JP2986647B2 - 光学ガラス素子の製造方法 - Google Patents

光学ガラス素子の製造方法

Info

Publication number
JP2986647B2
JP2986647B2 JP5129315A JP12931593A JP2986647B2 JP 2986647 B2 JP2986647 B2 JP 2986647B2 JP 5129315 A JP5129315 A JP 5129315A JP 12931593 A JP12931593 A JP 12931593A JP 2986647 B2 JP2986647 B2 JP 2986647B2
Authority
JP
Japan
Prior art keywords
mold
mold member
optical glass
glass
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5129315A
Other languages
English (en)
Other versions
JPH06340430A (ja
Inventor
誠一 新垣
靖行 中居
勇 執行
裕之 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5129315A priority Critical patent/JP2986647B2/ja
Publication of JPH06340430A publication Critical patent/JPH06340430A/ja
Application granted granted Critical
Publication of JP2986647B2 publication Critical patent/JP2986647B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/12Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/86Linear series of multiple press moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は光学ガラス素子の製造方
法に関し、特に溶融ガラスからプレス成形までを一貫し
て行う方法に関する。
【0002】
【従来の技術】従来光学ガラス素子の製造方法は、ダイ
レクトプレス法や丸棒からの切り出しにより得られたガ
ラスを研磨加工し、球形状や成形品類似形状に研磨して
これを加熱成形することにより行われてきた。
【0003】しかしながらこれらの方法ではガラス素材
の研磨コストが高く、また一度冷却して研磨したガラス
を再加熱して成形するため製品を得るまでの時間が非常
に長いという欠点があった。
【0004】このような欠点を解決すべく、最近、溶融
ガラスから再加熱の必要のない連続的なプロセス(以
下、ダイレクトモールド法と称する)により製品を得る
試みが提案されている。例えば、特公平4−16414
号公報には大気雰囲気中でノズルより溶融ガラスを自然
滴下させ、これを成形用の下型で受けて直ちに上型でプ
レス成形する方法が開示されている。また特開平4−7
7320号公報には第1の型で大気中で溶融ガラスを受
け、第2の型で非酸化性雰囲気中で加熱プレス成形する
方法が開示されている。
【0005】
【発明が解決しようとしている課題】しかしながら、上
記のようなダイレクトモールド法においては、以下に示
す問題点がある。
【0006】第1の問題点は、オリフィスから溶融落下
する非常に温度の高いガラスを受ける受け型には、高い
耐熱性と同時に面精度及び鏡面性の維持等の耐久性、並
びに製品の欠陥の原因となる粉塵等の排除等の非常に厳
しい条件が要求されることである。
【0007】第2の問題点は、非常に高温のガラスと受
け型とが接触することにより、ガラスと受け型との反応
が加速され、ガラスと受け型との融着が起こりやすく離
型性が悪くなるという点である。
【0008】前記特公平4−16414号公報に記載の
方法は、大気雰囲気中でガラスをオリフィスから落下さ
せる際、オリフィス出口と受け型との距離を3m程度と
することにより受け型と接触するときのガラスの表面温
度をガラス軟化点より低下させるものである。しかしな
がらこの方法ではオリフィス出口と受け型までの距離を
大きくする結果、装置全体が大型化し付帯設備を含めた
総設備費が大きくなり、そのために製造する光学素子の
コストが高くなるという欠点がある。またこの方法にお
いては、プレス成形を大気中で行うため型材としては耐
酸化性の高いものが要求される、更に大気中に存在する
酸素が型とガラスとの高温化学反応を加速させるため成
形時のガラスの融着、ワレ等が頻繁に起こり型寿命が短
い、という欠点がある。
【0009】一方、前記特開平4−77320号に記載
の方法は、ガラスを大気中で直接受ける第1の型と溶融
ガラスとの融着を防ぐために、加熱していない第1の型
で受けた後、直ちに非酸化性雰囲気中に導入し、第2の
型に移して成形するものである。しかしながらこの方法
は、第1の型が高温のガラスと反応することは避けられ
ず、連続して使用すると型表面が劣化して成形品に不良
を生じる。またここで、挙げられている第1の型はカー
ボン、窒化ホウ素、窒化アルミ、酸化クロム、ステンレ
ス鋼、超硬合金等で構成されるものであるが、カーボ
ン、窒化ホウ素、窒化アルミは粉塵を出しやすくガラス
表面に付着して成形後不良品が多く発生する。また酸化
クロム、ステンレス鋼、超硬合金などは熱の蓄積により
ガラスとの融着が起こりやすく連続して使用することが
できない。
【0010】本発明の目的は、従来技術の問題点に鑑み
て、成形サイクルの短いダイレクトモールド法におい
て、耐熱性や高精度、清浄度が要求される受け型の劣化
を防ぎ、またガラスとの融着や離型不良を防いで、良好
な光学ガラス素子を効率的に製造することのできる方法
を提供することである。
【0011】
【課題を解決するための手段】上記目的を達成する本発
明は、溶融させたガラスをオリフィスから落下させる工
程、該落下したガラスを、多孔質部材表面からガスを噴
出するように構成され水平方向に開閉することのできる
割型からなる第1型部材で受けて光学ガラス素子予備成
形体を得る工程、前記第1型部材を水平方向に開くこと
により光学ガラス素子予備成形体を第2型部材に落下さ
せる工程、第2型部材上に載置された光学ガラス予備成
形体をプレス成形して光学ガラス素子を得る工程、を有
してなる光学ガラス素子の製造方法である。
【0012】また、本発明は、多孔質部材のガラスと接
触する面を除く周囲を気密部材で被覆し、該気密部材を
貫通して多孔質部材に達するガス導入管を一箇所又は複
数箇所に設けることを含むものである。
【0013】また、本発明は、少なくとも前記第2型部
材上に載置された光学ガラス予備成形体をプレス成形し
て光学ガラス素子を得る工程を非酸化雰囲気中で実施す
ることを含むものである。
【0014】
【作用】本発明においては、オリフィスから溶融落下す
る高温のガラスを第1型部材と接触させずに、多孔質部
材表面からガスを噴出させてガスクッションにより支持
することにより、第1型部材と溶融ガラスとの化学反応
を防いで、第1型部材の劣化を緩和するものである。更
に、ガスの温度を調節することにより適度な温度に冷却
しながら、表面欠陥のないガラス塊を得ることができ
る。このガラス塊は、光学ガラス素子予備成形体であ
り、続く工程で所定の形状にプレス成形されるものであ
る。
【0015】第1型部材の構成要素である多孔質部材
は、耐熱性に優れ、落下するガラスの重量に応じて噴出
ガスの流量を制御できる多孔質材料により構成される。
そのような材料としては、多孔質炭化珪素、多孔質ジル
コニア、多孔質アルミナ、多孔質コージェライト、多孔
質ムライト、多孔質グラッシーカーボン、多孔質金属
(チタン等)、多孔質ガラス等を挙げることができる。
前記多孔質材料の気孔率は10〜90%とすることが好
ましい。10%以下の場合、ガスの通気率が低くなり上
記ガラス塊をガスクッション作用で受けることが困難と
なり、また、90%以上の場合は、多孔質材料の気孔径
が大きくなるため、光学素子ガラス素子予備成形体表面
に噴出ガスによるうねりを生じ、このうねりが後工程で
精密成形した後の製品の良品率の低下を招くからであ
る。であるからである。
【0016】多孔質部材は、凹形状、平板状如何なる形
状でもよいが、水平方向に開閉することのできる割型構
造にすることにより、成形下型として使用される第2型
部材上へ確実に効率よく光学ガラス素子予備成形体を移
すことができる。割型は少なくとも2つ以上の部材が組
み合わされて構成される。
【0017】割型を開閉するには、エアシリンダー等の
開閉機構により駆動速度を二段階以上に制御できること
が望ましい。すなわち、第1型部材を開いてガラス塊を
落下させる場合には比較的早く駆動し、また次の溶融ガ
ラスを受けるために第1型部材を閉じる場合には、対向
面を傷つけて欠け等を生じさせないよう初めは早く駆動
し、完全に閉じる直前にゆっくり駆動させて、開閉機構
の速度を二段階以上に調整できる機構を有することが望
ましい。また開閉機構の材質は、耐熱温度700℃程度
の材料で、且つその温度で酸化による劣化を起こさない
緻密な構造をとる材料が望ましく、ステンレス鋼、耐熱
合金等が望ましい。
【0018】多孔質部材のガスを噴出させる面以外の周
囲を気密部材で被覆することにより、ガス流量、ガス温
度等をより効率的に調節することができる。気密部材と
しては最高700℃程度の耐熱性を有する材料で、かつ
その温度で酸化による劣化を起こさない緻密な構造をと
る材料が望ましく、ステンレス鋼、耐熱合金等が望まし
い。
【0019】第1型部材には、気密部材を貫通して多孔
質部材に達するガス導入管が一箇所又は複数箇所に設置
され、この導入管から、ガスクッションとしてガラス塊
を支持するガスが導入される。
【0020】ガス導入管は、使用するガスの温度、種類
等を考慮すると耐熱性大で熱劣化を起こさない材質が望
ましく、また本発明ではガスを加熱する手段として例え
ば白金コイルヒーターを導入管内部に備える構成をとる
ため最高1000℃程度の温度に耐える材料が望まし
く、耐熱合金例えばインコネル等が適当である。
【0021】ガスクッションに使用するガスとしては、
窒素等の不活性ガスの他、水素を数%程度含む非酸化性
ガス等が好ましい。但し、耐酸化性の高い多孔質部材を
使用して大気中においてオリフィスから落下するガラス
を受ける場合には、空気によるエアークッションが安価
であり望ましい。噴出させるガスの温度としては落下す
るガラス塊の下面温度やガラスの軟化点等を考慮して3
00〜700℃の範囲で、ガラス塊が第2型部材に移さ
れた際に、ガラス塊下面が第2型部材表面に劣化を生じ
させない程度に調整することが望ましい。また、噴出さ
せるガスの流量としては、溶融ガラスの重量に応じて調
整し、使用する多孔質部材の通気率によりガス圧力を調
整することによってガスクッションがうまく行われるよ
うに選ぶことが望ましい。
【0022】図1は、オリフィスから溶融落下するガラ
スをガスクッションにより受ける第1型部材の1態様を
示す断面模式図である。この例においては第1型部材は
2分割できる割型である多孔質部材3、多孔質部材を被
覆する気密部材6、気密部材を貫通して多孔質部材に達
するガス導入管4、水平方向の開閉を自在にするエアシ
リンダー7よりなり、オリフィス1から溶融落下したガ
ラス塊2は、多孔質部材表面から噴出するガス5のガス
クッション作用により保持される。溶融落下させるガラ
スの温度範囲としては、ガラスの種類によって異なる
が、概ね900〜1200℃とすることが流動性の点か
ら好適である。また、オリフィスから第1型部材までの
距離は2〜15cmとすることが望ましい。
【0023】図2は、ガラス塊を第1型部材から第2型
部材上へ移す例を示す模式図である。第1型部材の割型
を水平方向に開くことにより、第1型部材の直下に配さ
れた第2型部材8上に、適度に冷却されたガラス塊10
を落とすものである。このとき、ガラスの温度は、ガラ
スの種類により異なるが、約500〜800℃であり、
落下させる距離は約5〜30cmとすることが望まし
い。
【0024】第2型部材としては、従来から行われてき
たリヒート法による光学ガラス素子成形に使用される型
材で、かつ落下したガラスと融着しない材料であれば如
何なるものでも使用することができるが、連続成形プロ
セスを考慮するとガラスとの離型性の良い材料が適して
いる。このため第2型部材は母材の表面に一層又は二層
以上の薄膜が形成されているものが望ましい。
【0025】母材の特性としては高温強度及び高温硬度
に優れたものが望ましく、例えば超硬合金、サーメッ
ト、窒化珪素、炭化珪素等が適当である。また薄膜とし
てはカーボン系材料(水素化アモルファスカーボン、ダ
イヤモンド等)、窒化物系材料(窒化チタン、窒化タン
タル等)、炭化物系材料(炭化チタン、炭化タンタル
等)、白金混合物材料(白金−シリコン、白金−イリジ
ウム等)などを一層あるいは二層以上設けることが望ま
しい。
【0026】また第2型部材の形状については成形品の
形状に応じて凹、平板、及び凸形状など各種の形状に作
製することができる。
【0027】上記第1及び第2型部材を用いて光学ガラ
ス素子を製造する本発明方法の2態様を次に説明する。
【0028】図3は、第2型部材上に載置された光学ガ
ラス素子予備成形体をプレス成形する工程を非酸化性雰
囲気中で行い、他の工程を大気中で行う例を示す工程図
である。
【0029】図4は、オリフィスからガラスを溶融落下
させる工程から、光学ガラス成形体の成形終了までを非
酸化性雰囲気中で行う例を示す工程図である。
【0030】本発明において各工程を実施する雰囲気
は、光学ガラス予備成形体10を得るまでの工程につい
ては、大気中、非酸化性雰囲気中のいずれでも良いが、
第1型部材及び第2型部材の耐酸化性が悪い場合にはオ
リフィス、第1型部材、第2型部材、及び第1型部材の
開閉機構等全体を成形室内に設置するような装置構成と
する。また第1型部材に多孔質酸化物材料を用いれば酸
化については全く問題がなく、さらに第2型部材はガラ
ス塊と接触する面が適度に冷却されており、またガラス
塊を受けた後直ちに非酸化性雰囲気中の成形室内へ移動
されるため、熱酸化による型表面の反応、劣化等はほと
んど起きないので光学ガラス予備成形体を得るまでの工
程が大気中で行なわれても全く問題を生じない。
【0031】本発明に係る雰囲気を大気、あるいは非酸
化性雰囲気にする選択の基準としては、どちらの雰囲気
を選んでも成形品の品質に影響しないので操作性及び装
置作製のコスト等を考慮して選択すれば良い。また成形
室内の雰囲気については第2型部材及び成形用上型の耐
久性を維持させるために非酸化性雰囲気が好ましく、非
酸化性雰囲気としては、通常は窒素等の不活性ガス、あ
るいは水素を数%程度含む非酸化性ガスを用いればガラ
スを還元させることもなく型寿命も伸びるので望まし
い。
【0032】図3又は図4で示される例において、第2
型部材を搬送させる手段としては、コンベアを用いてい
る。ここでは、各工程を必要により気密に仕切ることを
容易にするために、各工程毎に独立したコンベアとする
ことが好ましい。プレス工程以外の工程で使用されるコ
ンベア14及び15は第2型部材の下面温度に耐えうる
耐熱性の金属等が望ましく、例えば0.01〜0.1m
m程度の銅薄板が適当である。またプレス工程で使用さ
れるコンベア16は予備加熱工程を通るため他工程のも
のより耐熱性の高い材料で、かつ成形時に圧力の負荷を
受けるため圧力による変形の小さい材料が望ましく、厚
さについてはコンベアを回すローラー17を密に配置す
れば圧力はほとんどローラー17で支えられるため、特
に厚くする必要はなく例えば0.01〜0.1mm程度
のステンレス薄板が適当である。ローラー17はステン
レス鋼で特に成形時の圧力の負荷を考慮すると10mm
φ以上であることが望ましい。また成形圧力のかからな
いコンベアについても同様なローラー17を用いればよ
い。
【0033】プレス工程を必要により気密に仕切るため
に設けられるシャッター12及び13は500℃程度の
耐熱性があれば充分で、成形室9内の酸素量を増加させ
ないために第2型部材8の成形室9内外への搬送に連動
させて高速で開閉できるものが望ましい。また、シャッ
ター12及び13の代りに非酸化性ガスカーテン(図示
せず)を使用することも有効な手段である。
【0034】以上に説明した手段で光学ガラス素子予備
成形体10を載せた第2型部材8はシャッター12を通
ってすばやく成形室9内へ搬送され、まず予備加熱工程
に移る。第2型部材8及び光学ガラス素子予備成形体1
0はヒーター18により2分程度加熱されて均熱化した
後プレス工程へ移される。プレス工程では、予め内蔵ヒ
ーター19により第2型部材8及び光学ガラス素子予備
成形体10とほぼ同温度に加熱された成形用上型11に
より106 〜107 Paの圧力で2分程度プレス成形さ
れる。その後2分程度の自然冷却工程を経た後、シャッ
ター13を開いて成形室9外へ移される。成形された光
学ガラス素子20は真空チャック方式の吸着ハンド21
で第2型部材8より取り出されて一連の工程が完了す
る。
【0035】尚、第2型部材8は直ちにオートハンド
(図示せず)により光学ガラス素子予備成形体10を受
ける工程のコンベア14上に戻され繰り返して使用され
る。また、図4に示される例のようにオリフィス1等を
含む光学ガラス素子予備成形体10を受ける工程が成形
室22内部に設けられている場合にはシャッター23を
開閉させることにより成形室22内部のコンベア14上
に戻される。
【0036】成形室9または22内へは非酸化性ガスが
非酸化性ガス導入管24を通じて連続して供給され、シ
ャッター12、13及び23開閉時は非酸化性ガス排出
管25を閉じて成形室9または22内を若干正圧にし
て、できるだけ酸素が成形室9または22内へ入らない
ようにする。シャッター12、13及び23が閉じられ
ている状態では非酸化性ガスは非酸化性ガス排出管25
を通してパージしてほぼ大気圧となるよう調整する。こ
の非酸化性ガス排出管25の開閉はシャッター12、1
3及び23開閉時の信号を検知し、非酸化性ガス排出管
25に設けられた電磁弁を開閉するコントローラー(図
示せず)を用いて行う。
【0037】
【実施例】以下、実施例により本発明を具体的に説明す
る。
【0038】実施例1 1)第1型部材の作製 多孔質材料としては、表1に示したように多孔質炭化珪
素、多孔質ジルコニア、多孔質アルミナ、多孔質コージ
ェライト、多孔質ムライト、多孔質グラッシーカーボン
(高気孔率)、多孔質グラッシーカーボン(低気孔
率)、多孔質ガラスを使用した。それぞれの材料につき
以下の要領で多孔質部材として加工した。
【0039】多孔質材料をブロックから切り出して、3
0mmφ、厚さ10mmの円板を作製し、その後ガラス
を受ける面を曲率R(以下、Rと略記する)22mm、
深さ4mmに研削加工して#800の研削剤で仕上げ加
工を行った。その後、厚さ0.1mmのダイヤモンドカ
ッターで材料を図1及び図2で示されるような2分割に
切断し、それぞれの切断面を#1000及び#3000
の研削剤で仕上げ加工を行って多孔質部材を作製した。
【0040】次に、外径40mm、肉厚5mmのステン
レス鋼を研削加工し、内径30.2mm、深さ10mm
の底付きの円筒状とし、これを縦方向に二分割した後そ
れぞれの切断面をラップ仕上げ加工した。その後円筒を
分割したそれぞれの底面に5mmφの貫通孔をあけ、そ
の穴に4.98mmφ、内径4mmのインコネル製のガ
ス導入管を密封接合した。
【0041】先に作製した2個の多孔質部材の回りを囲
むようにガス導入管を備えた気密部材をそれぞれセラミ
ック系接着剤で接着一体化して気密性の高い第1型部材
を作製した。
【0042】2)第2型部材の作製 第2型部材としては、母材として炭化タングステン(9
0wt%)+コバルト(10wt%)の超硬合金を用
い、形状としては30mm、厚さ10mmの円板を作製
した後、ガラスを成形する面をR16mm、深さ2.3
mmの形状に研削研磨して表面粗さ2nmの鏡面とし
た。
【0043】鏡面加工した母材面に、スパッタ法により
白金ターゲット上にシリコンチップをのせて、窒素ガス
雰囲気下で、白金53原子%、(シリコン+窒素)47
原子%からなる組成の白金半導体混合物を1μm形成し
て第2型部材を作製した。
【0044】このとき同時にプレス成形用の上型を第2
型部材と同一材質で同一形状に作製した。
【0045】3)光学ガラス素子の製造 上記型部材を用いて、図3に示す工程により光学ガラス
素子を製造した。
【0046】第1型部材を通じて噴出させるガスには窒
素ガスを用い、表1に示した各種材料についてガス噴出
量が溶融ガラスをガスクッション作用により受けるのに
適した量となるように導入するガス圧力を調整して供給
した。また噴出するガスの温度は、ガス導入管に内蔵し
た白金ヒーターの温度を制御して600℃となるように
した。
【0047】溶融ガラスには特願平3−080592号
公報記載のSK12に相当する光学特性を有するガラス
を用いた。このガラスはホウケイ酸バリウム系のガラス
組成を有し、その軟化点温度は630℃である。このガ
ラスを1200℃で溶融し、オリフィス1から約1.5
gの溶融ガラスを第1型部材26上に滴下した。滴下し
たガラス塊2を第1型部材のガスクッション作用により
1分間保持した後、エアシリンダー7を駆動させ第1型
部材を左右に開いて第2型部材8上に落下させた。
【0048】なお以上の工程は全て大気中で行い、また
オリフィス先端部から第1型部材までの距離は10c
m、同じく第2型部材までの距離は30cmとした。
【0049】光学ガラス素子予備成形体10を受けた第
2型部材8を直ちに、予め窒素ガスを15リッター/分
でパージして雰囲気調整された成形室9内へシャッター
12を高速に開閉してコンベア17により搬入した。
【0050】その後ヒーター温度570℃で2分間、第
2型部材8及びその上に載置された光学ガラス素子予備
成形体10を予備加熱し、次にプレス工程へコンベア1
6により第2型部材を搬送した後、直ちに予め570℃
に加熱均熱化された上型11を用いて4×106 Paの
圧力で2分間プレス成形した。プレス成形時に第2型部
材の温度が下がらないように、第2型部材の下方に設置
したヒーター18の温度を制御して第2型部材を570
℃に保つように調整した。その後、成形した光学ガラス
素子20を載せた第2型部材をコンベア16により冷却
工程へ搬送し2分間自然放冷させた後、シャッター13
を高速で開いてコンベア16により成形室外へ搬送し直
ちに光学ガラス素子20を吸着ハンド21を用いて第2
型部材8から取り出した。
【0051】以上一連のプロセスを説明したが、本実施
例においては10個の第2型部材を使用し、コンベアに
より連続供給して、溶融ガラスを断続的に供給してプレ
ス成形を実施し、第2型部材から光学ガラス素子が取り
出された後直ちに第2型部材をオートハンド(図示せ
ず)により光学ガラス素子予備成形体を受ける工程へ戻
して繰り返して使用し、一個の第2型部材についてそれ
ぞれ10回成形を行い合計100個の光学ガラス素子を
作製した。
【0052】更に、第1型部材については先に挙げた8
種全てについて成形を行い、第1型部材を取り換えるご
とに第2型部材及び成形用上型を未使用の型に取り換え
て各々80個使用した。
【0053】得られた光学ガラス素子の評価は、評価の
曇りの有無については集光灯を用いて観察をし、表面精
度についてはZygo社製のZygo−MARK3を、
表面粗さについてはZygo社製のMAXIM−3Dを
使用した。
【0054】表1に光学ガラス素子各100個について
評価した結果を示す。なお、曇りについては評価した8
00個の試料全てについて全く観察されなかった。表面
精度及び表面粗さについては各々100個の試料の中で
最大値をとった測定値を掲載した。
【0055】
【表1】 本結果から本実施例により得られた光学ガラス素子は曇
りもなく、表面精度については全てニュートン本数(N
=)1.5本以下、表面粗さについても全て10nm以
下で非常に良好な性能を有する光学ガラス素子を得るこ
とができた。
【0056】また、比較例として第1型部材を使用しな
いで溶融ガラスを直接第2型部材に落下させる工程の他
は全く本実施例と同一条件で成形実験を行った。
【0057】比較例の結果は、成形3回目で光学ガラス
素子は第2型部材と融着した。また、成形1回目、2回
目に得られた光学ガラス素子ともに表面粗さが50nm
以上で、光学ガラス素子として使用できる性能を有する
ものは得られなかった。
【0058】実施例2 実施例1と同様な方法で、表2に示す多孔質材料、即
ち、多孔質金属チタン、多孔質炭化珪素、多孔質ジルコ
ニア、多孔質グラッシーカーボン、多孔質コージェライ
ト、多孔質ムライト、多孔質アルミナについて実施例1
と同一形状の多孔質部材を作製した。気密部材及びガス
導入管についても実施例1と同一材質、同一形状のもの
を用い、第1型部材を作製した。
【0059】次に、第2型部材については母材は実施例
1と同一組成、同一形状の超硬合金を研削研磨して作製
し、鏡面加工した母材上にイオンビーム蒸着法による水
素化アモルファスカーボン膜を0.5μm形成して作製
した。
【0060】またプレス成形用上型についても第2型部
材と同一材質、同一形状のものを作製した。
【0061】第1型部材を通じて噴出させるガスには窒
素98vol.%及び水素2vol.%からなる混合ガ
スを用い、表2に示した各種材料についてガス噴出量が
溶融ガラスを受けるのに適した量となるように導入する
ガス圧力を表2に示すように調整して供給した。また噴
出するガスの温度はガス導入管に内蔵した白金ヒーター
の温度を制御して630℃になるよう調整した。
【0062】また成形室の構成は、図4に示すようにオ
リフィス、第1型部材、及び第2型部材を予備過熱工
程、プレス工程、冷却工程と同一成形室内に設置して雰
囲気が同一になるようにして、成形室22内へはガス導
入管24より窒素98vol.%及び水素2vol.%
からなる混合ガスを15リッター/分でパージして雰囲
気調整した。
【0063】溶融ガラスにLaK12に相当する光学特
性を有するランタン系ガラスを用いた。このガラスの軟
化点温度は655℃である。このガラスを1300℃で
溶解し、オリフィス1から約1.5gの溶融ガラスを第
1型部材上に滴下した。滴下したガラス塊2を第1型部
材のガスクッション作用により1分間保持した後、エア
シリンダー7を駆動させ第1型部材を左右に開いて第2
型部材8上に落下させた。オリフィス先端部から第1型
部材、及び第2型部材までの距離は実施例1と同じくそ
れぞれ10cm、30cmとした。
【0064】光学ガラス素子予備成形体10を受けた第
2型部材8を直ちにヒーター温度620℃に調整した予
備加熱工程へ搬送し2分間加熱した。
【0065】次に第2型部材をプレス工程へ搬送し、直
ちに予め620℃に加熱均熱化された上型11を用いて
3×106 Paの圧力で2分間プレス成形した。プレス
成形時に第2型部材の温度が下がらないように第2型部
材の下方に設置したヒーターの温度を制御して第2型部
材を620℃に保つように制御した。
【0066】その後成形された光学ガラス素子20を載
せた第2型部材8を冷却工程へ搬送し、2分間自然放冷
させた後、シャッター13を高速で開いて成形室外へ搬
送し、直ちに光学ガラス素子を吸着ハンドを用いて第2
型部材から取り出した。
【0067】以上一連のプロセスを説明したが、本実施
例においては10個の第2型部材を使用し、コンベアに
より連続供給して、溶融ガラスを断続的に供給してプレ
ス成形を実施し、第2型部材から光学ガラス素子が取り
出された後直ちに第2型部材をオートハンド(図示せ
ず)により光学ガラス素子予備成形体を受ける工程へ成
形室上部に設けられたシャッター付き搬入口23を通し
て戻すことにより繰り返して使用し、一個の第2型部材
についてそれぞれ10回成形を行い合計100個の光学
ガラス素子を作製した。
【0068】更に、第1型部材については先に挙げた7
種全てについて成形を行い、第1型部材を取り換えるご
とに第2型部材及び成形用上型を未使用の型に取り換え
て各々70個使用した。
【0069】成形した光学ガラス素子の評価は、実施例
1に示した方法と同じ手段で行った。
【0070】表2に光学ガラス素子各々100個につい
て評価した結果を示す。なお、曇りについては評価した
700個の試料全てについて全く観察されなかった。表
面精度及び表面粗さについては各々100個の試料の中
で最大値をとった測定値を掲載した。
【0071】
【表2】 本結果から本実施例により得られた光学ガラス素子は曇
りもなく、表面精度については全てニュートン本数(N
=)1.5本以下、表面粗さについても全て10nm以
下で非常に良好な性能を有する光学ガラス素子を得るこ
とができた。
【0072】また、比較例として第1型部材を使用しな
いで溶融ガラスを直接第2型部材に落下させる工程の他
は全く本実施例と同一条件で成形実験を行った。
【0073】比較例の結果は、成形5回目で光学ガラス
素子は第2型部材と融着した。また、成形1回目〜4回
目に得られた光学ガラス素子も表面粗さが50nm以上
で、光学ガラス素子として使用できる性能を有するもの
は得られなかった。
【0074】
【発明の効果】本発明によれば、成形サイクルの短いダ
イレクトモールド法において、オリフィスから溶融落下
するガラスを第1型部材の多孔質部材表面から噴出する
ガスのガスクッション作用で保持することにより、耐熱
性や高精度、清浄度が要求される受け型、即ち第1型部
材の劣化を防ぎ、またガラスとの融着や離型不良を防い
で、良好な光学ガラス素子を効率的に製造することので
きる方法を提供することが可能である。
【0075】また、成形用下型となる第2型部材上に達
するまでに、ガラス塊下面が適切な温度まで冷却される
ので、成形下型の表面劣化を起こさず成形後のガラスと
の離型性も良くなる。またガスクッション作用による非
接触保持のため光学ガラス素子予備成形体の下面は非常
に円滑な表面が得られる。以上の合併効果により、プレ
ス成形後表面特性の非常に優れた光学ガラス素子を得る
ことができる。
【0076】また、第2型部材の表面劣化が殆ど無いた
め、成形が完了した後第2型部材を光学ガラス素子予備
成形体を受ける工程へ繰り返し戻して待機させることに
より連続した一貫プロセスにより成形が行えるので、装
置の連続稼働が可能となり量産効率が飛躍的に向上し大
幅なコストダウンが可能となる。
【0077】加えて、割型構造にしたことにより第1型
部材はコンパクトな構成で機能するため大型装置は不要
となり、このため装置コストが下がり製品のコストダウ
ンがさらに可能となる。
【図面の簡単な説明】
【図1】オリフィスから溶融落下するガラス塊を受ける
第1型部材の構成例を示す模式図である。
【図2】第1型部材から第2型部材へガラス塊を移動さ
せる1例を説明する模式図である。
【図3】本発明に係る製造工程の1例を示す工程図であ
る。
【図4】本発明に係る製造工程の別の例を示す工程図で
ある。
【符号の説明】
1 オリフィス 2 ガラス塊 3 多孔質部材 4 ガス導入管 5 噴出ガス 6 気密部材 7 開閉機構 8 第2型部材 9 成形室 10 光学ガラス素子予備成形体 11 成形用上型 12 シャッター 13 シャッター 14 コンベア 15 コンベア 16 コンベア 17 ローラー 18 ヒーター 19 内蔵ヒーター 20 光学ガラス素子 21 吸着ハンド 22 成形室 23 シャッター 24 非酸化性ガス導入管 25 非酸化性ガス排出管
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 裕之 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭61−132526(JP,A) 特開 平2−149433(JP,A) 特開 平4−77320(JP,A) 実開 平4−64532(JP,U) 特公 平4−16414(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C03B 11/00

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 溶融させたガラスをオリフィスから落下
    させる工程、該落下したガラスを、多孔質部材表面から
    ガスを噴出するように構成され水平方向に開閉すること
    のできる割型からなる第1型部材で受けて光学ガラス素
    子予備成形体を得る工程、前記第1型部材を水平方向に
    開くことにより光学ガラス素子予備成形体を第2型部材
    に落下させる工程、第2型部材上に載置された光学ガラ
    ス予備成形体をプレス成形して光学ガラス素子を得る工
    程、を有してなる光学ガラス素子の製造方法。
  2. 【請求項2】 多孔質部材のガラスと接触する面を除く
    周囲を気密部材で被覆し、該気密部材を貫通して多孔質
    部材に達するガス導入管を一箇所又は複数箇所に設ける
    請求項1に記載の製造方法。
  3. 【請求項3】 少なくとも前記第2型部材上に載置され
    た光学ガラス予備成形体をプレス成形して光学ガラス素
    子を得る工程を非酸化性雰囲気中で実施する請求項1に
    記載の製造方法。
JP5129315A 1993-05-31 1993-05-31 光学ガラス素子の製造方法 Expired - Fee Related JP2986647B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129315A JP2986647B2 (ja) 1993-05-31 1993-05-31 光学ガラス素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129315A JP2986647B2 (ja) 1993-05-31 1993-05-31 光学ガラス素子の製造方法

Publications (2)

Publication Number Publication Date
JPH06340430A JPH06340430A (ja) 1994-12-13
JP2986647B2 true JP2986647B2 (ja) 1999-12-06

Family

ID=15006540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129315A Expired - Fee Related JP2986647B2 (ja) 1993-05-31 1993-05-31 光学ガラス素子の製造方法

Country Status (1)

Country Link
JP (1) JP2986647B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762673A (en) * 1997-01-24 1998-06-09 Hoya Precision Inc. Method of manufacturing glass optical elements
US6370915B1 (en) * 1997-05-20 2002-04-16 Hoya Corporation Method for supplying glass molding material to molds, and method for manufacturing glass optical elements
JP3869239B2 (ja) * 2001-09-28 2007-01-17 Hoya株式会社 光学素子のプレス成形装置及び光学素子の製造方法
FR2833255B1 (fr) * 2001-12-11 2004-10-01 Snc Eurokera Procede et dispositif de production, a l'unite, de feuilles de verre lamine
DE102005046556B4 (de) * 2005-09-28 2009-04-09 Schott Ag Verfahren und Vorrichtung zur Herstellung von optischen Komponenten für Abbildungsoptiken aus der Schmelze
JPWO2007083718A1 (ja) * 2006-01-19 2009-06-11 旭硝子株式会社 成型装置及び搬送品の搬送方法
US20090007599A1 (en) * 2006-02-23 2009-01-08 Peter Muhle Method and Device For Producing Technical Glass Parts For Optical Applications
JP2012082096A (ja) * 2010-10-08 2012-04-26 Ohara Inc ガラス成形体の製造方法、ガラス成形型及びガラス成形型用部品

Also Published As

Publication number Publication date
JPH06340430A (ja) 1994-12-13

Similar Documents

Publication Publication Date Title
US6810686B2 (en) Process for manufacturing glass optical elements
US6854289B2 (en) Method of manufacturing glass gobs molded glass articles, and optical elements
JP3974200B2 (ja) ガラス光学素子の成形方法
JPH08259242A (ja) ガラス素材の浮上軟化方法、光学素子の製造方法、および光学素子
JP2986647B2 (ja) 光学ガラス素子の製造方法
JP4603767B2 (ja) ガラス光学素子の製造方法
JP3494390B2 (ja) ガラス光学素子の製造方法
JP3587499B2 (ja) ガラス成形体の製造方法
JPH08133758A (ja) ガラス光学素子の製造方法
JP3234871B2 (ja) ガラス光学素子の製造方法
JP3246728B2 (ja) ガラス光学素子の成形方法
EP0506131B1 (en) Method of producing glass blank
JP2952185B2 (ja) ガラス光学素子の成形方法
JP3753415B2 (ja) ガラス光学素子の成形方法
JP4094587B2 (ja) ガラス光学素子の成形方法
JPH0826739A (ja) ガラス素子の製造方法及び装置
JP3243219B2 (ja) ガラス光学素子の製造方法
JP2875621B2 (ja) 光学ガラス成形体の製造方法と光学ガラス素子の製造方法及び製造装置
JP4256190B2 (ja) ガラス光学素子の製造方法
JP4088451B2 (ja) ガラス光学素子の製造方法
JP3140259B2 (ja) 光学ガラス塊の製造方法および光学ガラス成形体の製造方法
JPH0769654A (ja) 光学ガラス素子の成形システム
JP3229943B2 (ja) ガラス光学素子の成形方法
JP3216102B2 (ja) 光学ガラス素子の製造方法
JP3767780B2 (ja) ガラス光学素子の製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees