JP2928494B2 - Rare earth sintered magnet and manufacturing method thereof - Google Patents

Rare earth sintered magnet and manufacturing method thereof

Info

Publication number
JP2928494B2
JP2928494B2 JP9141227A JP14122797A JP2928494B2 JP 2928494 B2 JP2928494 B2 JP 2928494B2 JP 9141227 A JP9141227 A JP 9141227A JP 14122797 A JP14122797 A JP 14122797A JP 2928494 B2 JP2928494 B2 JP 2928494B2
Authority
JP
Japan
Prior art keywords
sintered magnet
rare earth
magnet
sintered
earth sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9141227A
Other languages
Japanese (ja)
Other versions
JPH1055914A (en
Inventor
一憲 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9141227A priority Critical patent/JP2928494B2/en
Publication of JPH1055914A publication Critical patent/JPH1055914A/en
Application granted granted Critical
Publication of JP2928494B2 publication Critical patent/JP2928494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結した接合部を
有する一体物の異方性希土類焼結磁石であって、磁気異
方性化条件に拘束されることなく所望の方向に高い磁気
特性を有する磁気異方性化領域を拡大形成可能な希土類
焼結磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a one-piece anisotropic rare earth sintered magnet having a sintered joint, and a high magnetic anisotropy in a desired direction without being restricted by magnetic anisotropy conditions. The present invention relates to a rare-earth sintered magnet capable of enlarging and forming a magnetically anisotropic region having characteristics and a method of manufacturing the same.

【0002】[0002]

【従来の技術】最近、自由電子レーザやシンクロトロン
放射光装置の加速器等に、永久磁石を多数連続配置して
使用している。この種の加速器等では、電子ビームの通
路を挟んで両側に複数個の永久磁石を連続配置させ、各
永久磁石は隣接するものと対向するものとが互いに逆極
となるように構成され、通過する電子ビームに横方向の
周期的磁場を付与させるものがある。あるいは、パーマ
ロイ等と組み合わせた所謂ハイブリッドタイプと呼ばれ
る形式のものもある。
2. Description of the Related Art Recently, many permanent magnets are continuously arranged and used in an accelerator of a free electron laser or a synchrotron radiation device. In this type of accelerator, etc., a plurality of permanent magnets are continuously arranged on both sides of the electron beam path, and each permanent magnet is configured such that the adjacent magnets and the opposed magnets have opposite polarities. In some cases, a transverse periodic magnetic field is applied to a rotating electron beam. Alternatively, there is a so-called hybrid type combined with permalloy or the like.

【0003】加速器等に使用する永久磁石は磁気的特性
の高いものが要求され、Sm−Co系やNd−Fe−B
系の異方性希土類磁石が使用されている。これら永久磁
石は一般的に磁石材料粉末を成形した後、焼結して作製
されるが、金型で成形する場合に、金型の外周に磁場印
加手段を設けて成形体に異方性を付与させている。しか
し、成形体の全体に有効に磁場を作用させるためには、
成形体をあまり大きくすることができず、永久磁石を大
きな形状に作製することができなかった。
[0003] Permanent magnets used in accelerators and the like are required to have high magnetic properties, and are required to be Sm-Co based or Nd-Fe-B.
A series of anisotropic rare earth magnets are used. These permanent magnets are generally produced by molding a magnet material powder and then sintering.When molding with a mold, a magnetic field applying means is provided on the outer periphery of the mold to make the molded body anisotropic. Has been granted. However, in order to effectively apply a magnetic field to the entire molded body,
The molded body could not be made too large, and the permanent magnet could not be manufactured in a large shape.

【0004】また、最近ではより大きな能力の加速器等
が望まれており、そのような場合、大型の永久磁石が必
要であるので、複数個のブロック磁石およびを接着剤を
用いて組立接合し大きな形状にして使用している。
In recent years, accelerators and the like having a higher capacity have been demanded. In such a case, a large permanent magnet is required. Shaped and used.

【0005】[0005]

【発明が解決しようとする課題】すなわち、従来の希土
類焼結磁石においては、磁気異方性化可能寸法が成形工
程で採用している磁場印加手段により制限されてしまう
という問題がある。
That is, in the conventional rare earth sintered magnet, there is a problem that the dimension that can be made magnetically anisotropic is limited by the magnetic field applying means employed in the molding process.

【0006】また、従来、異方性永久磁石を大きな形状
に作製する場合、複数個のブロック磁石を接着剤で接着
しているので次のような問題があった。
Conventionally, when an anisotropic permanent magnet is manufactured in a large shape, a plurality of block magnets are bonded with an adhesive, so that the following problem arises.

【0007】複数個のブロック磁石を接着剤で接着して
なる大型の異方性永久磁石が自由電子レーザ等に組込ま
れたときには、高真空および紫外線の存在する環境に置
かれるので、使用した接着剤が紫外線による光化学反応
によりその高分子構造が破壊されて劣化することが多
い。
When a large anisotropic permanent magnet formed by bonding a plurality of block magnets with an adhesive is incorporated in a free electron laser or the like, it is placed in an environment where high vacuum and ultraviolet light exist. In many cases, the polymer structure of the agent is degraded by destruction of its polymer structure by a photochemical reaction caused by ultraviolet rays.

【0008】さらに、複数の異方性ブロック磁石および
接着剤を用いて大型の異方性永久磁石形状に組立て接合
する作業は、煩雑であって、作業時間を多く要し、均一
な品質のものを供給することが困難なことが多い。
Further, the work of assembling and joining into a large anisotropic permanent magnet shape using a plurality of anisotropic block magnets and an adhesive is complicated, requires a lot of work time, and has a uniform quality. Is often difficult to supply.

【0009】したがって、本発明の目的は、焼結した接
合部を有する一体焼結物であって、磁気異方性化手段に
拘束されることなく十分に高い磁気特性の磁気異方性化
領域を所望の方向に拡大形成可能な希土類焼結磁石およ
びその製造方法を提供することにある。
Therefore, an object of the present invention is to provide a monolithic sintered body having a sintered joint, and a magnetic anisotropic region having sufficiently high magnetic characteristics without being restricted by magnetic anisotropy means. Is to provide a rare earth sintered magnet that can be formed in a desired direction and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記課題を達成した本発
明は、磁気異方性を付与するために設けられた金型内の
キャビティ部に希土類焼結磁石用合金粉末を充填し、磁
場の存在下で予備成形して磁気異方性を付与した予備成
形体となし、次に前記予備成形体の複数を整列後予備成
形圧力よりも高い圧力で成形して集合成形体を得、前記
集合成形体を焼結することにより前記予備成形体同士の
継目に相当する部分が焼結して接合されていることを特
徴とする希土類焼結磁石の製造方法である。
According to the present invention, which has achieved the above objects, the present invention provides a method of filling a cavity in a mold provided for imparting magnetic anisotropy with alloy powder for a rare earth sintered magnet, and forming a magnetic field. Preforming in the presence and forming a preformed body having magnetic anisotropy, and then forming a plurality of the preformed bodies at a pressure higher than the preforming pressure after alignment to obtain an aggregated molded body, A method for manufacturing a rare earth sintered magnet, characterized in that a portion corresponding to a joint between the preforms is sintered and joined by sintering the compact.

【0011】また、本発明は、SmCo5 系焼結磁石、
Sm2 Co17系焼結磁石、(Sm、Ce)2 Co17系焼
結磁石、主成分がNdまたはNdとDyおよびFeとB
とからなり必要に応じてCoを含む希土類−Fe−B系
焼結磁石のうちのいずれか1種からなる希土類焼結磁石
であって、磁気異方性を有し、かつ焼結した接合部を有
することを特徴とする希土類焼結磁石である。
Further, the present invention provides a SmCo 5 sintered magnet,
Sm 2 Co 17 based sintered magnet, (Sm, Ce) 2 Co 17 based sintered magnet, Nd or Nd and Dy as main components, Fe and B
A rare earth-sintered magnet made of any one of the rare earth-Fe-B based sintered magnets containing Co as needed, having a magnetic anisotropy and being sintered. It is a rare earth sintered magnet characterized by having.

【0012】本発明によれば、十分に磁気異方性化され
た予備成形体を基本単位として、複数の予備成形体を整
列後、予備成形圧力よりも高い圧力を加圧し、続いて焼
結することにより前記予備成形体同士の継目に相当する
部分もまた焼結して接合される。よって、磁場印加手段
等の異方性化条件に拘束されることなく所望の方向に磁
気異方性化領域を拡大形成することができる。
According to the present invention, a plurality of preforms are aligned using a preform which is sufficiently magnetically anisotropic as a basic unit, and then a pressure higher than the preforming pressure is applied. By doing so, the portion corresponding to the joint between the preforms is also sintered and joined. Therefore, the magnetic anisotropy region can be enlarged in a desired direction without being restricted by the anisotropy condition such as a magnetic field applying unit.

【0013】このため、本発明によれば、より巨大なも
のを得ることが可能でその最短辺が5mm以上であり、
かつ重量が500g以上の大型の異方性希土類焼結磁石
を提供することができる。ここで、希土類焼結磁石の最
短辺を5mm以上にしたのは、それ未満では強度が弱
く、取り扱いにくいためである。また、500g以上と
したのは、従来技術では異方性希土類焼結磁石の一体物
の製造が不可能となる限界がその辺だからである。さら
に、永久磁石重量を1000g以上、1500g以上、
2000g以上、あるいは2500g以上とすることも
できる。
For this reason, according to the present invention, it is possible to obtain a larger one, the shortest side of which is 5 mm or more,
In addition, a large anisotropic rare earth sintered magnet having a weight of 500 g or more can be provided. Here, the reason why the shortest side of the rare earth sintered magnet is set to 5 mm or more is that if it is less than 5 mm, the strength is weak and it is difficult to handle. Further, the reason why the weight is set to 500 g or more is that there is a limit near the point where it is impossible to produce an integrated anisotropic rare earth sintered magnet in the related art. Further, the weight of the permanent magnet is 1000 g or more, 1500 g or more,
2000 g or more, or 2500 g or more.

【0014】本発明において、成形型と成形体の少なく
とも1辺にテーパを設けておけば、型抜きが容易にな
る。
In the present invention, if at least one side of the molding die and the molded body is provided with a taper, the die can be easily removed.

【0015】本発明は前記キャビティ部を通過する印加
磁場方向に対して垂直方向に加圧成形する場合に好適で
ある。
The present invention is suitable for the case where pressure molding is performed in a direction perpendicular to the direction of an applied magnetic field passing through the cavity.

【0016】本発明により製作された大型磁石は機械的
な継目を有しておらず、焼結した接合部を有する。よっ
て、磁気特性が全体的に略均一であり、例えば、自由電
子レーザの加速器に使用した場合、耐久性能のよい加速
器となる。
The large magnets made according to the present invention have no mechanical seams and have sintered joints. Therefore, the magnetic properties are substantially uniform as a whole, and for example, when used in a free electron laser accelerator, the accelerator has good durability performance.

【0017】本発明の希土類焼結磁石としては、例え
ば、SmCo5 系、Sm2 Co17系、(Sm、Ce)2
Co17系、Nd−Fe−B系、(Nd、Dy)−Fe−
B系のうちのいずれか1種が挙げられる。これら希土類
焼結磁石は例えば放射線の存在する環境における用途に
対して、放射線照射に起因する磁束密度の低下の懸念が
少なく、磁束量の安定化のため着磁後50ないし120
℃程度で加熱後室温まで冷却して評価される不可逆減磁
率が小さく、キュリー温度も高く、かつ高保磁力を有す
ることから、パーミアンス係数的にも有利である。
As the rare earth sintered magnet of the present invention, for example, SmCo 5 system, Sm 2 Co 17 system, (Sm, Ce) 2
Co 17 system, Nd-Fe-B system, (Nd, Dy) -Fe-
Any one of the B type is mentioned. For rare earth sintered magnets, for example, in applications where radiation is present, there is little concern about a decrease in magnetic flux density due to radiation irradiation.
Since the irreversible demagnetization rate, which is evaluated by heating to about ° C and then cooling to room temperature, is small, the Curie temperature is high, and the coercive force is high, it is advantageous in terms of permeance coefficient.

【0018】パーミアンス係数Pは異方性永久磁石の磁
気特性を表わす減磁曲線上の動作点における磁束密度B
dと保磁力Hdとの比Bd/Hdによって算出され、P
=Bd/μo Hd[μo は磁気定数(真空透磁率)]で
表わされる。
The permeance coefficient P is the magnetic flux density B at the operating point on the demagnetization curve representing the magnetic properties of the anisotropic permanent magnet.
d and the coercive force Hd are calculated by the ratio Bd / Hd, and P
= Bd / μo Hd [μo is a magnetic constant (vacuum magnetic permeability)].

【0019】[0019]

【発明の実施の形態】以下、本発明を実施例により説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments.

【0020】(実施例) Sm38重量%、残部CoからなるSmCo5 系焼結磁
石用合金をアーク溶解により作製し、インゴットに鋳造
した。得られたインゴットをスタンプミルによって35
メッシュ通過まで粗粉砕し、ボールミルで3時間微粉砕
した。
Example An SmCo 5 -based sintered magnet alloy comprising 38% by weight of Sm and the balance Co was produced by arc melting and cast into an ingot. The obtained ingot was put into a stamp mill for 35.
The mixture was coarsely pulverized until passing through a mesh, and finely pulverized by a ball mill for 3 hours.

【0021】次に得られた微粉末を横断面23mm×2
4mmの成形空間を有する成形型のキャビティに充填
し、異方性を付与するため略水平方向に8000Oeの
実質的な平行磁場を印加した状態で垂直方向に0.7t
/cm2 の圧力を加えて予備成形し、高さ76mmのブ
ロックを形成した。
Next, the obtained fine powder was cross-section 23 mm × 2
A cavity of a mold having a molding space of 4 mm is filled, and 0.7 t in a vertical direction in a state where a substantial parallel magnetic field of 8000 Oe is applied in a substantially horizontal direction to impart anisotropy.
/ Cm 2 was applied to perform preforming to form a block having a height of 76 mm.

【0022】予備成形したブロックを成形金型から抜き
出すに際し、リフティング付の油圧プレスを使用して、
上パンチを3/100mm上方にリフティングさせ、ブ
ロックに割れその他の欠陥が生じないようにした。これ
は、予備成形で加える圧力が極めて小さいため、ブロッ
クの密度および強度が不十分となり、型抜き時に上パン
チの重量が加わるとブロックが崩壊するおそれがあるた
めである。
When extracting the preformed block from the molding die, a hydraulic press with lifting is used.
The upper punch was lifted 3/100 mm upward to prevent cracks and other defects from occurring in the block. This is because the pressure applied in the preforming is extremely small, so that the density and strength of the block become insufficient, and if the weight of the upper punch is added during die cutting, the block may collapse.

【0023】次に上記で作製した予備成形ブロックの磁
気異方性化方向を略平行に一致させて5個連続整列さ
せ、厚さ0.1mmの塩化ビニール袋内に密封した。こ
の場合、袋内の空気を除去し、5個のブロックの各隣接
面を密着させ、この集合体に冷間静水圧プレスにより4
t/cm2 の圧力を加えて集合成形体を得た。この集合
成形体の上下表面を0.8mm平面研削により研削した
結果、隣接するブロック間には継目が認められなかっ
た。
Next, the preformed blocks prepared above were aligned in a direction substantially parallel to the direction of magnetic anisotropy, and five blocks were continuously aligned and sealed in a vinyl chloride bag having a thickness of 0.1 mm. In this case, the air in the bag was removed, and the adjacent surfaces of the five blocks were brought into close contact with each other.
A pressure of t / cm 2 was applied to obtain a collective molded body. As a result of grinding the upper and lower surfaces of the collective molded body by 0.8 mm surface grinding, no joint was observed between adjacent blocks.

【0024】これは、予備成形により得たブロックの密
度が低いためブロックの表面粗さが比較的大であり、冷
間静水圧を加えた場合に隣接するブロック間において、
微粉体相互のカミ込みが発生し、粉末粒子単位で相互拡
散するものと推定される。
This is because the density of the block obtained by the preforming is low, so that the surface roughness of the block is relatively large, and when cold isostatic pressure is applied, between the adjacent blocks,
It is presumed that the fine powders are entangled with each other and diffused in units of powder particles.

【0025】上記集合成形体をArガス雰囲気中におい
て1150℃×1時間の焼結を行ない、次に同雰囲気中
において950℃×1.5時間保持後、1.3℃/分の
徐冷をし、さらに790℃においてArガス気流中冷却
により熱処理をした。
The above aggregated body is sintered at 1150 ° C. × 1 hour in an Ar gas atmosphere, then held at 950 ° C. × 1.5 hour in the same atmosphere, and then slowly cooled at 1.3 ° C./min. Then, heat treatment was performed at 790 ° C. by cooling in an Ar gas stream.

【0026】上記熱処理を行なう場合、集合成形体は収
縮し、その支持面に対して集合成形体が円滑に収縮でき
ないと割れやそりが生じてしまう。そこで、支持面上に
多数の球状の回転体を置き、その上に集合成形体を配置
した。回転体は焼結中に変性しないように十分な耐熱性
が必要であり、かつ焼結中集合成形体と反応しないもの
でなければならない。このため、アルミナ等のセラミッ
ク製にして表面にBNをコーティングしたものを使用し
た。
In the case of performing the above heat treatment, the aggregated molded product shrinks, and if the aggregated molded product cannot shrink smoothly with respect to its support surface, cracks or warpage will occur. Therefore, a large number of spherical rotating bodies were placed on the support surface, and the collectively formed body was placed thereon. The rotating body must have sufficient heat resistance so as not to be denatured during sintering, and must not react with the collectively formed body during sintering. Therefore, a material made of ceramic such as alumina and coated with BN on the surface was used.

【0027】また回転体の大きさは直径18mmのもの
を使用し、多数の回転体の平面占有率は約70%となる
ようにした。そして、熱処理で集合成形体が収縮変形す
るときに、それを支持している回転体が回転するので収
縮が円滑に行なわれ、焼結体に割れやそりが生じること
は少ない。なお、集合成形体を支持している回転体を回
転させることなく、回転体上を集合成形体が滑べるよう
にしてもよい。
The size of the rotator was 18 mm in diameter, and the occupancy of many rotators in the plane was about 70%. Then, when the collective molded body is shrunk and deformed by the heat treatment, the rotating body that supports it is rotated, so that the shrinkage is performed smoothly, and the sintered body is less likely to crack or warp. In addition, you may enable it to slide on a rotating body, without rotating the rotating body which supports a collective molded body.

【0028】比較例として前記磁石粉末を3.5t/c
2 で成形した成形体を、前記の条件で焼結して得たブ
ロック磁石を平面研削し、その複数のものを接着剤で接
着した。この比較例の接着磁石と前記実施例の焼結磁石
とを、25kOeのパルス磁場で着磁した。そして各永
久磁石の着磁面から0.5mmの間隔を保持して、ジー
メンス製FA−22EプローブによってN極側の表面磁
束密度を測定した。前記実施例の焼結磁石はN極側の全
表面に亘って2500G以上の値を示し、予備成形ブロ
ックの継目相当部分は焼結して一体化していた。
As a comparative example, the magnet powder was 3.5 t / c.
A block magnet obtained by sintering a molded body molded in m 2 under the above conditions was subjected to surface grinding, and a plurality of the magnets were bonded with an adhesive. The adhesive magnet of this comparative example and the sintered magnet of the above example were magnetized with a pulse magnetic field of 25 kOe. Then, while maintaining an interval of 0.5 mm from the magnetized surface of each permanent magnet, the surface magnetic flux density on the N pole side was measured by a Siemens FA-22E probe. The sintered magnet of the above example exhibited a value of 2500 G or more over the entire surface on the N-pole side, and the portion corresponding to the joint of the preformed block was sintered and integrated.

【0029】一方、前記比較例のものは、接着部に対応
した表面磁束密度の低下が認められた。
On the other hand, in the case of the comparative example, a decrease in the surface magnetic flux density corresponding to the bonded portion was observed.

【0030】前記実施例のSmCo5 系異方性焼結磁石
の代りに、Sm2 Co17系とNd−Fe−B系の異方性
焼結磁石の組成を選択して、前記実施例とほぼ同様にし
て一体物の異方性焼結磁石を作製したところ、各予備成
形ブロック同士の継目相当部分はやはり粉末冶金的に一
体に結合し焼結されていた。
Instead of the SmCo 5 -based anisotropic sintered magnet of the above embodiment, the composition of the Sm 2 Co 17 -based and Nd—Fe—B-based anisotropic sintered magnet was selected. When an integrated anisotropic sintered magnet was produced in substantially the same manner, the portion corresponding to the joint between the preformed blocks was also integrally joined and sintered by powder metallurgy.

【0031】前記実施例では、予備成形ブロックを5個
用いて焼結接合した場合を示したが、それより多数の予
備成形体を用いることにより、より大型で大重量の異方
性を有する希土類焼結磁石を作製することができる。
In the above-mentioned embodiment, the case where five preformed blocks are used for sintering is shown. However, by using a larger number of preformed blocks, a rare earth element having a larger size and a larger anisotropy can be obtained. A sintered magnet can be made.

【0032】また、本発明の希土類焼結磁石は直方体に
限るものではなく、平面を有する任意形状に形成するこ
とも可能である。
Further, the rare earth sintered magnet of the present invention is not limited to a rectangular parallelepiped, but may be formed in any shape having a flat surface.

【0033】さらに全ての予備成形ブロックの磁気異方
性化方向を同方向となるようにして接合させる必要はな
く、例えば自由電子レーザの加速器のように磁気異方性
化方向を順次変更して接合させた大型磁石にも、本発明
を適用できる。
Further, it is not necessary to join all the preformed blocks so that the directions of magnetic anisotropy are the same. For example, the directions of magnetic anisotropy are sequentially changed like an accelerator of a free electron laser. The present invention can be applied to a joined large magnet.

【0034】[0034]

【発明の効果】本発明によれば、従来のように接着剤を
用いることなく、十分に磁気異方性化された成形体を基
本単位としてその成形体同士を密着した状態に保持し、
続いて焼結することにより成形体同士の継目部分を粉末
冶金的に一体化した希土類焼結磁石を得ることができ
る。よって、磁気異方性化条件に拘束されることなく所
望の方向に磁気異方性化領域を拡大形成できるという極
めて有用なものである。
According to the present invention, a molded article having a sufficiently magnetic anisotropy is used as a basic unit to keep the molded articles in close contact with each other without using an adhesive as in the prior art.
Subsequently, by sintering, it is possible to obtain a rare earth sintered magnet in which the joint portions of the formed bodies are integrated by powder metallurgy. Therefore, it is extremely useful that the magnetic anisotropy region can be enlarged and formed in a desired direction without being restricted by the magnetic anisotropy condition.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気異方性を付与するために設けられた
金型内のキャビティ部に希土類焼結磁石用合金粉末を充
填し、磁場の存在下で予備成形して磁気異方性を付与し
た予備成形体となし、次に前記予備成形体の複数を整列
予備成形圧力よりも高い圧力で成形して集合成形体を
得、前記集合成形体を焼結することにより前記予備成形
体同士の継目に相当する部分が焼結して接合されている
ことを特徴とする希土類焼結磁石の製造方法。
A cavity in a mold provided for imparting magnetic anisotropy is filled with alloy powder for a rare earth sintered magnet and preformed in the presence of a magnetic field to impart magnetic anisotropy. And then align a plurality of the preforms
Molded at a pressure higher than the rear preforming pressure to obtain an aggregate formed body, said preformed by sintering said set shaped body
A method for manufacturing a rare earth sintered magnet , characterized in that a portion corresponding to a joint between the bodies is sintered and joined .
【請求項2】 SmCo 5 系焼結磁石、Sm 2 Co 17
焼結磁石、(Sm、Ce) 2 Co 17 系焼結磁石、主成分
がNdまたはNdとDyおよびFeとBとからなり必要
に応じてCoを含む希土類−Fe−B系焼結磁石のうち
のいずれか1種からなる希土類焼結磁石であって、磁気
異方性を有し、かつ焼結した接合部を有することを特徴
とする希土類焼結磁石。
2. SmCo 5 based sintered magnet, Sm 2 Co 17 based magnet
Sintered magnet, (Sm, Ce) 2 Co 17 based sintered magnet, main component
Is composed of Nd or Nd and Dy and Fe and B
Of rare earth-Fe-B based sintered magnets containing Co according to
A rare earth sintered magnet comprising any one of the above,
Features anisotropic and sintered joints
Rare earth sintered magnet.
JP9141227A 1997-05-30 1997-05-30 Rare earth sintered magnet and manufacturing method thereof Expired - Lifetime JP2928494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9141227A JP2928494B2 (en) 1997-05-30 1997-05-30 Rare earth sintered magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9141227A JP2928494B2 (en) 1997-05-30 1997-05-30 Rare earth sintered magnet and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3466789A Division JPH02214105A (en) 1989-02-14 1989-02-14 Rare-earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH1055914A JPH1055914A (en) 1998-02-24
JP2928494B2 true JP2928494B2 (en) 1999-08-03

Family

ID=15287080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9141227A Expired - Lifetime JP2928494B2 (en) 1997-05-30 1997-05-30 Rare earth sintered magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2928494B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI250536B (en) 2003-02-27 2006-03-01 Mitsubishi Electric Corp Ring-shaped magnet and manufacturing method thereof
WO2008075616A1 (en) * 2006-12-20 2008-06-26 Sagami Chemical Metal Co., Ltd. Running gear utilizing permanent magnet
CN101847486B (en) * 2010-06-16 2012-05-02 内蒙古科技大学 Permanent magnetic system of medical nuclear magnetic resonance imager
JP6379625B2 (en) * 2014-04-21 2018-08-29 日産自動車株式会社 Method for manufacturing a split magnet
CN113764148B (en) * 2020-06-01 2024-10-01 有研稀土高技术有限公司 Anisotropic bonded magnet and preparation method thereof

Also Published As

Publication number Publication date
JPH1055914A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
EP0125752B1 (en) Bonded rare earth-iron magnets
US4902361A (en) Bonded rare earth-iron magnets
JP6330907B2 (en) Method for producing rare earth magnet compact
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
JP2928494B2 (en) Rare earth sintered magnet and manufacturing method thereof
EP0355741B1 (en) Highly oriented permanent magnet and process for producing the same
EP0573224A1 (en) Solid resin-coated magnet powder for producing anisotropic bonded magnet and method of producing the same
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH02214105A (en) Rare-earth permanent magnet
JP2922535B2 (en) Highly oriented rare earth sintered magnet and method for producing the same
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JP2006019386A (en) Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JP2006019385A (en) Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, compacting apparatus in magnetic field, and radial anisotropic ring magnet
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH07240307A (en) Nitrogen-bearing rare-earth permanent magnet and its manufacture
JPH11256203A (en) Forming die for high orientation rare earth metal sintered magnet
JP2860910B2 (en) Manufacturing method of rare earth permanent magnet
JPH04323803A (en) Method of manufacturing rare-earth magnet
JPH0410504A (en) Heat treatment method for rare-earth permanent magnet
JPS6184342A (en) Manufacture of rare earth metal-base magnet
JPH08279406A (en) R-tm-b permanent magnet and manufacture thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10