JPH01142214A - Turbo supercharged engine - Google Patents

Turbo supercharged engine

Info

Publication number
JPH01142214A
JPH01142214A JP62301800A JP30180087A JPH01142214A JP H01142214 A JPH01142214 A JP H01142214A JP 62301800 A JP62301800 A JP 62301800A JP 30180087 A JP30180087 A JP 30180087A JP H01142214 A JPH01142214 A JP H01142214A
Authority
JP
Japan
Prior art keywords
pressure
low
engine
air supply
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62301800A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanesaka
兼坂 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP62301800A priority Critical patent/JPH01142214A/en
Priority to US07/198,986 priority patent/US4930315A/en
Priority to FR8807269A priority patent/FR2615902A1/en
Priority to GB8812727A priority patent/GB2205606B/en
Priority to DE3818241A priority patent/DE3818241A1/en
Publication of JPH01142214A publication Critical patent/JPH01142214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance a low speed torque, by connecting high and low pressure turbo chargers to each other in series, and arrauging an overflow valve and a check valve respectively in a high pressure exhaust bypass for communicating high/low exhaust pipes with each other and in an intake air bypass for communicating low/high pressure air supply tubes with each other. CONSTITUTION:A high pressure turbo charger 1 consisting of a turbine 2 with a small allowable exhaust gas flow quantity and a compressor with a small ejection quantity and the low pressure turbo charger 9 consisting of the turbine 10 with a large allowable exhaust gas flow quantity and a compressor 12 with a large ejection flow quantity, are provided respectively so as to install them in the exhaust system of an engine (E) by connecting them to each other in series. And high/low pressure exhaust pipes 5, 13 and low pressure exhaust pipe 13/turbine outlet 10 are respectively connected communicably to each other through respective exhaust bypasses 15, 18, and overflow valves 17, 20 to be controlled by an engine operation state are installed on the way of those exhaust bypasses respectively. In addition, high/low pressure air supply tubes 7, 14 are communicablly connected to each other through an air supply bypass 21 and a check valve 22 for allowing air flow only from the air supply tube 14 to the air supply tube 7 is are installed on the way of the supply bypass.

Description

【発明の詳細な説明】 〈産業状の利用分野〉 本発明はターボ過給エンジン、殊に高圧ターボチャージ
ャと低圧ターボチャージャからなる直列に配設された複
数のターボチャージャを備え、これをエンジンの給気圧
力、排気圧力、負荷及びノッキング等に応じて、ターボ
チャージャの発生する給気圧力を調節し、且つ作動する
ターボチャージャの個数を逐次選択して応答性の改善、
低速トルクの向上及びノッキングを回避し得るターボ過
給エンジンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention provides a turbocharged engine, especially a plurality of turbochargers arranged in series, each consisting of a high-pressure turbocharger and a low-pressure turbocharger. Adjusting the supply pressure generated by the turbocharger according to supply pressure, exhaust pressure, load, knocking, etc., and sequentially selecting the number of operating turbochargers to improve responsiveness.
The present invention relates to a turbocharged engine that can improve low-speed torque and avoid knocking.

〈従来の技術〉 一般に良く知られたターボ過給エンジンは、通常そのエ
ンジンに要求されるエンジン回転速度において最大トル
クが発揮されるよう設計された1個のターボチャージャ
を取り付けているので、それの速度型圧縮機としての特
性上、発生する給気圧力比は、第5図点線に示すように
、低速では低く、従ってエンジンの発生するトルクも同
図実線に示すように、車両用エンジンとして望まれる低
速トルクを高めることができない。またエンジンのアイ
ドル速度においては排気ガスのエネルギーが不足し、タ
ーボチャージャの回転速度は低く、エンジンの急激な加
速にターボチャージャの回転速度が追従できず、所謂タ
ーボラグを発生していた。
<Prior Art> Well-known turbocharged engines are usually equipped with a single turbocharger designed to produce maximum torque at the engine speed required for the engine. Due to the characteristics of a speed type compressor, the air supply pressure ratio generated is low at low speeds, as shown by the dotted line in Figure 5, and therefore the torque generated by the engine is also low, as shown by the solid line in the figure, which is desirable for a vehicle engine. It is not possible to increase low-speed torque. Furthermore, when the engine is at idle speed, the energy of the exhaust gas is insufficient and the rotational speed of the turbocharger is low, so that the rotational speed of the turbocharger cannot follow the rapid acceleration of the engine, resulting in so-called turbo lag.

そこで低速トルクを高めると同時にターボラグを減少さ
せた前記第5図の一点鎖線に示すトルク曲線を作る目的
で、低速において必要なトルクを発生する主ターボチャ
ージャと高速でこれを補うトルクを発生する副ターボチ
ャージャとの複数のターボチャージャを備え、エンジン
の回転速度に応じて選択的に単数または複数作動させる
いわゆる逐次ターボ過給エンジンが案出され、低速時の
給気圧力を高め、低速トルクを高めるものがある。
Therefore, in order to create the torque curve shown in the dashed line in Fig. 5, which increases low-speed torque and reduces turbo lag at the same time, the main turbocharger generates the necessary torque at low speeds, and the secondary turbocharger generates torque to compensate for this at high speeds. A so-called sequential turbocharged engine has been devised that is equipped with a plurality of turbochargers and selectively operates one or more depending on the engine rotational speed, thereby increasing charge air pressure at low speeds and increasing low-speed torque. There is something.

〈発明が解決しようとする問題点〉 ところが、上記の方式でも車両の加速時に作動させるタ
ーボチャージャの個数を増加させた場合。
<Problems to be Solved by the Invention> However, even with the above method, if the number of turbochargers activated when the vehicle accelerates is increased.

急に排気切換弁を開き、それまで停止していた副ターボ
チャジャを作動させるので、タービンノズル面積の急激
な増大による主ターボチャージャのタービン出力の低下
と、副ターボチャージャの加速遅れによる一時的な給気
圧力の低下を生じ、これらにより給気圧力が低下して一
時的に第6図実線に示す如くトルクが低下し、同図−点
鎖線に示される車両側から要求されるエンジン出力制御
が一時的に不可能になっているのが現状である。
Since the exhaust switching valve is suddenly opened and the auxiliary turbocharger, which had been stopped until then, is activated, the turbine output of the main turbocharger decreases due to a sudden increase in the turbine nozzle area, and the acceleration delay of the auxiliary turbocharger temporarily reduces the As a result, the supply pressure decreases, and the torque temporarily decreases as shown by the solid line in Figure 6, and the engine output control requested by the vehicle as shown by the dotted chain line in Figure 6 decreases. The current situation is that this is temporarily impossible.

本発明は上記に鑑み、複数のターボチャージャを備えた
逐次ターボ過給エンジンの、加速時において作動するタ
ーボチャージャの個数を変化させるときの一時的なトル
ク低下の防止と、エンジンのレスポンス向上を目的とし
て案出されたものである。
In view of the above, the present invention aims to prevent a temporary torque drop and improve engine response when changing the number of turbochargers operating during acceleration in a sequentially turbocharged engine equipped with a plurality of turbochargers. It was devised as.

く問題を解決するための手段〉 上記目的を達成するため、本発明はエンジンに高圧、低
圧ターボチャージャを直列に管連結し、高圧排気管と低
圧排気管を連通ずるよう設けた高圧排気バイパスに高圧
排気ガス溢流弁を、また低圧給気管と高圧給気管を連通
ずるよう設けた給気バイパスに逆止弁を各配設し、前記
排気ガス溢流弁をエンジンの運転状態に応じて作動する
アクチュエータにより開弁するよう構成した。
Means for Solving Problems> In order to achieve the above object, the present invention connects a high-pressure and low-pressure turbocharger to an engine in series, and connects a high-pressure exhaust pipe and a low-pressure exhaust pipe to a high-pressure exhaust bypass provided in communication with each other. A high-pressure exhaust gas overflow valve is provided, and a check valve is provided in the air supply bypass provided to communicate the low-pressure air supply pipe and the high-pressure air supply pipe, and the exhaust gas overflow valve is operated according to the operating state of the engine. The valve was configured to open using an actuator.

く作 用〉 上記構成により、エンジン速度が高まり、高圧ターボチ
ャージャ1の発生する給気圧力がエンジンの許容限度を
超えると、吸気マニホールド8内圧力でアクチュエータ
26又は43が作動して高圧排気ガス溢流弁17が開か
れ、高圧タービン2を通過する排気ガス量を減少せしめ
、高圧ターボチャージャ1の能力を低下させ、高圧給気
管7内圧力を許容限度内に維持する。
With the above configuration, when the engine speed increases and the air supply pressure generated by the high-pressure turbocharger 1 exceeds the allowable limit of the engine, the actuator 26 or 43 is activated by the pressure inside the intake manifold 8 to prevent high-pressure exhaust gas from overflowing. The flow valve 17 is opened to reduce the amount of exhaust gas passing through the high pressure turbine 2, reducing the capacity of the high pressure turbocharger 1 and maintaining the pressure in the high pressure air supply pipe 7 within permissible limits.

エンジン速度が中速度に達して、高圧ターボチャージャ
1の能力を超えると、高圧排気管5内圧力が高まり、該
圧力に応じて作動するアクチュエータ26.27又は4
3によって前記高圧排気ガス濁流弁17の開弁面積を更
に増大し、高圧排気管5を流れる殆どの排気ガスは高圧
排気バイパス15を流れ、高圧ターボチャージャ1は機
能を停止し、過給は専ら低圧ターボチャージャ9によっ
てなされ、低圧コンプレッサ12より吐出される給気は
低圧給気管14より給気バイパス21を経て、逆止弁2
2を開き、高圧給気管11を経てエンジンEに給気され
る。
When the engine speed reaches a medium speed and exceeds the capacity of the high-pressure turbocharger 1, the pressure inside the high-pressure exhaust pipe 5 increases, and the actuator 26, 27 or 4 operates according to the pressure.
3 further increases the opening area of the high-pressure exhaust gas flow valve 17, most of the exhaust gas flowing through the high-pressure exhaust pipe 5 flows through the high-pressure exhaust bypass 15, the high-pressure turbocharger 1 stops functioning, and supercharging is exclusively performed. The air supplied by the low pressure turbocharger 9 and discharged from the low pressure compressor 12 passes through the low pressure air supply pipe 14, the air supply bypass 21, and the check valve 2.
2 is opened, and air is supplied to the engine E through the high-pressure intake pipe 11.

従って、エンジンが多用される低速より中速に到るまで
、高い給気圧力の給気をエンジンに供給するとともに、
エンジンの給気圧力がエンジンの許容限度を超えないよ
うに調節することができる。
Therefore, while supplying air with high air pressure to the engine from low to medium speeds where the engine is often used,
The engine charge pressure can be adjusted so that it does not exceed the engine's permissible limits.

〈実施例〉 第1図は本発明ターボ過給エンジンの一例を示すもので
、1は許容排気ガス流量の小さなタービン2と、これと
同軸3で回転せしめられる吐出量の小さなコンプレッサ
4をもつ高圧ターボチャージャで、タービン入口2aは
高圧排気管5によりエンジンEの排気マニホールド6に
連結し、またコンプレッサ出口4aは高圧給気管7によ
りエンジンEの吸気マニホールド8に連結されている。
<Example> Fig. 1 shows an example of a turbocharged engine according to the present invention, in which 1 is a high-pressure engine having a turbine 2 with a small allowable exhaust gas flow rate and a compressor 4 with a small discharge rate rotated coaxially with the turbine 2. In the turbocharger, a turbine inlet 2a is connected to an exhaust manifold 6 of the engine E by a high-pressure exhaust pipe 5, and a compressor outlet 4a is connected to an intake manifold 8 of the engine E by a high-pressure intake pipe 7.

9は許容排気ガス流量の大きなタービン10と、これと
同軸11で回転せしめられる吐出量の大きなコンプレッ
サ12をもつ低圧ターボチャージャで、タービン入口1
0aは低圧排気管13により前記高圧ターボチャージャ
1のタービン出口2bに連結し、またコンプレッサ出口
12aは低圧給気管14により前記高圧ターボチャージ
ャ1のコンプレッサ入口4bに連結されている。
Reference numeral 9 designates a low-pressure turbocharger having a turbine 10 with a large allowable exhaust gas flow rate and a compressor 12 with a large discharge amount rotated coaxially with the turbine 10.
0a is connected to the turbine outlet 2b of the high-pressure turbocharger 1 through a low-pressure exhaust pipe 13, and the compressor outlet 12a is connected to the compressor inlet 4b of the high-pressure turbocharger 1 through a low-pressure air supply pipe 14.

上記高圧排気管5と上記低圧排気管13との間には、こ
れを連通ずるよう高圧排気バイパス15が設けられ、該
バイパス15には、作動レバー16により回動する高圧
排気ガス溢流弁17が設けられている。また、低圧排気
管13と低圧タービン10のタービン出口10bの間に
は低圧排気バイパス18が設けられ、該バイパス18に
は作動レバー19により回動される低圧排気ガス溢流弁
20が設けられている。更に、低圧給気管14と高圧給
気管7との間には給気バイパス21が設けられ、該バイ
パス21には、逆止弁22がピン23によって回転自在
に設けられている。該逆止弁22は前記低圧給気管14
から前記高圧給気管7への流れは可能だが、逆方向の流
れは阻止する機能をもっている。
A high-pressure exhaust bypass 15 is provided between the high-pressure exhaust pipe 5 and the low-pressure exhaust pipe 13 to communicate with each other. is provided. Furthermore, a low-pressure exhaust bypass 18 is provided between the low-pressure exhaust pipe 13 and the turbine outlet 10b of the low-pressure turbine 10, and the bypass 18 is provided with a low-pressure exhaust gas overflow valve 20 that is rotated by an operating lever 19. There is. Further, an air supply bypass 21 is provided between the low pressure air supply pipe 14 and the high pressure air supply pipe 7, and a check valve 22 is rotatably provided on the bypass 21 by a pin 23. The check valve 22 is connected to the low pressure air supply pipe 14.
Although it is possible for the air to flow from the air to the high-pressure air supply pipe 7, it has a function of blocking the flow in the opposite direction.

前記高圧排気ガス溢流弁17を作動する前記作動レバー
16の他端は連絡レバー24の中間にピン25で連結さ
れ、該連絡レバー24の両端にアクチュエータ26.2
7のピストン軸28.29が各ピン28a、29aによ
り結合されている。
The other end of the operating lever 16 for operating the high pressure exhaust gas overflow valve 17 is connected to the middle of a communication lever 24 with a pin 25, and actuators 26.2 are connected to both ends of the communication lever 24.
7 piston shafts 28, 29 are connected by respective pins 28a, 29a.

上記アクチエータ26.27はシリンダ30.31内に
前記ピストン軸28.29と結合したピストン32.3
3が装入され、上記シリンダ30上端は前記エンジンE
の吸気マニホールド8とパイプ34により、又上記シリ
ンダ31上端は前記エンジンEの高圧排気管5とパイプ
35により各々管連結されている。尚36.37は前記
ピストン32.33下面とシリンダ30.31内壁間に
設けたばねである。
Said actuator 26.27 has a piston 32.3 connected to said piston shaft 28.29 in a cylinder 30.31.
3 is charged, and the upper end of the cylinder 30 is connected to the engine E.
The upper end of the cylinder 31 is connected to the intake manifold 8 of the engine E and the pipe 34, and the upper end of the cylinder 31 is connected to the high pressure exhaust pipe 5 of the engine E through a pipe 35, respectively. Note that 36.37 is a spring provided between the lower surface of the piston 32.33 and the inner wall of the cylinder 30.31.

また前記低圧排気ガス溢流弁20を作動する前記作動レ
バー19の他端はアクチュエータ38のピストン軸39
がピン結合されている。該アクチュエータ38は前記ア
クチュエータ26.27と同様シリンダ40内に前記ピ
ストン軸39と結合したピストン41が装入され、ばね
42で上方に押圧するとともに、前記シリンダ40の上
端はパイプ43により前記低圧給気管14に管連結され
ている。
The other end of the operating lever 19 for operating the low pressure exhaust gas overflow valve 20 is connected to a piston shaft 39 of an actuator 38.
are pin-connected. Like the actuators 26 and 27, the actuator 38 has a piston 41 connected to the piston shaft 39 inserted into a cylinder 40, and is pressed upward by a spring 42, and the upper end of the cylinder 40 is connected to the low pressure supply through a pipe 43. A tube is connected to the trachea 14.

なお、前記低圧排気ガス溢流弁20及びそのアクチュエ
ータ38は、ディーゼルエンジンの場合必須ではない。
Note that the low-pressure exhaust gas overflow valve 20 and its actuator 38 are not essential in the case of a diesel engine.

それはターボ過給ディーゼルエンジンにおいては、通常
時間当りの燃料供給量を制限することでシリンダ内圧力
を許容限度内に制限し得るからである。
This is because, in a turbocharged diesel engine, by limiting the amount of fuel supplied per hour, the cylinder pressure can be limited within permissible limits.

次に上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

本発明のターボ過給エンジンでは低速1例えば700回
転/分における給気は、高圧ターボチャージャ1及びそ
の下流に直列に配設された低圧ターボチャージャ9によ
って供給され、エンジン全負荷時の給気圧力は第2図実
線に示す給気圧力比曲線a−bのa点である。このとき
低圧ターボチャージャ9のみが発生する給気圧力は同図
実線C−dの点Cである。
In the turbocharged engine of the present invention, supply air at a low speed 1, for example, 700 rpm is supplied by a high pressure turbocharger 1 and a low pressure turbocharger 9 disposed in series downstream thereof, and the supply air pressure at full engine load is is point a on the supply air pressure ratio curve a-b shown by the solid line in FIG. At this time, the air supply pressure generated only by the low-pressure turbocharger 9 is at point C on the solid line C-d in the figure.

上記点aの給気圧力はエンジンの許容最高給気圧力で、
給気圧力が上記点aを超えると、シリンダー内圧力はエ
ンジンの許容限界を超え、又はガソリンエンジンの場合
ノッキングを発生する。
The intake pressure at point a above is the maximum allowable intake pressure of the engine,
When the charge air pressure exceeds point a, the cylinder pressure exceeds the engine's permissible limits, or knocking occurs in the case of gasoline engines.

700回転/分を超えてエンジン速度を増加すると、給
気圧力比はターボチャージャの特性に従い、エンジンの
許容最高給気圧力比を超えて実線a−bの如くに増大し
ようとする。
When the engine speed is increased beyond 700 revolutions per minute, the charge air pressure ratio follows the characteristics of the turbocharger and tends to increase beyond the maximum allowable charge air pressure ratio of the engine as shown by the solid line a-b.

このとき本発明のターボ過給エンジンでは、高圧給気管
7内圧力が許容最高給気圧力比を超えることにより、パ
イプ34で連通されたアクチュエータ26のシリンダ3
0内圧力が高まり、ピストン32を介してピストン軸2
8はばね36に抗して下方に動き、ピン29aを支点と
して連絡レバー24を反時計方向に回転させる。これに
よりピン25を介し作動レバー16を時計方向に回転さ
せ、高圧排気ガス溢流弁17を開弁じ、高圧排気管5を
流れる排気ガスを点線のように高圧排気バイパス15に
流す。従って、高圧給気管7内の圧力は第2図実線a−
eを超えないように調節される。このとき低圧排気管1
3内の流量と圧力は高まり、低圧ターボチャージャ9は
附勢されて第2図実線c−eに余す給気圧力を発生する
At this time, in the turbocharged engine of the present invention, when the internal pressure of the high-pressure air supply pipe 7 exceeds the allowable maximum air supply pressure ratio, the cylinder 3 of the actuator 26 communicated with the pipe 34
0 internal pressure increases, and the piston shaft 2 passes through the piston 32.
8 moves downward against the spring 36, and rotates the communication lever 24 counterclockwise using the pin 29a as a fulcrum. As a result, the operating lever 16 is rotated clockwise via the pin 25, the high pressure exhaust gas overflow valve 17 is opened, and the exhaust gas flowing through the high pressure exhaust pipe 5 is allowed to flow into the high pressure exhaust bypass 15 as shown by the dotted line. Therefore, the pressure inside the high pressure air supply pipe 7 is the solid line a-
It is adjusted so that it does not exceed e. At this time, low pressure exhaust pipe 1
The flow rate and pressure within 3 increases, and the low pressure turbocharger 9 is energized to generate the charge air pressure remaining as indicated by the solid line ce in FIG.

更にエンジン速度が増大すると、ターボチャージャの特
性に従って高圧排気管5内圧力も高まり、該高圧排気管
5とパイプ35によって連通したアクチュエータ27の
シリンダ31内圧力も高まり。
Further, as the engine speed increases, the pressure inside the high-pressure exhaust pipe 5 also increases according to the characteristics of the turbocharger, and the pressure inside the cylinder 31 of the actuator 27, which is communicated with the high-pressure exhaust pipe 5 through the pipe 35, also increases.

ピストン33を介してピストン軸29をバネ37の力に
抗して押し下げ、連絡レバー24をピン28aを中心に
時計方向に回転させ、これによって作動レバー16を更
に時計方向に回転させ、前記溢流弁17の開弁面積を大
きくし、高圧給気管11内の給気圧力がエンジンの許容
限界である第2図の線a−e−gを超えないように調節
する。
The piston shaft 29 is pushed down via the piston 33 against the force of the spring 37, the communication lever 24 is rotated clockwise around the pin 28a, and the operating lever 16 is thereby further rotated clockwise to prevent the overflow. The opening area of the valve 17 is increased and the air supply pressure in the high-pressure air supply pipe 11 is adjusted so as not to exceed line ae-g in FIG. 2, which is the allowable limit for the engine.

第2図においてエンジンが例えば2000回転/回転速
すると、高圧排気ガス溢流弁17の開口面積は最大とな
り、排気ガスの殆どは高圧排気バイパス15を流過し、
低圧排気管13内に流入し、高圧ターボチャージャ1の
機能が殆ど失われると同時に低圧ターボチャージャ9は
附勢され、第2図点eに示す給気圧力を発生する。この
とき低圧給気管14に吐出された給気の殆どは給気バイ
パス21を経て逆止弁22を開き、高圧給気管7内に流
入することになる。
In FIG. 2, when the engine speed is, for example, 2000 rpm, the opening area of the high-pressure exhaust gas overflow valve 17 becomes maximum, and most of the exhaust gas flows through the high-pressure exhaust bypass 15.
The air flows into the low-pressure exhaust pipe 13, and at the same time the high-pressure turbocharger 1 loses most of its functions, the low-pressure turbocharger 9 is energized and generates the charge air pressure shown at point e in Figure 2. At this time, most of the air supplied to the low pressure air supply pipe 14 passes through the air supply bypass 21, opens the check valve 22, and flows into the high pressure air supply pipe 7.

また、第2図において、エンジン速度が2000回転/
回転速えると(或いはガソリンエンジンにおいて過度な
給気圧によってノッキングを生じると)、同図e−4f
と給気圧力が壬ンジンの許容限界を超えて上昇しようと
するので、低圧給気管14の圧力によってパイプ43を
介してアクチュエータ38のシリンダ40内のピストン
41及びピストン軸39をばね42に抗して押し下げ、
作動レバー19を時計方向に回転させ、公知のウェスト
ゲートと同一構成の低圧排気ガス溢流弁20を開弁じ、
これによってエンジンの許容最高給気圧力をe−Hに維
持する。
Also, in Figure 2, the engine speed is 2000 rpm/
If the rotation speed increases (or if knocking occurs due to excessive supply pressure in a gasoline engine),
As the air supply pressure attempts to rise beyond the allowable limit of the engine, the pressure of the low pressure air supply pipe 14 causes the piston 41 and piston shaft 39 in the cylinder 40 of the actuator 38 to resist the spring 42 through the pipe 43. and press down.
Rotate the operating lever 19 clockwise to open the low-pressure exhaust gas overflow valve 20, which has the same configuration as a known wastegate,
This maintains the maximum allowable intake air pressure of the engine at e-H.

また、部分負荷時、例えば6,000回転/分の1/3
負荷におけるエンジンの必要空気量は第2図実#1e−
hに示す如く低下し、実線e−h以下のエンジン負荷即
ちトルクにおいては、アクチュエータ26.27は高圧
排気ガス溢流弁17を全開させることなく1.排気ガス
は専ら高圧ターボチャージャ1のタービン2を付勢しつ
つ、低圧ターボチャージャ9に流入することになる。
In addition, at partial load, for example, 1/3 of 6,000 revolutions/minute
The amount of air required by the engine under load is shown in Figure 2, Actual #1e-
h, and at engine load or torque below the solid line e-h, the actuators 26 and 27 do not fully open the high-pressure exhaust gas overflow valve 17 but instead open the high-pressure exhaust gas overflow valve 17 completely. The exhaust gas exclusively energizes the turbine 2 of the high-pressure turbocharger 1 while flowing into the low-pressure turbocharger 9.

このとき高圧ターボチャージャlは全力運転に近い状態
にあるから、従って、エンジン負荷即ちトルクを急速に
増加したいときも、加速ペダルを踏み絞り弁を開いて空
気量を大とし、燃料増を図って排気ガス圧力を高めるこ
とにより、排気マニホールド6のパイプ35により連通
したアクチュエータ27の作動により作動レバー16を
介して高圧排気ガス溢流弁17が開き高圧、低圧両ター
ボチャージャ19がタイムラグなく直ちに加速され、エ
ンジンの負荷変動に鋭敏に対応する。
At this time, the high-pressure turbocharger is in a state close to full power operation, so if you want to rapidly increase the engine load or torque, press the accelerator pedal and open the throttle valve to increase the amount of air and increase fuel. By increasing the exhaust gas pressure, the actuator 27 connected through the pipe 35 of the exhaust manifold 6 is actuated to open the high-pressure exhaust gas overflow valve 17 via the operating lever 16, and both the high-pressure and low-pressure turbochargers 19 are accelerated immediately without a time lag. , responds sharply to engine load fluctuations.

第3図に示す例は前記高圧排気ガス溢流弁17を作動す
る前記アクチュエータ27に代り、次のような構成とし
たものである。
In the example shown in FIG. 3, the actuator 27 that operates the high-pressure exhaust gas overflow valve 17 is replaced by the following structure.

即ち、前記高圧排気バイパス15と平行に、高圧排気管
5と低圧排気管13を連通ずる副高圧排気バイパス15
′を設け、ここに副高圧排気ガス溢流弁17′を配設す
るとともに、該弁17′を回動する作動レバー16′の
他端をリンク44により、エンジンEで回転し前記アク
チュエータ27が作動したエンジン回転数にて作動する
ガバナ(図示せず)に連結されている。
That is, in parallel with the high-pressure exhaust bypass 15, there is a secondary high-pressure exhaust bypass 15 that communicates the high-pressure exhaust pipe 5 and the low-pressure exhaust pipe 13.
', and an auxiliary high-pressure exhaust gas overflow valve 17' is disposed there, and the other end of the operating lever 16' that rotates the valve 17' is rotated by the engine E through a link 44, and the actuator 27 is rotated by the engine E. It is connected to a governor (not shown) that operates at the operating engine speed.

従って前記アクチュエータ26が作動後、エンジンEが
前記ガバナの作動回転数に達すると、ガバナの作動によ
ってリンク44が第3図で左方に引かれ、これにより作
動レバー16′を介して副高圧排気ガス溢流弁17′が
開かれ、高圧排気管5内の排気ガスはほとんど前記高圧
排気バイパス15及び副高圧排気バイパス15′を流れ
、前記同様高圧ターボチャージャ1の機能は失われ、同
時に低圧ターボチャージャ9は付勢されることになる。
Therefore, after the actuator 26 is activated, when the engine E reaches the operating speed of the governor, the link 44 is pulled to the left in FIG. The gas overflow valve 17' is opened, and most of the exhaust gas in the high-pressure exhaust pipe 5 flows through the high-pressure exhaust bypass 15 and the auxiliary high-pressure exhaust bypass 15', and the function of the high-pressure turbocharger 1 is lost as described above, and at the same time, the low-pressure turbo Charger 9 will be energized.

また第4図に示す例は、前記高圧排気ガス溢流弁17を
作動するアクチュエータの制御手段の変形例であって、
前記溢流弁17の作動レバー16を作動するアクチュエ
ータ45は、シリンダ46内でばね47により上方に押
圧されるピストン48のピストン軸49を前記作動レバ
ー16の他端に連結するとともに、前記シリンダ46の
上下端に圧力取入口50.51を設けている。
The example shown in FIG. 4 is a modification of the control means for the actuator that operates the high-pressure exhaust gas overflow valve 17,
An actuator 45 that operates the operating lever 16 of the overflow valve 17 connects a piston shaft 49 of a piston 48 pushed upward by a spring 47 within a cylinder 46 to the other end of the operating lever 16, and Pressure intake ports 50 and 51 are provided at the upper and lower ends of the cylinder.

一方、低圧ターボチャージャ9のコンプレッサ12の入
口12bには、ベンチュリ管52を設け、その絞り部5
3とその直前に設けた圧力取出口54.55を各々前記
アクチュエータ45の圧力取入口51.50とパイプ5
6.57により連結している。
On the other hand, a venturi pipe 52 is provided at the inlet 12b of the compressor 12 of the low-pressure turbocharger 9, and its constricted portion 5
3 and the pressure intake port 54.55 provided immediately before the pressure intake port 51.50 of the actuator 45 and the pipe 5, respectively.
6.57.

従って、ベンチュリ管52を通る空気流速が前記圧力取
出口54.55により圧力として取出され、パイプ56
.57により圧力取入口51,50を介してアクチュエ
ータ45のピストン48の各上下に掛けられるから、前
記ベンチュリ管52の圧力取出口54.55の差圧によ
りピストン軸49をばね47の力とバランスするところ
まで移動せしめることができ、作動レバー16を介し前
記溢流弁17の開度が調節される。
Therefore, the air flow rate through the venturi tube 52 is extracted as pressure by the pressure outlet 54.55, and
.. 57 is applied to the upper and lower sides of the piston 48 of the actuator 45 through the pressure inlets 51 and 50, so that the piston shaft 49 is balanced with the force of the spring 47 by the differential pressure between the pressure inlets 54 and 55 of the venturi tube 52. The opening of the overflow valve 17 can be adjusted via the operating lever 16.

依って、第4図に示す例によれば、エンジンEの、例え
ば700回転/分以上の全速度においてエンジンの運転
状態に応じて前記高圧排気ガス溢流弁17を連続的に制
御できる。
Therefore, according to the example shown in FIG. 4, the high-pressure exhaust gas overflow valve 17 can be continuously controlled in accordance with the operating state of the engine at all speeds of the engine E, for example, 700 revolutions per minute or more.

〈発明の効果〉 本発明は上述の如く、エンジンに高圧、低圧ターボチャ
ージャを直列に管連結し、高圧排気管と低圧排気管を連
通ずるよう設けた高圧排気バイパスに高圧排気ガス溢流
弁を、また低圧給気管と高圧給気管を連通ずるよう設け
た給気バイパスに逆止弁を各配設し、前記排気ガス溢流
弁をエンジンの運転状態に応じて作動するアクチュエー
タにより開弁するようにしたので、エンジンが最も多用
される低速より中速に到るまでの間、高い給気圧力の給
気をエンジンに供給するとともに、エンジンの給気圧力
がエンジンの許容限度を超えないように調節することが
でき、簡単な構成で応答性がよく、低速トルクの向上及
びノッキングを回避し得るターボ過給エンジンが得られ
る効果がある。
<Effects of the Invention> As described above, the present invention connects the high-pressure and low-pressure turbochargers to the engine in series, and provides a high-pressure exhaust gas overflow valve to the high-pressure exhaust bypass provided to communicate the high-pressure exhaust pipe and the low-pressure exhaust pipe. In addition, a check valve is provided in each air supply bypass provided to communicate the low pressure air supply pipe and the high pressure air supply pipe, and the exhaust gas overflow valve is opened by an actuator operated according to the operating state of the engine. In this way, high charge air pressure is supplied to the engine from low to medium speeds, where the engine is most frequently used, and the engine's charge air pressure does not exceed the allowable limit of the engine. This has the effect of providing a turbocharged engine that can be adjusted, has a simple configuration, has good responsiveness, improves low-speed torque, and can avoid knocking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ターボ過給エンジンの全体構成図、第2
図は本発明エンジンの作動状態説明図、第3図は第2の
実施例の部分断面図、第4図は第3の実施例の部分断面
図、第5図は本発明エンジンのトルク曲線及びターボチ
ャージャ圧力比線図、第6図は従来のターボ過給エンジ
ンのトルク曲線及びターボチャージャ圧力比線図である
。 1;高圧ターボチャージャ、2;同タービン、4;同コ
ンプレッサ、5;高圧排気管、6;排気マニホールド、
7:高圧給気管、9;低圧ターボチャージャ、10:同
タービン、12;同コンプレッサ、13;低圧排気管、
14;低圧給気管。 15;高圧排気バイパス、 16.16’ 、19;作動レバー、17;高圧排気ガ
ス溢流弁、18;低圧排気バイパス、20;低圧排気ガ
ス溢流弁、21;給気バイパス、22;逆止弁、24;
連絡レバー、 26.27,38,44;アクチュエータ、28.29
,39,48;同ピストン軸、30.31,40,45
ニジリンダ。 32.33,41,47;ピストン、 34.35,43,55,56;パイプ。 36.37,42,46;ばね、 エンシ“ン1らキ11よ4し 葛21」 括31呂 ター冬1N−ゾ〜斤pルし )Iし り         → ター本゛ヂベーヅ’(rtA−;
Fig. 1 is an overall configuration diagram of the turbocharged engine of the present invention;
3 is a partial sectional view of the second embodiment, FIG. 4 is a partial sectional view of the third embodiment, and FIG. 5 is a torque curve and diagram of the engine of the present invention. Turbocharger Pressure Ratio Diagram FIG. 6 is a torque curve and turbocharger pressure ratio diagram of a conventional turbocharged engine. 1; High pressure turbocharger, 2; Turbine, 4; Compressor, 5; High pressure exhaust pipe, 6; Exhaust manifold,
7: High pressure air supply pipe, 9: Low pressure turbocharger, 10: Turbine, 12: Compressor, 13: Low pressure exhaust pipe,
14; Low pressure air supply pipe. 15; High pressure exhaust bypass, 16.16', 19; Operating lever, 17; High pressure exhaust gas overflow valve, 18; Low pressure exhaust bypass, 20; Low pressure exhaust gas overflow valve, 21; Supply air bypass, 22; Non-return Valve, 24;
Communication lever, 26.27, 38, 44; actuator, 28.29
, 39, 48; same piston shaft, 30. 31, 40, 45
Niji Linda. 32.33,41,47;Piston, 34.35,43,55,56;Pipe. 36. 37, 42, 46; spring, engine 1 raki 11 4 shi kudzu 21''

Claims (1)

【特許請求の範囲】[Claims] 1)エンジンに高圧、低圧ターボチャージャを直列に管
連結し、高圧排気管と低圧排気管を連通するよう設けた
高圧排気バイパスに高圧排気ガス溢流弁を、また低圧給
気管と高圧給気管を連通するよう設けた給気バイパスに
逆止弁を各配設し、前記排気ガス溢流弁をエンジンの運
転状態に応じて作動するアクチュエータにより開弁する
ようにしたことを特徴とするターボ過給エンジン。
1) High-pressure and low-pressure turbochargers are connected to the engine in series, and a high-pressure exhaust gas overflow valve is installed in the high-pressure exhaust bypass that connects the high-pressure exhaust pipe and the low-pressure exhaust pipe, and the low-pressure air supply pipe and high-pressure air supply pipe are connected. A turbocharger characterized in that a check valve is disposed in each intake air bypass provided in communication with each other, and the exhaust gas overflow valve is opened by an actuator that operates according to the operating state of the engine. engine.
JP62301800A 1987-05-29 1987-11-30 Turbo supercharged engine Pending JPH01142214A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62301800A JPH01142214A (en) 1987-11-30 1987-11-30 Turbo supercharged engine
US07/198,986 US4930315A (en) 1987-05-29 1988-05-26 Turbo-charger engine system
FR8807269A FR2615902A1 (en) 1987-05-29 1988-05-27 TURBOCHARGER ENGINE
GB8812727A GB2205606B (en) 1987-05-29 1988-05-27 Turbo-charger engine system
DE3818241A DE3818241A1 (en) 1987-05-29 1988-05-28 TURBOCHARGER ENGINE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301800A JPH01142214A (en) 1987-11-30 1987-11-30 Turbo supercharged engine

Publications (1)

Publication Number Publication Date
JPH01142214A true JPH01142214A (en) 1989-06-05

Family

ID=17901322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301800A Pending JPH01142214A (en) 1987-05-29 1987-11-30 Turbo supercharged engine

Country Status (1)

Country Link
JP (1) JPH01142214A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136676A3 (en) * 2000-03-24 2002-12-18 Bayerische Motoren Werke Aktiengesellschaft Engine with a two stage, switchable turbocharging system
KR100380480B1 (en) * 2000-12-15 2003-04-26 현대자동차주식회사 Multipurpose supercharging system of diesel engine
US6655141B1 (en) 2002-05-14 2003-12-02 Caterpillar Inc Airflow system for engine with series turbochargers
US6658848B1 (en) 2002-05-14 2003-12-09 Caterpillar Inc Airflow system for engine with series turbochargers
WO2007058017A1 (en) * 2005-11-18 2007-05-24 Isuzu Motors Limited Two-stage supercharging system for internal combustion engine
JP2010196584A (en) * 2009-02-25 2010-09-09 Ihi Corp Supercharging device
CN103180568A (en) * 2010-10-29 2013-06-26 五十铃自动车株式会社 Turbocharge system
JP2016065476A (en) * 2014-09-24 2016-04-28 日野自動車株式会社 Engine with two-stage supercharger turbo

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291725A (en) * 1985-06-19 1986-12-22 Honda Motor Co Ltd S-step type superchaging device
JPS62113828A (en) * 1985-11-14 1987-05-25 Nissan Motor Co Ltd Control device for supercharge pressure in engine with turbosupercharger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291725A (en) * 1985-06-19 1986-12-22 Honda Motor Co Ltd S-step type superchaging device
JPS62113828A (en) * 1985-11-14 1987-05-25 Nissan Motor Co Ltd Control device for supercharge pressure in engine with turbosupercharger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136676A3 (en) * 2000-03-24 2002-12-18 Bayerische Motoren Werke Aktiengesellschaft Engine with a two stage, switchable turbocharging system
KR100380480B1 (en) * 2000-12-15 2003-04-26 현대자동차주식회사 Multipurpose supercharging system of diesel engine
US6655141B1 (en) 2002-05-14 2003-12-02 Caterpillar Inc Airflow system for engine with series turbochargers
US6658848B1 (en) 2002-05-14 2003-12-09 Caterpillar Inc Airflow system for engine with series turbochargers
WO2007058017A1 (en) * 2005-11-18 2007-05-24 Isuzu Motors Limited Two-stage supercharging system for internal combustion engine
EP1950388A4 (en) * 2005-11-18 2010-11-03 Isuzu Motors Ltd Two-stage supercharging system for internal combustion engine
US8033108B2 (en) 2005-11-18 2011-10-11 Isuzu Motors Limited Two-stage supercharging system for internal combustion engine
JP2010196584A (en) * 2009-02-25 2010-09-09 Ihi Corp Supercharging device
CN103180568A (en) * 2010-10-29 2013-06-26 五十铃自动车株式会社 Turbocharge system
JP2016065476A (en) * 2014-09-24 2016-04-28 日野自動車株式会社 Engine with two-stage supercharger turbo

Similar Documents

Publication Publication Date Title
US4930315A (en) Turbo-charger engine system
JPS6353364B2 (en)
JPH0758050B2 (en) Intake control device for exhaust turbocharged engine
JPS5982526A (en) Supercharger for internal-combustion engine
JPH01142214A (en) Turbo supercharged engine
JPS58167827A (en) Controller for supply of air to internal combustion engine
JPS60169630A (en) Supercharger for internal-combustion engine
JPS626258Y2 (en)
JPS57171029A (en) Output control system for internal-combustion engine equipped with supercharger
JPS58107814A (en) Variable nozzle control device of discharge turbo supercharger
JPS61164041A (en) Internal-combustion engine with turbo charger
JP2995200B2 (en) Engine air supply
JPS6244097Y2 (en)
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPS6233412B2 (en)
JPH0315805Y2 (en)
JPS6246815Y2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPH0144742Y2 (en)
JP2023045440A (en) Control device of vehicle
JPS6329852Y2 (en)
JPH02153226A (en) Supercharging device of engine
JPS6189929A (en) Intake device of supercharged engine
JPS6030445Y2 (en) Acceleration improvement device for supercharged engines
JPS6318759Y2 (en)