 2 and 3, the supercharging pressure is kept constant, and the engine back pressure has fewer steps than in the past. In contrast, conventionally, when exhaust gas is flowed to the second turbocharger side in order to operate the second turbocharger after operating only the first turbocharger, the engine back pressure suddenly increases as shown by the dashed line in Figure 3. As a result of this, the rotation of the turbocharger decreases, resulting in a decrease in supercharging pressure as shown by the dashed line in FIG. Also, if you try to keep the supercharging pressure constant, only the first turbocharger will operate the engine until the second turbocharger's supercharging pressure (compressor discharge pressure) reaches a predetermined supercharging pressure (compressor discharge pressure) from the first turbocharger. Air must be supplied to the main body, and the first turbocharger must be rotated at an extremely high rotational speed, resulting in a significant increase in engine back pressure as shown by the broken line in FIG. FIG. 4 shows another embodiment. In addition, here, the same reference numerals are attached to the same components as in the above-described embodiment to simplify the explanation. In this embodiment, in addition to the first turbocharger 5, the second turbocharger 1763 is also of variable capacity type. This second turbocharger 63 has a variable displacement mechanism 67 equipped with a flap 65 similar to that of the first turbocharger 5, and the flap 65 is operated to open and close the exhaust gas inflow portion of the second turbine 11 by an actuator 71 via a link mechanism 69. . The actuator 71 is operated by a controller 73.
is configured to also operate the actuator 35 on the first turbocharger V-jar 5 side.

次に、上記構成による作用を説明する。なお、この実施
例での機関背圧は第3図において2点鎖線で示している
。すなわち、機関の低回転、低負荷時には、第2ターボ
チヤージヤ63は小容量のまま、回転数、負荷等の増大
に伴い第1ターボチヤージヤ5の容量を徐々に大きくし
て最大容量にする(第3図中A1)。その後、機関負荷
の上昇に伴って第ターボチャージャ5の容量を中程度ま
で小さくすると同時に、第2ターボチヤージヤ63の容
量を中程度まで大きくする(第3図中81点)。そして
、更に機関負荷が上昇すると、これに伴い、第1ターボ
チヤージ175の容量を最大にすると共に第2ターボチ
ヤージヤ63の容量も最大にする(第3図中81 )。
Next, the effect of the above configuration will be explained. Incidentally, the engine back pressure in this embodiment is shown by a two-dot chain line in FIG. That is, when the engine is running at low speed and under low load, the capacity of the second turbocharger 63 remains small, and as the rotational speed, load, etc. increase, the capacity of the first turbocharger 5 is gradually increased to reach the maximum capacity (see Fig. 3). Middle A1). Thereafter, as the engine load increases, the capacity of the first turbocharger 5 is reduced to a medium level, and at the same time, the capacity of the second turbocharger 63 is increased to a medium level (point 81 in FIG. 3). When the engine load further increases, the capacity of the first turbocharger 175 is maximized and the capacity of the second turbocharger 63 is also maximized (81 in FIG. 3).

このように各ターボチャージャ5,63を作動させるこ
とによって、第3図2点鎖線図示のように機関背圧の段
差がより一層小さくなり、運転性が更に向上する。
By operating the turbochargers 5 and 63 in this manner, the difference in engine back pressure is further reduced as shown by the two-dot chain line in FIG. 3, and the drivability is further improved.

なお、この発明は前述の実施例に限定されるものではな
く。例えば、第4図の実施例で、低回転、低負荷時には
第2ターボチヤージヤ63の容量をゼロすなわちこの運
転時に排気を第2タービン11に流さないようにしても
よい。
Note that this invention is not limited to the above-mentioned embodiments. For example, in the embodiment shown in FIG. 4, the capacity of the second turbocharger 63 may be set to zero during low rotation and low load, that is, the exhaust gas may not flow to the second turbine 11 during this operation.

[発明の効果1 以上のようにこの発明によれば、複数のターボチャージ
ャのうち少なくとも1つを可変容量型とし、この可変容
量型ターボチャージャを実質的に最初に作動させ、その
容量を略最大とした債、容量を小さくすると共に他のタ
ーボチャージャを実質的に作動させるようにしたため、
低回転、低負荷時に実質的に休止していたターボチャー
ジャの作動開始直後であっても、トルクの落ち込みがな
く、滑かな運転特性が得られ、広い運転域でターボチャ
ージャを効率良く作動させることができる。
[Effect of the Invention 1 As described above, according to the present invention, at least one of the plurality of turbochargers is a variable capacity type, and this variable capacity type turbocharger is operated substantially first, and its capacity is increased to approximately the maximum. Because we reduced the capacity and effectively operated other turbochargers,
To operate the turbocharger efficiently over a wide operating range, with no drop in torque and smooth operating characteristics, even immediately after the turbocharger starts operating, which was essentially at rest at low speeds and low loads. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のターボチャージャ付内燃
機関の概略的全体構成図、第2図および第3図はこの発
明の実施例と従来例とを比較した過給圧および機関背圧
の変化を示す説明図、第4図は他の実施例のターボチャ
ージャ付内燃機関の概略全体構成図である。 (図面の主要部を表わす符号の説明) 5・・・第1ターボチヤージヤ 9・・・第2ターボチヤージヤ(可変容量型)33・・
・可変容量機構 特許出願人  日産自動車株式会社 第1図 5 ニヤ1ターボ゛チイーン゛セ フニヤ1タービン 第2図 第3図 PAm回転牧 第4図
Fig. 1 is a schematic overall configuration diagram of an internal combustion engine with a turbocharger according to an embodiment of the present invention, and Figs. 2 and 3 show supercharging pressure and engine back pressure comparing the embodiment of the present invention and a conventional example. FIG. 4 is a schematic overall configuration diagram of an internal combustion engine with a turbocharger according to another embodiment. (Explanation of symbols representing main parts of the drawing) 5...First turbocharger 9...Second turbocharger (variable displacement type) 33...
・Variable capacity mechanism patent applicant Nissan Motor Co., Ltd. Fig. 1 5 Near 1 turbo chain Sef Niya 1 turbine Fig. 2 Fig. 3 PAm rotary shear Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)複数のターボチャージャを有する内燃機関のター
ボチャージャのうち少なくとも1つは可変容量型である
ものにおいて、前記可変容量型ターボチャージャは実質
的に最初に作動することを特徴とするターボチャージャ
付内燃機関。
(1) In an internal combustion engine having a plurality of turbochargers, at least one of which is a variable displacement turbocharger, the variable displacement turbocharger operates substantially first. Internal combustion engine.
(2)前記可変容量型ターボチャージャが略最大容量と
なった後、この容量を小さくすると共に、他のターボチ
ャージャを実質的に作動させることを特徴とする特許請
求の範囲第1項記載のターボチャージャ付内燃機関。
(2) The turbocharger according to claim 1, wherein after the variable capacity turbocharger reaches a substantially maximum capacity, the capacity is reduced and other turbochargers are substantially operated. Internal combustion engine with charger.
JP60005007A 1985-01-17 1985-01-17 Internal-combustion engine with turbo charger Pending JPS61164041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005007A JPS61164041A (en) 1985-01-17 1985-01-17 Internal-combustion engine with turbo charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005007A JPS61164041A (en) 1985-01-17 1985-01-17 Internal-combustion engine with turbo charger

Publications (1)

Publication Number Publication Date
JPS61164041A true JPS61164041A (en) 1986-07-24

Family

ID=11599492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005007A Pending JPS61164041A (en) 1985-01-17 1985-01-17 Internal-combustion engine with turbo charger

Country Status (1)

Country Link
JP (1) JPS61164041A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473121A (en) * 1987-09-14 1989-03-17 Yanmar Diesel Engine Co Intake device for v-row internal combustion engine
JPH01300017A (en) * 1988-05-27 1989-12-04 Mazda Motor Corp Engine exhaust turbo-supercharging device
EP0735253A2 (en) * 1995-03-27 1996-10-02 ABB Management AG Method and device for register supercharging an internal combustion engine
FR2885649A1 (en) * 2005-05-13 2006-11-17 Peugeot Citroen Automobiles Sa Supercharging system for a diesel engine comprises two turbochargers and a device that compensates for the decrease in compression ratio of the first turbocharger's compressor when the second turbocharger is started up
EP1777387A1 (en) * 2005-10-19 2007-04-25 Ford Global Technologies, LLC Turbocharged internal combustion engine and method to operate such an engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473121A (en) * 1987-09-14 1989-03-17 Yanmar Diesel Engine Co Intake device for v-row internal combustion engine
JPH01300017A (en) * 1988-05-27 1989-12-04 Mazda Motor Corp Engine exhaust turbo-supercharging device
EP0735253A2 (en) * 1995-03-27 1996-10-02 ABB Management AG Method and device for register supercharging an internal combustion engine
EP0735253A3 (en) * 1995-03-27 1997-04-16 Abb Management Ag Method and device for register supercharging an internal combustion engine
FR2885649A1 (en) * 2005-05-13 2006-11-17 Peugeot Citroen Automobiles Sa Supercharging system for a diesel engine comprises two turbochargers and a device that compensates for the decrease in compression ratio of the first turbocharger's compressor when the second turbocharger is started up
EP1777387A1 (en) * 2005-10-19 2007-04-25 Ford Global Technologies, LLC Turbocharged internal combustion engine and method to operate such an engine

Similar Documents

Publication Publication Date Title
JPS6353364B2 (en)
JP2007138845A (en) Two stage supercharging system for internal combustion engine
JPS5982526A (en) Supercharger for internal-combustion engine
JPH06257519A (en) Exhaust reflux device of engine with turbo supercharger
JPS60169630A (en) Supercharger for internal-combustion engine
JPS61164041A (en) Internal-combustion engine with turbo charger
JPH0751897B2 (en) Control device for turbocharger
JPS60135626A (en) Engine with supercharger
JPS58190518A (en) Supercharger for internal-combustion engine
JPS6316130A (en) Exhaust turbo supercharger for internal combustion engine
CN111350555A (en) Double-scroll turbine with flow control valve
JPS6019918A (en) Exhaust turbine in turbo-supercharger
JP3379112B2 (en) Supercharger for internal combustion engine
JP3783764B2 (en) EGR device for turbocharged engine
JPH0121136Y2 (en)
JPS61207826A (en) Engine equipped with exhaust turbosupercharger
JP2513525Y2 (en) Supercharged engine
JPS61164040A (en) Internal-combustion engine with turbo charger
JPS61277820A (en) Engine equipped with exhaust turbosupercharger
JPS5847227Y2 (en) Turbine compartment for turbocharger
JP2023136717A (en) Control device for internal combustion engine with supercharger
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPS58170827A (en) Supercharging device for internal-combustion engine
JPH03267525A (en) Engine with supercharger
JPS62267524A (en) Internal combustion engine with variable displacement type turbocharger