JP2963182B2 - Light receiving element - Google Patents

Light receiving element

Info

Publication number
JP2963182B2
JP2963182B2 JP2273345A JP27334590A JP2963182B2 JP 2963182 B2 JP2963182 B2 JP 2963182B2 JP 2273345 A JP2273345 A JP 2273345A JP 27334590 A JP27334590 A JP 27334590A JP 2963182 B2 JP2963182 B2 JP 2963182B2
Authority
JP
Japan
Prior art keywords
receiving element
light receiving
thin film
film transistor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2273345A
Other languages
Japanese (ja)
Other versions
JPH04150068A (en
Inventor
真人 久力
誠一 白井
正 芹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2273345A priority Critical patent/JP2963182B2/en
Publication of JPH04150068A publication Critical patent/JPH04150068A/en
Application granted granted Critical
Publication of JP2963182B2 publication Critical patent/JP2963182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、撮像素子や光センサー等に用いられる増幅
機能を有する受光素子に係り、特に、出力電流の大き
い、高感度の受光素子に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-receiving element having an amplifying function used for an image sensor, an optical sensor, and the like, and particularly to a high-sensitivity light-receiving element having a large output current.

[従来の技術] 受光素子は撮像素子や光センサー等に広く用いられて
おり、各所で精力的に研究開発が行われている。特に、
電荷結合素子(CCD:Charge Coupled Device)の開発の
進展がめざましい撮像素子の分野では、解像度の向上に
伴い、民生用カメラは勿論放送用カメラにも用いられる
ようになっている。しかし、従来の撮像管方式を刷新す
るには、小型・軽量という利点はあるものの、まだ解像
度や感度の点で劣っており、今後の進展が期待されると
いう状態にある。
[Related Art] A light receiving element is widely used for an image sensor, an optical sensor, and the like, and research and development are being vigorously conducted in various places. Especially,
In the field of imaging devices in which the development of charge-coupled devices (CCDs) has been remarkably progressing, with the improvement in resolution, they have come to be used not only for consumer cameras but also for broadcast cameras. However, in order to renovate the conventional image pickup tube method, although it has the advantages of small size and light weight, it is still inferior in resolution and sensitivity, and it is in a state where future progress is expected.

解像度の向上を図るためには、上記の利点を生かすた
めに、小面積の領域に膨大な数の微細受光素子を作成す
る必要がある。すなわち、受光素子の高集積化が必要に
なる。この場合、受光領域が狭くなるため出力信号の強
度が低下し、これに伴って、受光感度が低下することが
懸念される。従って、高解像度化を実現するためには、
微細でしかも高感度な受光素子の開発が重要な課題とな
る。
In order to improve the resolution, it is necessary to produce a huge number of fine light receiving elements in a small area to take advantage of the above advantages. That is, high integration of the light receiving element is required. In this case, since the light receiving area becomes narrow, the intensity of the output signal is reduced, and accordingly, there is a concern that the light receiving sensitivity is reduced. Therefore, in order to realize high resolution,
Development of a fine and highly sensitive light receiving element is an important issue.

一方、最近注目を集めている光コンピュータの分野で
は、高機能を有する空間光変調器(SLM:Spatial Light
Modulator)の開発が強く望まれている。SLMでは入力光
を関知する受光素子と液晶等の光の性質を変化させる変
調部とからなるセルがマトリクス状に配置されており、
入力光によって出力光の強度や進行方向等の制御を行う
ことによって、並列光演算等を行っている。この場合、
並列処理能力をより高めるためには、上記のセルを微細
に形成する必要がある。このため、撮像素子の場合と全
く同様に、微細でしかも高感度の受光素子をガラス基板
等の透明絶縁基板上に作成する技術の開発が重要な課題
となる。
On the other hand, in the field of optical computers, which has recently attracted attention, a spatial light modulator (SLM: Spatial Light
Modulator) is strongly desired. In the SLM, cells composed of a light receiving element that senses input light and a modulator that changes the properties of light such as liquid crystal are arranged in a matrix.
Parallel light calculation and the like are performed by controlling the intensity and traveling direction of the output light with the input light. in this case,
In order to further increase the parallel processing capability, it is necessary to form the above cells finely. Therefore, just as in the case of the image pickup device, development of a technique for forming a fine and high-sensitivity light receiving element on a transparent insulating substrate such as a glass substrate is an important issue.

高感度化を図るために、近時、素子自体に増幅機能を
有する受光素子(以下、増幅型受光素子と称する)が注
目されている。従来の素子では、受光素子からの出力信
号は転送ラインを経由した後外部増幅器によって増幅さ
れるが、このような方式では転送中に雑音が混入するた
め高S/N比の実現が難しい。しかし、増幅型受光素子の
場合には、出力信号を直接増幅するため微弱な入射光で
もS/N比を高くとることができ、その結果、高感度化を
実現することができる。このような増幅型受光素子の一
つに光薄膜トランジスタがある。
In recent years, in order to increase the sensitivity, a light receiving element having an amplifying function in the element itself (hereinafter, referred to as an amplification type light receiving element) has attracted attention. In a conventional element, an output signal from a light receiving element is amplified by an external amplifier after passing through a transfer line. However, in such a method, it is difficult to realize a high S / N ratio because noise is mixed during transfer. However, in the case of an amplification type light receiving element, since the output signal is directly amplified, the S / N ratio can be increased even with weak incident light, and as a result, high sensitivity can be realized. One of such amplifying light receiving elements is an optical thin film transistor.

第6図は光薄膜トランジスタの概略構造を示した模式
断面図で、能動領域が伝導型がn型の領域1′とp型の
領域1″の二つの領域からなり、能動領域でpn接合を形
成していることを示す。ここで、トランジスタに光を照
射すると能動領域に電子・正孔の対が生成され、ゲート
電極3に負の電位を印加すると、電子はn型領域1′
に、正孔はp型領域1″に流れる。n型領域1′に流れ
込んだ電子はそのまま光電流としてドレイン電極5へ流
れ、出力信号として取り出される。光薄膜トランジスタ
では、液晶ディスプレイ等の製造に用いられているアク
ティブマトリクス作成技術を用いることにより大面積の
基板上に高密度に作成できるという利点がある。しか
し、前記したように、出力電流が、基本的に、光励起に
よって生じた電子・正孔対のみによるものであることか
ら、大きな出力電流が得られず、感度が低いという欠点
があった。
FIG. 6 is a schematic cross-sectional view showing a schematic structure of an optical thin film transistor. The active region is composed of two regions, that is, an n-type region 1 ′ and a p-type region 1 ″, and a pn junction is formed in the active region. Here, when the transistor is irradiated with light, electron-hole pairs are generated in the active region, and when a negative potential is applied to the gate electrode 3, the electrons are converted into the n-type region 1 '.
The holes flow into the p-type region 1 ". The electrons flowing into the n-type region 1 'flow as they are into the drain electrode 5 as a photocurrent and are taken out as an output signal. An optical thin film transistor is used for manufacturing a liquid crystal display or the like. There is an advantage that the active matrix can be formed on a substrate having a large area at a high density by using the active matrix forming technique, but as described above, the output current basically depends on the electrons and holes generated by photoexcitation. Since only a pair is used, a large output current cannot be obtained, and the sensitivity is low.

[発明が解決しようとする課題] 上記したように、従来技術おいては、高密度化はある
程度達成できても、その構成の基本的制約から、大きな
出力電流が得られず、感度が低いという課題が残されて
いた。
[Problems to be Solved by the Invention] As described above, in the related art, even if a high density can be achieved to some extent, a large output current cannot be obtained and the sensitivity is low due to the basic restrictions of the configuration. Challenges remained.

本発明の目的は、上記従来技術の有していた課題を解
決して、高密度でしかも大きな出力電流が得られる高感
度の受光素子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-sensitivity photodetector capable of solving the above-mentioned problems of the prior art and obtaining a high density and a large output current.

[課題を解決するための手段] 上記目的は、能動領域にソース/ドレイン領域を伴
い、該ソース/ドレイン領域のうち一部のソース/ドレ
イン領域がp型の伝導性を有し、残余のソース/ドレイ
ン領域がn型の伝導性を有する薄膜トランジスタを用い
る受光素子において、上記p型伝導性のソース/ドレイ
ン領域と上記n型伝導性のソース/ドレイン領域と上記
能動領域とのpin接合により構成される太陽電池と上記
薄膜トランジスタのゲート電極とを電気的に接続して、
増幅機能を有する薄膜トランジスタと受光機能を有する
pin型太陽電池とを共有してなる構成の受光素子とする
ことによって達成することができる。
[MEANS FOR SOLVING THE PROBLEMS] The object is to provide a semiconductor device having a source / drain region in an active region, a part of the source / drain region having p-type conductivity, and a remaining source / drain region. A light-receiving element using a thin film transistor having n-type conductivity, wherein the p / drain region is constituted by a pin junction between the p-type conductive source / drain region, the n-type conductive source / drain region, and the active region; Electrical connection between the solar cell and the gate electrode of the thin film transistor,
Thin film transistor with amplifying function and light receiving function
This can be achieved by forming a light receiving element having a configuration shared with a pin type solar cell.

[作用] 第5図は上記本発明受光素子の基本構成を示す図で、
pin型構成太陽電池と薄膜トランジスタのゲート電極3
とドレイン電極5との間に電気的に並列に接続してなる
ことを示しているが、以下、同図によって本発明受光素
子の動作原理について説明する。
[Operation] FIG. 5 is a diagram showing a basic configuration of the light receiving element of the present invention.
Pin type solar cell and thin film transistor gate electrode 3
It is shown that the light receiving element is electrically connected in parallel between the drain electrode 5 and the operation principle of the light receiving element of the present invention will be described below with reference to FIG.

同図(a)に示すようにpin構造を形成する能動領域
とドレイン領域およびカソード領域またはアノード領域
に、例えば、基板側から光が照射されると、pin型太陽
電池の原理により、ゲート電極3とドレイン電極5との
間に起電力が生じ、ゲート電極の電位が上がることにな
る。このため、n型薄膜トランジスタの場合、同図
(b)に示すように、能動領域にn型のチャンネル領域
が形成され、ソース/ドレイン間に電位差を生じさせて
おくと、光電流とともにドレイン電極が急激に流れだ
し、その電流値を出力信号として取り出すことができ
る。また、p型薄膜トランジスタの場合にも、同図
(c)に示すように、全く同様の動作が行われる。な
お、上記の説明においては、光を基板側から入射させた
場合について述べたが、ゲート電極に透明電極、例えば
ITO(Indium Tin Oxide)電極、を用いれば、光をゲー
ト電極側から入射させた場合にも同様な動作が行われ
る。
As shown in FIG. 3A, when light is irradiated from the substrate side to the active region, the drain region and the cathode region or the anode region forming the pin structure, for example, the gate electrode 3 is formed according to the principle of the pin type solar cell. An electromotive force is generated between the gate electrode and the drain electrode 5, and the potential of the gate electrode increases. For this reason, in the case of an n-type thin film transistor, as shown in FIG. 3B, an n-type channel region is formed in the active region, and when a potential difference is generated between the source and the drain, the drain electrode is formed together with the photocurrent. It starts to flow rapidly, and its current value can be taken out as an output signal. Also, in the case of a p-type thin film transistor, exactly the same operation is performed as shown in FIG. In the above description, the case where light is incident from the substrate side has been described.
When an ITO (Indium Tin Oxide) electrode is used, a similar operation is performed even when light is incident from the gate electrode side.

受光素子を上記構成の素子とすることによって、pin
型太陽電池によってゲート変調が可能となるため、出力
電流を大きくとることができる。さらに、太陽電池のi
層と薄膜トランジスタの能動領域とを共有しているた
め、占有面積を小さくすることができ、高集積化に好適
である。例えば、サファイア製の透明基板上に単結晶Si
を堆積したSOS(Silicon on Sapphire)膜を用いて本発
明の受光素子を作成し、能動領域の大きさが3μm×3
μmの規模で、従来構成の受光素子に比べて感度が約2
桁程度改善された受光素子を得ることができた。
By using the light receiving element with the above configuration,
Since the gate modulation can be performed by the solar cell, the output current can be increased. In addition, the i
Since the layer and the active region of the thin film transistor are shared, the occupied area can be reduced, which is suitable for high integration. For example, single-crystal Si on a sapphire transparent substrate
A light receiving element of the present invention is formed using an SOS (Silicon on Sapphire) film on which an active region is deposited, and the size of the active region is 3 μm × 3.
With a size of μm, the sensitivity is about 2
A light receiving element improved by about an order of magnitude was obtained.

[実施例] 以下、本発明受光素子の構成について実施例によって
具体的に説明する。
EXAMPLES Hereinafter, the configuration of the light-receiving element of the present invention will be specifically described with reference to examples.

第1図は本発明受光素子の概略構成を示す平面図、第
2図は第1図A−A線矢視方向における断面図で、能動
領域1、ゲート絶縁膜、ゲート電極3、ソースA4、ドレ
インA5、アノード7、Al配線9からなることを示す。こ
こで特徴とするところは、薄膜トランジスタの能動領域
に伝導型の異なるドレイン領域を接続した構造の受光素
子としてあることことにある。すなわち、第3図に示す
ように、(a)nチャネル薄膜トランジスタであればp
型の領域(カソード領域)、(b)pチャネル薄膜トラ
ンジスタであればn型の領域(アノード領域)を形成す
ることによって、薄膜トランジスタのドレイン領域およ
び能動領域との間で、受光素子であるpin型太陽電池が
形成されることになる。ただし、図中のT−TおよびP
−P線矢視方向はそれぞれ薄膜トランジスタおよびpin
型太陽電池の構成を示すものである(ゲート電極3はこ
こでは便宜上省略した)。以上のように、本発明の受光
素子は増幅機能を有する薄膜トランジスタと受光機能を
有するpin型太陽電池とを共有した素子である。
FIG. 1 is a plan view showing a schematic configuration of a light-receiving element of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 and shows an active region 1, a gate insulating film, a gate electrode 3, a source A4, It is shown that it is composed of a drain A5, an anode 7, and an Al wiring 9. The feature here is that the light receiving element has a structure in which drain regions having different conductivity types are connected to the active region of the thin film transistor. That is, as shown in FIG. 3, (a) n-channel thin film transistor is p
(B) In the case of a p-channel thin film transistor, by forming an n-type region (anode region), a pin-type solar cell as a light receiving element is formed between the drain region and the active region of the thin film transistor. A battery will be formed. However, TT and P in FIG.
−P line arrow direction is thin film transistor and pin respectively.
1 shows a configuration of a solar cell (gate electrode 3 is omitted here for convenience). As described above, the light receiving element of the present invention is an element sharing the thin film transistor having the amplifying function and the pin type solar cell having the light receiving function.

次に、本発明受光素子の製作の手順について、第3図
(a)の構造の場合を例として、第4図によって説明す
る。なお、図には各工程での平面図およびA′−A′線
矢視方向における断面図を示してある。まず、(a)に
示すように、半導体膜、例えば非晶質Si膜あるいは多結
晶Si膜あるいは単結晶Siからなる能動領域1のパタンを
透明絶縁性基板例えばガラス基板上に形成していた。次
に、(b)に示すように、ゲート絶縁膜2、次いでゲー
ト電極3のパタンを、スパッタ法あるいはCVD法によっ
て形成した。続いて、(c)に示すように、マスク6を
形成した後、リン(P)をイオン注入して伝導型がn型
であるソースA4およびドレインA5領域を形成、さらに、
マスク6を除去、マスク6′を形成した後、(d)に示
したように、ホウ素(B)をイオン注入して伝導型がp
型であるソースB7およびドレインB8領域を形成した。最
後に、マスク6′を除去した後、活性化アニールを行
い、さらに、外部と電気的に接続できるように金属配線
(例えば、Al配線)9を形成して、完成品(e)を得
た。
Next, the procedure of manufacturing the light receiving element of the present invention will be described with reference to FIG. 4 taking the case of the structure of FIG. 3A as an example. In the drawings, a plan view in each step and a cross-sectional view in the direction of arrows A'-A 'are shown. First, as shown in (a), the pattern of the active region 1 made of a semiconductor film, for example, an amorphous Si film, a polycrystalline Si film, or single-crystal Si is formed on a transparent insulating substrate, for example, a glass substrate. Next, as shown in (b), the pattern of the gate insulating film 2 and then the pattern of the gate electrode 3 were formed by sputtering or CVD. Subsequently, as shown in (c), after forming a mask 6, phosphorus (P) is ion-implanted to form a source A4 and a drain A5 region having n-type conductivity.
After the mask 6 is removed and a mask 6 'is formed, as shown in (d), boron (B) is ion-implanted and the conductivity type becomes p.
Source B7 and drain B8 regions, which are molds, were formed. Lastly, after removing the mask 6 ', activation annealing is performed, and further, a metal wiring (for example, an Al wiring) 9 is formed so as to be electrically connected to the outside, thereby obtaining a finished product (e). .

以上の説明からわかるように、上記工程はLSI等の製
作に用いられているCMOS素子の製作工程に準拠したもの
であり、本発明受光素子の作成に当って新たなプロセス
技術を開発する必要はない。
As can be seen from the above description, the above process is based on the CMOS device manufacturing process used for manufacturing LSIs and the like, and it is not necessary to develop a new process technology in manufacturing the light receiving device of the present invention. Absent.

なお、上記の説明においては一組のソース/ドレイン
領域を有する薄膜トランジスタを用いた場合について説
明したが、複数組のソース/ドレイン領域を設けた薄膜
トランジスタを用いることもできる。
In the above description, the case where a thin film transistor having one set of source / drain regions is used is described; however, a thin film transistor provided with a plurality of sets of source / drain regions can be used.

[発明の効果] 以上述べてきたように、受光素子を本発明構成の受光
素子とすること、すなわち受光部であるpin型太陽電池
のi層と増幅部である薄膜トランジスタの能動領域とを
共有化した構成の受光素子とすることによって、従来技
術の有していた課題を解決して、高密度に集積させ、し
かも感度を著しく向上させた受光素子を提供することが
できた。
[Effects of the Invention] As described above, the light receiving element is configured as the light receiving element of the present invention, that is, the i-layer of the pin type solar cell as the light receiving section and the active region of the thin film transistor as the amplification section are shared. With the light receiving element having the above-described configuration, the problems of the prior art can be solved, and a light receiving element that is integrated at a high density and has significantly improved sensitivity can be provided.

さらに、イメージセンサーや光空間変調器等に本発明
の受光素子を用いた場合、通常のCMOS製作工程を利用す
ることができるため、周辺回路と受光部とを同一基板上
に容易に作成でき、かつ、LSIの微細加工技術を用いる
ことによって、受光素子の微細化も容易に達成すること
ができるという利点もある。
Furthermore, when the light receiving element of the present invention is used for an image sensor, a spatial light modulator, and the like, a normal CMOS manufacturing process can be used, so that the peripheral circuit and the light receiving unit can be easily formed on the same substrate, In addition, there is an advantage that miniaturization of the light receiving element can be easily achieved by using the fine processing technology of the LSI.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明受光素子の概略構成を示す平面図、第2
図は第1図A−A線矢視方向断面図、第3図は薄膜トラ
ンジスタの構成例を示す図で、(a)はn型薄膜トラン
ジスタ、(b)はp型薄膜トランジスタ、第4図(a)
〜(e)は本発明受光素子の製作の手順を説明するため
の図、第5図は本発明受光素子の動作原理を説明するた
めの図、第6図は従来の光薄膜トランジスタの概略構成
を示す断面図である。 1……能動領域、1′……n型能動領域、 1″……p型能動領域、2……ゲート絶縁膜、 3……ゲート電極、4……ソースA、 5……ドレインA、6、6′……マスク、 7……アノード、8……カソード 9……Al配線。
FIG. 1 is a plan view showing a schematic configuration of a light receiving element of the present invention, and FIG.
FIG. 1 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a view showing a configuration example of a thin film transistor. (A) is an n-type thin film transistor, (b) is a p-type thin film transistor, and FIG.
5A to 5E are diagrams for explaining the procedure of manufacturing the light receiving element of the present invention, FIG. 5 is a diagram for explaining the operation principle of the light receiving element of the present invention, and FIG. 6 is a schematic configuration of a conventional optical thin film transistor. FIG. Reference Signs List 1 ... active region, 1 '... n-type active region, 1 "... p-type active region, 2 ... gate insulating film, 3 ... gate electrode, 4 ... source A, 5 ... drain A, 6 , 6 '... mask, 7 ... anode, 8 ... cathode 9 ... Al wiring.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−143572(JP,A) 特開 昭63−250171(JP,A) 特開 昭59−22360(JP,A) 特開 昭61−7663(JP,A) 特開 昭63−224373(JP,A) 実開 平1−83352(JP,U) 実開 昭63−59353(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 31/10 H01L 27/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-143572 (JP, A) JP-A-63-250171 (JP, A) JP-A-59-22360 (JP, A) JP-A-61- 7663 (JP, A) JP-A-63-224373 (JP, A) JP-A-1-83352 (JP, U) JP-A-63-59353 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 31/10 H01L 27/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】能動領域にソース/ドレイン領域を伴い、
該ソース/ドレイン領域のうち一部のソース/ドレイン
領域がp型の伝導性を有し、残余のソース/ドレイン領
域がn型の伝導性を有する薄膜トランジスタを用いる受
光素子において、上記p型伝導性のソース/ドレイン領
域と上記n型伝導性のソース/ドレイン領域と上記能動
領域とのpin接合により構成される太陽電池と薄膜トラ
ンジスタのゲート電極とを電気的に接続して、増幅機能
を有する薄膜トランジスタと受光機能を有するpin型太
陽電池とを共有した構成からなることを特徴とする受光
素子。
An active region having a source / drain region;
In a light-receiving element using a thin film transistor in which part of the source / drain regions has p-type conductivity and the remaining source / drain regions have n-type conductivity, A solar cell formed by a pin junction between the source / drain region of the n-type conductive source / drain region and the active region and a gate electrode of the thin film transistor, and a thin film transistor having an amplifying function. A light-receiving element having a configuration sharing a pin-type solar cell having a light-receiving function.
JP2273345A 1990-10-15 1990-10-15 Light receiving element Expired - Fee Related JP2963182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273345A JP2963182B2 (en) 1990-10-15 1990-10-15 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273345A JP2963182B2 (en) 1990-10-15 1990-10-15 Light receiving element

Publications (2)

Publication Number Publication Date
JPH04150068A JPH04150068A (en) 1992-05-22
JP2963182B2 true JP2963182B2 (en) 1999-10-12

Family

ID=17526606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273345A Expired - Fee Related JP2963182B2 (en) 1990-10-15 1990-10-15 Light receiving element

Country Status (1)

Country Link
JP (1) JP2963182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545583B2 (en) * 1996-12-26 2004-07-21 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof
JP5285365B2 (en) * 2007-12-25 2013-09-11 株式会社ジャパンディスプレイウェスト Light receiving element and display device
MY174333A (en) * 2015-10-14 2020-04-08 Hoon Kim Image sensor with solar cell function

Also Published As

Publication number Publication date
JPH04150068A (en) 1992-05-22

Similar Documents

Publication Publication Date Title
US4598305A (en) Depletion mode thin film semiconductor photodetectors
US7633042B2 (en) Pixel sensor cell having a pinning layer surrounding collection well regions for collecting electrons and holes
US7453131B2 (en) Photodiode detector and associated readout circuitry
JP3467858B2 (en) Photoelectric conversion element
JP4258875B2 (en) Photoelectric conversion element and photoelectric conversion device
CN108417590A (en) NMOS type grid body interconnects photodetector and preparation method thereof
US20070272995A1 (en) Photosensitive device
GB2261323A (en) Infrared imaging device
JP2963182B2 (en) Light receiving element
JPS6194382A (en) 2-terminal thin film photodetector
CN108493202B (en) UTBB photoelectric detection element and device suitable for submicron pixels
US20070296006A1 (en) Structure for pixel sensor cell that collects electrons and holes
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
JPS6064467A (en) Solid-state image sensor
JP3441405B2 (en) Semiconductor infrared detector
Yamazaki et al. A solid-state imager joined to an avalanche multiplier film with micro-bump electrodes
JP3391697B2 (en) Solid-state imaging device
JPH01261863A (en) Solid-state image sensing device
CN114613795A (en) Novel pixel structure for infrared image sensor and manufacturing method
KR20000010196A (en) Photo-diod with image sensor
TW202306134A (en) Image detector
JPH02102573A (en) Contact type image sensor
JPS58188968A (en) Solid-state image pickup device
JPS6181086A (en) Solid-state image pickup device
JPS6373557A (en) Solid-state image sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees