JPH0410504A - Heat treatment method for rare-earth permanent magnet - Google Patents

Heat treatment method for rare-earth permanent magnet

Info

Publication number
JPH0410504A
JPH0410504A JP2112675A JP11267590A JPH0410504A JP H0410504 A JPH0410504 A JP H0410504A JP 2112675 A JP2112675 A JP 2112675A JP 11267590 A JP11267590 A JP 11267590A JP H0410504 A JPH0410504 A JP H0410504A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
cooling
magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112675A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Michihisa Shimizu
清水 径久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2112675A priority Critical patent/JPH0410504A/en
Publication of JPH0410504A publication Critical patent/JPH0410504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To integrally manufacture a large-sized permanent magnet of 200g or more in weight without generation of cracks and chippings by a method wherein a reheating operation is conducted on the sintered body to the temperature lower by 300 deg.C from the sintering temperature, and after this state has been maintained for 10 minutes or longer, the sintered body is cooled down to the temperature which is lower by 500 deg.C or less from the sintering temperature at the cooling rate of 0.03 to 3 deg.C/min., and after it has been maintained for one hour or longer, it is gradually cooled down to about 400 deg.C or lower at the average cooling rate of 5 to 50 deg.C/min. CONSTITUTION:A sintered magnet body is cooled down to the desired low temperature which is lower by 300 deg.C than the sintering temperature, and after it has been maintained at that temperature for a specific period, the sintered magnet body is cooled down in a furnace under a protective atmosphere. The sintered body is maintained at the above-mentioned temperature for one hour or longer, desirably four hours or longer at the point of time when the sintered body is cooled down to about 500 deg.C or longer from the sintering temperature. Subsequently, it is taken out under protective atmosphere and placed in a stationary state until it is cooled down to about 300 deg.C or lower at the average cooling speed of 5 to 50 deg.C/min.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はSmCo5系異方性希土類永久磁石の製造方法
に関するものであり、より詳しくは、ウィグラ、アンデ
ュレータ等の加速機関連部材、VCM及びリニヤアクチ
ュエータ等の駆動源、自動車及び航空機用電装品、コン
ピュータ及びOA関連機器の回転機並びにスピーカ等の
音響機器に用いられる大型形状のものを含む異方性Sm
CoB系永久磁石の製造法に係るものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing SmCo5 anisotropic rare earth permanent magnets, and more specifically, to accelerator-related members such as wigglers and undulators, VCMs and Anisotropic Sm including large-sized ones used in drive sources such as linear actuators, electrical components for automobiles and aircraft, rotating machines for computers and OA-related equipment, and audio equipment such as speakers.
This relates to a method of manufacturing a CoB permanent magnet.

〔従来の技術〕[Conventional technology]

異方性希土類永久磁石はSm−Co系のものが発表され
て以来、物性的研究の進展と相俟って磁気的特性が年々
向上し、近年発表されたNd−Fe−B系のものも含め
てこれらが適用される機器、装置の小形化、高性能化に
貢献すると共に、更に新分野の開拓に寄与している。こ
の異方性希土類永久磁石を製造する場合には、粉末冶金
的手段によるのが通常であり、SmCo5型の希土類コ
バルト磁石を例にとると、まず化学量論組成であるSm
33.79重量%Co66.21重量%よりも若干S重
量の多いSm34重量%残部Coから成る合金を、例え
ばAr雰囲気中で高周波溶解し、鋳造手段を経て得たイ
ンゴットを保護雰囲気中において、ボールミル、振動ミ
ル等の手段により微粉砕を行う。このようにして得た数
μmの微粉末を磁場中に配設した成型金型により加圧形
成し、この成形体を1100゜C以上の保護雰囲気下で
焼結する。次いで焼結体には、5olid State
Communications、  8 pp139−
141 (1970)に公知の如く熱処理を施す。熱処
理は、焼結温度ないしは焼結温度よりも略300゜C以
内の低温下で一般には一定時間保持したのち、焼結温度
よりも略500″C以内の低温度にまで炉冷を行ったの
ち、略300゜C以下にまで急冷を行う必要がある。S
mCo s系希土類永久磁石では、前記急冷処理を施さ
ない場合には、上記の学術論文に明記されているように
、いわゆるWes tendorp効果によって保磁力
iHcが著しく低下し、SmCo5系磁石の特長である
高保磁力を有する永久磁石とはなり得す実用に供するこ
とが困難となる。
Since Sm-Co based anisotropic rare earth permanent magnets were announced, their magnetic properties have improved year by year along with advances in physical property research, and Nd-Fe-B based permanent magnets have been announced in recent years. In addition to contributing to the miniaturization and higher performance of equipment and devices to which they are applied, they are also contributing to the development of new fields. When manufacturing this anisotropic rare earth permanent magnet, powder metallurgy is usually used. Taking a SmCo5 type rare earth cobalt magnet as an example, first, the stoichiometric composition of Sm
An alloy consisting of 33.79% by weight Co, 66.21% by weight S and 34% by weight the balance Co is high-frequency melted in, for example, an Ar atmosphere, and the ingot obtained through casting means is cast in a ball mill in a protected atmosphere. , finely pulverize by means such as a vibrating mill. The fine powder of several μm thus obtained is formed under pressure using a mold placed in a magnetic field, and this compact is sintered in a protective atmosphere at 1100° C. or higher. Next, the sintered body is coated with 5 solid state
Communications, 8 pp139-
141 (1970). Heat treatment is generally carried out at the sintering temperature or at a low temperature within approximately 300°C below the sintering temperature for a certain period of time, followed by furnace cooling to a temperature within approximately 500°C below the sintering temperature. , it is necessary to perform rapid cooling to approximately 300°C or less.S
In mCos rare earth permanent magnets, if the quenching treatment is not performed, the coercive force iHc decreases significantly due to the so-called West tendorp effect, as specified in the above academic paper, which is a feature of SmCo5 magnets. This makes it difficult to put this into practical use as a permanent magnet with a high coercive force.

従って、SmCo5系磁石の熱処理には、油中急冷、流
動床急冷、気体による衝風急冷、著しく小型形状のもの
では水冷などの急冷処理により−es tendorp
磁果によるiHCの低下を回避することによって高保磁
力の永久磁石を得てきたのである。ところが、一方では
SmCo系永久磁石は、これを構成する結晶粒子のC軸
方向に対して、6.6 X 10−’/”C,C軸に垂
直な方向に対して12.6 X 10−6/”Cの熱膨
張係数を有しているため、急冷時において永久磁石の内
部と表面とに著しい温度差が生じる場合には速く冷却さ
れる磁石表面に引っ張り応力が誘起され、これによって
、磁石に亀裂や割れが発生する。従って亀裂等の発生し
ない磁石を得るには寸法、形状に制限があり、大型のS
mCO5系磁石を得るためには、複数個の磁石小片を接
着等の手段により接合する必要があった。
Therefore, for heat treatment of SmCo5 magnets, quenching in oil, fluidized bed quenching, blast quenching with gas, and for extremely small magnets, quenching treatments such as water cooling can be used.
Permanent magnets with high coercive force have been obtained by avoiding the reduction in iHC due to magnetic defects. However, on the other hand, the SmCo-based permanent magnet has a magnetization of 6.6 x 10-'/''C with respect to the C-axis direction of the crystal grains constituting it, and 12.6 x 10-'/''C with respect to the direction perpendicular to the C-axis. Since it has a coefficient of thermal expansion of 6/''C, if there is a significant temperature difference between the inside and the surface of the permanent magnet during rapid cooling, tensile stress will be induced on the surface of the magnet, which is cooled quickly. Cracks and cracks occur in the magnet. Therefore, in order to obtain a magnet that does not generate cracks, there are restrictions on size and shape, and large S
In order to obtain an mCO5-based magnet, it was necessary to join a plurality of small magnet pieces together by means such as adhesion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のように、SmCo s系の異方性希土類コバルト
磁石は粉末冶金法でその殆どが製造されており、かつこ
の種の永久磁石に存する高磁気特性に起因して、永久磁
石の単位体積当りの磁束量が大であるため、従来の音響
機器、自動車用電装部品、コンピュータ及びOA関連部
品に使用する場合には、永久磁石を極力小型化するよう
に志向されてきた。
As mentioned above, SmCos-based anisotropic rare earth cobalt magnets are mostly produced by powder metallurgy, and due to the high magnetic properties of this type of permanent magnet, the per unit volume of permanent magnet Since the amount of magnetic flux is large, there has been an attempt to make permanent magnets as small as possible when used in conventional audio equipment, automotive electrical components, computers, and OA-related parts.

しかしながら、近年になってウィグラ、アンデュレータ
、高真空ポンプ等の加速器関連部品、サーボモータ等の
駆動源を含めて大型の希土類磁石についての要求が徐々
に高まっている。
However, in recent years, there has been a gradual increase in demand for large rare earth magnets, including accelerator-related parts such as wigglers, undulators, high vacuum pumps, and drive sources such as servo motors.

特に、SmCo5系永久磁石は、保磁力が大であり、キ
ュリー点も710゜Cと高(、耐熱性及び耐蝕性に優れ
ているため、特に熱安定性に優れた特性が必須である自
動車及び航空機用電装部品及び加速器関連の分野におい
て大型で一体のSmCo5系永久磁石が要求されている
In particular, SmCo5 permanent magnets have a large coercive force and a high Curie point of 710°C (and have excellent heat resistance and corrosion resistance, so they are used especially in automobiles and other applications where excellent thermal stability is essential. Large, integrated SmCo5 permanent magnets are required in the fields of aircraft electrical components and accelerators.

これらの要求に対処するため、熱処理に急冷を必要とす
る従来のCo量65.8〜66.0重量%の組成につい
て、l0XIOXIO120x20x20.25X25
X25、及び3o×30X30mm(=は異方性方向を
示す)の立方体の焼結体を作製し、油中急冷による熱処
理を行い、亀裂発生の有無について確認を行ったた。各
寸法の試料数はいずれも10個であったが、20x20
x20■以下の試料では亀裂の発生はゼロであったが、
25X25X25胚の試料では10個中2個に亀裂が発
注し、30×30×3orRrnでは全数にキレツが発
生した。
In order to meet these demands, 10XIOXIO120x20x20.25X25
Cubic sintered bodies with dimensions of x25 x 30 x 30 mm (= indicates the anisotropic direction) were prepared, heat treated by quenching in oil, and the presence or absence of cracks was confirmed. The number of samples for each dimension was 10, but 20x20
There was no cracking in samples smaller than x20■, but
In the sample of 25×25×25 embryos, cracks occurred in 2 out of 10 embryos, and in all samples of 30×30×3 orRrn, cracks occurred.

以上の検討結果から、接着剤を介さないで大型1体のS
mCO516石を作製するためには、従来のWes t
endorp効果が顕著な現行の組成では製作不可能で
あることが明らかとなった。したがって、解決しなけれ
ばならない課題は、Wes tendorp効果が住す
るにしても、その反応速度が比較的緩やがな組成領域の
探索と、該組成領域に合致する熱処理条件を確立するこ
とによってのみ大型一体のSmCo5磁石を提供するこ
とができることから、これらの組成領域並びに熱処理条
件を見い出すことにある。
From the above study results, it is possible to create a single large S without using adhesive.
In order to produce mCO516 stone, conventional West
It has become clear that the current composition, which has a pronounced endorp effect, cannot be manufactured. Therefore, the problem that must be solved is only by searching for a compositional region where the reaction rate is relatively slow and establishing heat treatment conditions that match the compositional region, even if the West tendorp effect exists. Since it is possible to provide a large integrated SmCo5 magnet, the objective is to find out the composition range and heat treatment conditions for these magnets.

特にSmCo5系磁石を前記の各分野に適用するために
は、保磁力iHcが130000c以上、より好ましく
は150000c以上を出現させ、且つ亀裂の発生を防
止せしめる程度の徐冷処理を含む熱処理条件を、目標と
する組成領域に対応して確立することが最も重要な解決
すべき課題である。
In particular, in order to apply SmCo5-based magnets to the above-mentioned fields, heat treatment conditions including slow cooling treatment to a degree that makes coercive force iHc appear at 130,000 c or more, more preferably 150,000 c or more and prevent the occurrence of cracks are required. The most important issue to be solved is to establish a target composition range.

[課題を解決するための手段] 本発明において解決されるべき課題は、上記Wes t
endorp効果を抑制し、比較的冷却速度の緩やかな
条件下で大きな保磁力を有する大型の5IIICO8系
磁石の熱処理方法を提供することにある。
[Means for Solving the Problem] The problem to be solved in the present invention is the above-mentioned West
The object of the present invention is to provide a method for heat treating a large 5III CO8 magnet that suppresses the endorp effect and has a large coercive force under conditions of a relatively slow cooling rate.

上記の従来技術に存在する問題点を解決するために、組
成領域として、Rで示される少く共1種類の希土類元素
とMで示されるCO又はCOとpe、Ni。
In order to solve the problems existing in the above-mentioned prior art, the composition region is at least one kind of rare earth element represented by R and CO or CO and pe, Ni represented by M.

Cu群の少く共1種類の元素の組み合せとから、RMs
及びRJ?相を焼結生成物内に生じさせるような組成を
有するR及びMから成る焼結生成物において、Mの比率
が重量部で63〜65重量%の範囲を選定し、この組成
範囲内で減磁界に対する耐力を確保するため、上記のi
Hcが130000c以上より好ましくは150000
c以上の条件に加えて、焼結及び熱処理後の磁気特性の
B−H曲線上における保磁力をbHcとしたとき、第2
象限における4πI−H曲線上の変曲点での保磁力の絶
対値が1.3 ×bHcの絶対値よりも大である希土類
磁石の製造法において、焼結温度よりも300゜C以内
の低温度にまで再昇温を行い、前記温度で10分間以上
保持した後、0.03〜b りも500゜C以内の低温度にまで炉冷を行い、該温度
で1時間以上保持した後、平均冷却速度5〜50°(/
+++inで略400℃以下にまで徐冷することを特徴
とするものである。また、Mの比率が63〜65重量%
の範囲内の組成を有する焼結生成物を上記に記載の方法
で熱処理を施すにあたり、焼結温度よりも500゜C以
内の低温度にまで炉冷を行い、該温度で1時間以上保持
した後、油冷却、流動床冷却もしくは衝風冷却等の方法
により急冷することを特徴とするものである。
From the combination of at least one type of element in the Cu group, RMs
and R.J.? In a sintered product consisting of R and M having a composition such that a phase is generated in the sintered product, a proportion of M is selected in the range of 63 to 65% by weight in parts by weight, and the proportion of M is reduced within this composition range. In order to ensure strength against magnetic fields, the above i
Hc is 130,000c or more, preferably 150,000
In addition to the above conditions, when bHc is the coercive force on the B-H curve of the magnetic properties after sintering and heat treatment, the second
In a method for producing rare earth magnets in which the absolute value of the coercive force at the inflection point on the 4πI-H curve in the quadrant is greater than the absolute value of 1.3 × bHc, After re-heating to a temperature of 0.03 to 500°C and holding at that temperature for 10 minutes or more, cooling the furnace to a low temperature of 0.03 to 500°C and holding at that temperature for 1 hour or more, Average cooling rate 5~50° (/
It is characterized in that it is slowly cooled to approximately 400°C or less at +++in. In addition, the ratio of M is 63 to 65% by weight
When heat-treating a sintered product having a composition within the range of by the method described above, the furnace was cooled to a temperature within 500°C below the sintering temperature and maintained at that temperature for 1 hour or more. After that, it is characterized by rapid cooling by a method such as oil cooling, fluidized bed cooling, or blast cooling.

本発明の熱処理方法で得られる上記組成範囲の永久磁石
は特に重量200g以上の大型形状の磁石に適用して亀
裂、割れの発生を伴うことなく一体の形状で製造できる
という優れた特徴を有する。
The permanent magnet having the above-mentioned composition range obtained by the heat treatment method of the present invention has an excellent feature that it can be particularly applied to large-sized magnets weighing 200 g or more and can be manufactured in one piece without cracking or cracking.

また、上記の組成及び形状を有する磁石を製造する手段
として、Mの比率が63〜65重量%の範囲にある原料
粉末を異方性を付与するために設けられた金型内を通過
する外部磁界に対して平行又は垂直方向に加圧成形して
一体の角又は円板状、リング状ないしは円筒状成形体と
することを特徴とするものである。
In addition, as a means for manufacturing a magnet having the above composition and shape, raw material powder having an M ratio in the range of 63 to 65% by weight is passed through a mold provided to impart anisotropy to the outside. It is characterized in that it is press-molded in a direction parallel or perpendicular to a magnetic field to form an integral square, disk-shaped, ring-shaped or cylindrical molded body.

また、用途によっては、異方性を付与するために設けら
れた金型内を通過する平行な外部磁界方向に対して、垂
直方向に加圧成形して一体の直方体ないしは板状成形体
となし、以降の工程において円板状、リング状ないしは
円筒状に加工を施してもよい。
Depending on the application, it may also be press-formed in a direction perpendicular to the direction of a parallel external magnetic field passing through a mold provided to impart anisotropy to form an integral rectangular parallelepiped or plate-shaped molded product. In the subsequent steps, it may be processed into a disk shape, a ring shape, or a cylindrical shape.

本発明の熱処理方法においてMの比率を63〜65wt
%に限定した理由は次の通りである。すなわち、本発明
の磁石は、焼結温度においてRM5金属間化合物の単一
固体相からRMSよりもR含有率の大なる固体である第
2のR−Mに至る範囲に亘る相で存在する。この状態か
ら、後述する本発明の時効処理すなわち熱処理において
、上記の固溶体相からRM、の保磁力1)1cを増加せ
しむる方向にRzMtとなる第2相が析出する。第1図
はSm−Co系の状態図であるが、この図から明らかな
ように、焼結温度においてSmCo 、相で代表される
固溶体相から、本発明の熱処理によって析出を生じさせ
るためには、その組成はRMS金属金属間化合物置相域
を規定するR側の境界線に近い組成でなければならない
。R側に近い境界線の組成においては、本発明の熱処理
法を施すことによって、Wes tendorp効果の
影響が小となり、緩やかな冷却処理によっても大なるi
Hcを出現せしめることができる。しかしながら、熱処
理時において、析出相が多過ぎる場合には強磁性を担う
115相の比率が減少するためiHcは大であっても残
留磁束密度Brが低下することから析出量を好ましい程
度に制御する必要があり、これがMの比率を上記の範囲
に限定した理由である。
In the heat treatment method of the present invention, the ratio of M is 63 to 65 wt.
The reason for limiting it to % is as follows. That is, the magnet of the present invention exists in a phase ranging from a single solid phase of RM5 intermetallic compound to a second RM, which is a solid with a higher R content than RMS, at the sintering temperature. From this state, in the aging treatment or heat treatment of the present invention to be described later, a second phase, which becomes RzMt, precipitates from the solid solution phase in a direction that increases the coercive force 1) 1c of RM. FIG. 1 is a phase diagram of the Sm-Co system, and as is clear from this diagram, in order to cause precipitation by the heat treatment of the present invention from a solid solution phase represented by the SmCo phase at the sintering temperature, , its composition must be close to the R-side boundary line that defines the RMS intermetallic compound phase region. In the composition of the boundary line close to the R side, by applying the heat treatment method of the present invention, the influence of the West tendorp effect is reduced, and even with gradual cooling treatment, the influence of the West tendorp effect is reduced.
Hc can be made to appear. However, during heat treatment, if there are too many precipitated phases, the ratio of the 115 phase responsible for ferromagnetism decreases, so even if iHc is large, the residual magnetic flux density Br decreases, so the amount of precipitated phases must be controlled to a preferable level. This is the reason why the ratio of M is limited to the above range.

次に本発明で用いる熱処理条件について詳細に述べる。Next, the heat treatment conditions used in the present invention will be described in detail.

従来技術では、前記のように焼結温度よりも500゜C
以内の低温度にまで炉冷を行い、急冷開始温度に到達し
た時点でただちに急冷処理を施すのが通常である。本発
明の熱処理法では、焼結温度よりも略300℃以内の所
望する低温度にまで磁石焼結体を到達せしめ一定時間保
持した後、0.0〜3゜C/min程度の極めて緩やか
な冷却速度で、焼結温度よりも略500゜C以内の低温
度にまで保護雰囲気下において炉中冷却を行う。焼結温
度よりも略500゜C以内の低温度にまで到達した時点
で1時間以上、より好ましくは4時間以上到達温度での
保持を行う。その後保護雰囲気下に取り出し略300゜
C以下になるまで静置する。本熱処理方法により、10
00 g以上の角又は円板状、リング状ないしは円筒状
のRM、系磁石を亀裂の発生を伴うことなく、しかも前
記の第2象限における4π1−H曲線上の変曲点の絶対
値が1.3 ×bHcの絶対値よりも大である磁気特性
を有する状態で製造することができる。
In the conventional technology, as mentioned above, the temperature is 500°C higher than the sintering temperature.
Usually, the furnace is cooled to a low temperature within 100 mL, and the quenching process is performed immediately when the quenching start temperature is reached. In the heat treatment method of the present invention, the magnet sintered body is brought to a desired low temperature within about 300°C below the sintering temperature, held for a certain period of time, and then heated at a very gentle rate of about 0.0 to 3°C/min. Furnace cooling is performed in a protective atmosphere at a cooling rate to a temperature within approximately 500°C below the sintering temperature. Once the temperature reaches a temperature approximately 500°C lower than the sintering temperature, the temperature is maintained for at least 1 hour, preferably for at least 4 hours. Thereafter, it was taken out under a protective atmosphere and left to stand until the temperature reached approximately 300°C or less. By this heat treatment method, 10
00 g or more in the form of an angular, disc, ring or cylindrical RM, without cracking, and in addition, the absolute value of the inflection point on the 4π1-H curve in the second quadrant is 1. .3 × bHc.

勿論、小型形状の磁石では、従来技術と同様に、上記の
1時間以上、より好ましくは4時間以上の保持の後、油
中急冷等の急冷処理を施しても上記と同様の磁気特性を
有する永久磁石を得ることができる。
Of course, small-sized magnets have the same magnetic properties as described above even if they are subjected to quenching treatment such as quenching in oil after being held for at least 1 hour, more preferably at least 4 hours, as in the prior art. Permanent magnets can be obtained.

しかしながら、本発明の熱処理は、本発明の組成範囲に
対して好適な結果を得るものであり、従来のCO量が6
5.8〜66.0重量%の5IIICo5系磁石に本熱
処理を適用した場合には、著しい残留磁束密度Brの低
下を来たすことを付言しておく。
However, the heat treatment of the present invention obtains favorable results for the composition range of the present invention, and the conventional CO amount is 6.
It should be noted that when this heat treatment is applied to a 5.8 to 66.0% by weight 5IIICo5 magnet, the residual magnetic flux density Br is significantly reduced.

次に本発明の熱処理方法において、B−H曲線上の保磁
力をbHcとしたとき、第2象限における4πI−H曲
線上の変曲点での保磁力の絶対値が1.3 ×bHcよ
りも大であることを規定した理由について詳述する。
Next, in the heat treatment method of the present invention, when the coercive force on the B-H curve is bHc, the absolute value of the coercive force at the inflection point on the 4πI-H curve in the second quadrant is 1.3 × bHc. We will explain in detail the reason why it is stipulated that the

自動車用回転機などの駆動源はいずれも減磁界の条件下
で使用されており、ウィグラ、アンデュレータ及びMR
Iなどの用途を取り挙げても磁気回路を構成するために
は、必ず組み立て工程が不可欠であるが、磁石を順次組
み込んで行く場合、すでに回路内に組み込まれた磁石か
らの磁界によって組み込み過程にある磁石に減磁が生じ
結果として必要とする磁束量が確保できないという問題
点があった。第2図は、アンデュレータの組立て途中の
図であり、図中■はパーメンダ、パーメンジュールなど
の磁極を示し、■及び■は永久磁石を示す。また電子ビ
ームは■の方向から入射され、電子ビームはアンアユレ
ータ中を蛇行することにより放射光を発生するがアンデ
ュレータ用磁石には厳しい減磁耐力が要求される。第3
図は、第2図に示すアンデュレータの組み立て方法を模
式図で示したものである。図中■は組み立て途中の状況
を示しており、■はパーメンダー又はパーメンジュール
などの磁極を示す。■は組み込み途中の永久磁石#lを
示し、■は対称基準面である。第3図の組み立て作業に
おいて、磁石#1が最隣接の磁石#2及び2番目の隣接
する磁石との間で生じる磁束線の流れの状態をコンピュ
ータにリシミユレーションした結果が第4図である。な
お第3図は、中心線■の上方のみを示している。図がら
明らかなように、組み立て途中の磁石#1と同極の2番
目の隣接磁石#3(図中点線で示す)に対して大きく減
磁界が作用していることがわかる。
Drive sources such as automobile rotating machines are all used under demagnetized field conditions, such as wigglers, undulators, and MRs.
Even when using applications such as I, an assembly process is essential to construct a magnetic circuit, but when magnets are sequentially incorporated, the assembly process is affected by the magnetic field from the magnets that have already been incorporated into the circuit. There was a problem in that some magnets were demagnetized and as a result, the required amount of magnetic flux could not be secured. FIG. 2 is a diagram showing the undulator in the middle of being assembled. In the figure, ■ indicates a magnetic pole such as permenda or permendur, and ■ and ■ indicate a permanent magnet. Further, the electron beam is incident from the direction (2), and generates synchrotron radiation by meandering through the undurator, but the undulator magnet is required to have severe demagnetization resistance. Third
The figure schematically shows a method of assembling the undulator shown in FIG. 2. In the figure, ■ indicates a state in the middle of assembly, and ■ indicates a magnetic pole such as permender or permendur. ■ indicates the permanent magnet #l that is being assembled, and ■ is the symmetry reference plane. Figure 4 shows the result of resimulating on a computer the state of the flow of magnetic flux lines that occurs between magnet #1 and the nearest adjacent magnet #2 and the second adjacent magnet during the assembly process shown in Figure 3. . Note that FIG. 3 shows only the area above the center line (■). As is clear from the figure, it can be seen that a large demagnetizing field acts on the second adjacent magnet #3 (indicated by a dotted line in the figure) having the same polarity as the magnet #1 that is currently being assembled.

この減磁界(逆磁場)の最大値を■を原点とした最終組
み込み位置からの距離に対してプロットしたものが第5
図である。図で■、■及び[相]はそれぞれ#1.#2
及び#3の磁石を示す。このときの永久磁石のBrは9
000Gの場合であり、第5図から、最大の減磁界は2
5000eであることがゎがる。
The maximum value of this demagnetizing field (reverse magnetic field) is plotted against the distance from the final installation position with ■ as the origin.
It is a diagram. In the figure, ■, ■, and [phase] are #1, respectively. #2
and #3 magnet are shown. The Br of the permanent magnet at this time is 9
000G, and from Figure 5, the maximum demagnetizing field is 2
I love that it is 5000e.

これらの関係から磁石のパーミアンスを考慮すると、磁
石のB−H曲線上の保磁力bHcに対して要求される減
磁耐力は1.2 ×bHcより好ましくは1、3 ×b
Hcが算出され、4πI−H曲線の変曲点(肩)の位置
が1.3×bHc以上でであれば、ウィグラ、アンデュ
レータ以外の駆動源等にも充分に通用できる永久磁石を
得ることができる。
Considering the permeance of the magnet from these relationships, the demagnetization resistance required for the coercive force bHc on the B-H curve of the magnet is 1.2 × bHc, preferably 1.3 × b
If Hc is calculated and the position of the inflection point (shoulder) of the 4πI-H curve is 1.3×bHc or more, a permanent magnet can be obtained that can be used sufficiently for drive sources other than wigglers and undulators. I can do it.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例I Co量が62.50〜65.80重量%、Co量の重量
間隔は0.25〜0.30重量%、残部Smから成る永
久磁石合金をアルゴン雰囲気下において高周波溶解によ
り作製し、インゴットに鋳造した。得られたインゴット
をジヨウクラッシャーによって略30メツシュ通過にま
で粗粉砕し、N2ガスを流体としたジェットミルにより
平均粒系5μm程度にまで微粉砕を行った。粒度はフィ
ッシャーのサブシーブサイザにより測定した。得られた
粉末を横断面153、5 N3−7.4mmの成形空間
を有する成形型内に充填し、水平方向に13kOeの平
行磁場を印加した状態でリフティングフローコントロー
ル付油圧プレスにより磁場に垂直方向に0.8 t/c
m”の圧力を印加して、153.5 X131.3 X
37.4閣(→は異方性化方向)の予備成形体を得た。
Example I A permanent magnet alloy consisting of a Co amount of 62.50 to 65.80% by weight, a weight interval of 0.25 to 0.30% by weight, and the balance Sm was produced by high frequency melting in an argon atmosphere, Cast into ingots. The obtained ingot was coarsely crushed to about 30 meshes using a Joe crusher, and finely crushed to an average particle diameter of about 5 μm using a jet mill using N2 gas as a fluid. Particle size was measured with a Fisher subsieve sizer. The obtained powder was filled into a mold having a molding space with a cross section of 153,5 N3-7.4 mm, and a parallel magnetic field of 13 kOe was applied in the horizontal direction, and a hydraulic press with a lifting flow control was used to press the powder in a direction perpendicular to the magnetic field. 0.8 t/c
Apply a pressure of 153.5 x 131.3 x
A preformed body of 37.4 degrees (→ is the direction of anisotropy) was obtained.

次いで、予備成形体をラテックス製のゴム型に入れ3 
t/cm”で静水圧プレス(CIF)成形を行った。こ
のとき成形体の寸法は141.5 X126.OX34
.3mmに収縮した。
Next, place the preform into a latex rubber mold 3
Isostatic pressing (CIF) was performed at a pressure of 141.5 x 126.0x34.
.. It shrunk to 3mm.

これらの直方体(板)形状の成形体1個当りの重量は略
3300 gであった。また、これらの成形体の一部を
組成毎にN2雰囲気下で1個当りの重量略1660 g
のリング状に加工を施した。これらの板状及びリング状
成形体を組成に応じて1150〜1210℃の温度範囲
でアルゴン雰囲気下で焼結を行った。
The weight of each of these rectangular parallelepiped (plate) shaped molded bodies was approximately 3300 g. In addition, some of these molded bodies were weighed approximately 1660 g per piece under N2 atmosphere for each composition.
Processed into a ring shape. These plate-shaped and ring-shaped molded bodies were sintered in an argon atmosphere at a temperature range of 1150 to 1210°C depending on the composition.

れ126 X103 X30鵬及びφ100 Xφ40
 X 30mm程度であった。−は磁化方向を示す。次
いでこれらの板状及びリング状焼結体を組成に応じて、
アルゴン雰囲気下で950〜1100゜C温度範囲で2
h保持した後、冷却速度0.1〜2℃/minで炉冷を
行い、組成に応じて690〜870゜Cの温度で12〜
24時間の保持を経た後、Ar保護雰囲気下で容積20
!の鉄製容器内に静値放冷を行った。室温にまで冷却し
た後、合計14組成の磁石について手研を行って外皮を
除去し亀裂の観察を行った結果亀裂の発生は認められな
かった。
Re126 X103 X30 and φ100 Xφ40
It was approximately 30 mm. - indicates the magnetization direction. Next, these plate-shaped and ring-shaped sintered bodies are processed according to their compositions.
2 in the temperature range of 950-1100°C under argon atmosphere
After holding for h, furnace cooling is performed at a cooling rate of 0.1 to 2°C/min, and the temperature is 12 to 12°C at a temperature of 690 to 870°C depending on the composition.
After 24 hours of holding, a volume of 20
! Static cooling was performed in a steel container. After cooling to room temperature, the magnets with a total of 14 compositions were hand-polished to remove their outer skins and observed for cracks. As a result, no cracks were observed.

これら磁石について磁気特性を評価するため、10×9
×8ffiのテストピースを切り出し、測定した結果を
第1表に示す。
In order to evaluate the magnetic properties of these magnets,
A test piece of ×8ffi was cut out and the measurement results are shown in Table 1.

表から明らかなようにCo含有率が低下し、析出相が多
くなる程バラツキはあると言えiHcは大となる傾向を
示すが、残留磁束密度Brは低下する。自動車用電装機
器他で用いられる磁気特性はBrで8000G以上、よ
り好ましくは8500G以上である。
As is clear from the table, as the Co content decreases and the number of precipitated phases increases, although it can be said that there is some variation, iHc tends to increase, but the residual magnetic flux density Br decreases. The magnetic properties used in automobile electrical equipment and the like are 8000G or more in Br, more preferably 8500G or more.

また、保磁力iHcは高い程望ましいわけであるが、上
記の1.3Xb)lcの関係を考慮するとき、実用面か
ら見て130000e以上、より好ましくは15000
0e以上である。表に示す組成の内、より好ましい磁気
特性Br≧8500G 、 iHc≧150000eを
満足する組成範囲はCo重量%で63.O〜65.0%
の範囲内にあり、各分野での仕様を十分に満足するもの
である。また、Co量65.80重量%の磁石は、iH
cが38000eにまで低下しており、本発明の熱処理
方法を従来組成の磁石に適用することは不適当であるこ
とを示している。
In addition, the higher the coercive force iHc is, the more desirable it is, but when considering the above relationship of 1.3
It is 0e or more. Among the compositions shown in the table, the composition range that satisfies the more preferable magnetic properties Br≧8500G and iHc≧150000e is 63% by weight of Co. O~65.0%
It is within the range of , and fully satisfies the specifications in each field. In addition, a magnet with a Co content of 65.80% by weight has an iH
c has decreased to 38,000e, indicating that it is inappropriate to apply the heat treatment method of the present invention to magnets with conventional compositions.

なお、板状磁石とリング状に加工した磁石の双方から切
り出したテストピースにより磁気特性の測定を行ったが
、形状及び重量からの本発明の熱処理方法に対する影響
は極めて少なくBrに有意差は無く、iHcが略330
0 gの大型板状磁石で100〜200G程度の低下が
第1表に示す略1660 gのリング形状の磁石から切
り出したテストピースに対して見い出されているに過ぎ
ず、本発明の熱処理方法が亀裂の発生を伴うことなく磁
気特性に優れた大型一体RMs希土類磁石の製造に極め
て有効であることがわかる。
The magnetic properties were measured using test pieces cut from both a plate-shaped magnet and a ring-shaped magnet, but the influence of the shape and weight on the heat treatment method of the present invention was extremely small, and there was no significant difference in Br. , iHc is approximately 330
A decrease of about 100 to 200 G in a large plate magnet weighing 0 g was only found for a test piece cut from a ring-shaped magnet weighing approximately 1660 g shown in Table 1, and the heat treatment method of the present invention It can be seen that this method is extremely effective in producing large integrated RMs rare earth magnets with excellent magnetic properties without the occurrence of cracks.

実施例2 Co量が66.0重量%残部Sraより成る従来組成の
永久磁石合金を実施例1と同様に処理して、φ100×
φ40 X 30 tmmのリング状焼結体を得た。次
いで本発明の熱処理方法により、1000゜Cで1時間
保持したのち、1゜C/minで800゜Cまで炉冷し
、800゛Cで24時間の保持を行った後、実施例1と
同様の冷却箱中に静置した。手研後の亀裂の発生は認め
られなかったが、実施例1と同様にして評価した磁気特
性は、Br=9360G  bHc=16500e  
1Hc=31600e (BH)max =8.7MG
00eであり、Brは高い値であるにもかかわらず、i
Hcは著しく低下しており、第1表のCo 65.80
重量%の結果と併せてWes tendorp効果によ
るiHcの低下が著しく大であり実用に供し難いことが
わかる。
Example 2 A permanent magnet alloy with a conventional composition having a Co content of 66.0% by weight and the balance Sra was treated in the same manner as in Example 1 to obtain a φ100×
A ring-shaped sintered body of φ40×30 tmm was obtained. Next, by the heat treatment method of the present invention, it was held at 1000°C for 1 hour, then furnace cooled at 1°C/min to 800°C, and after holding at 800°C for 24 hours, it was treated in the same manner as in Example 1. It was placed in a cooling box. Although no cracks were observed after manual polishing, the magnetic properties evaluated in the same manner as in Example 1 were as follows: Br=9360G bHc=16500e
1Hc=31600e (BH)max=8.7MG
00e, and although Br is a high value, i
Hc has decreased significantly, and Co 65.80 in Table 1
In combination with the weight % results, it can be seen that the decrease in iHc due to the West tendorp effect is so large that it is difficult to put it into practical use.

また、Co量66.0重量%の1010X9X8のテス
トピース及び第1表に示すCo 64.00重量%のφ
100×φ40 X 30 tmmのリング状焼結体と
を1050゜Cで1時間保持後、1.0゜C/minの
冷却速度で800゜Cまで炉冷し、800゜Cに到達し
た時点で油中急冷を施す従来の熱処理を行った結果、C
o 66.0重量%のテストピースでは、Br=925
0G  b)lc=88000e。
In addition, a 1010X9X8 test piece with a Co content of 66.0% by weight and a φ of 64.00% by weight of Co shown in Table 1 were also used.
After holding a ring-shaped sintered body of 100×φ40×30 tmm at 1050°C for 1 hour, it was furnace-cooled to 800°C at a cooling rate of 1.0°C/min, and when it reached 800°C, As a result of conventional heat treatment of quenching in oil, C.
o For the test piece with 66.0% by weight, Br=925
0G b) lc=88000e.

iHc =200000e、(BH)max=20.4
MGOeの優れた磁気特性が得られたが、Co64.0
0重量%の大型リング磁石は亀裂の発生を伴うだけでな
く、割れが発生してしまった。この破片から、lQX9
X8mmのテストピースを切り出して磁気特性を測定し
た結果、Br=7600G 、bHc=64400e 
、1Hc=163000e(BH)max−13,4M
GOeであり、特にBrの低下が著しいことが明らかと
なった。
iHc=200000e, (BH)max=20.4
Excellent magnetic properties of MGOe were obtained, but Co64.0
The large ring magnet containing 0% by weight was not only accompanied by cracks, but also cracked. From this fragment, lQX9
As a result of cutting out a test piece of X8mm and measuring its magnetic properties, Br=7600G, bHc=64400e
, 1Hc=163000e(BH)max-13,4M
GOe, and in particular, it became clear that the decrease in Br was remarkable.

本実施例から、従来組成のSmCo5系磁石では、従来
の熱処理方法が必要であり、本発明組成の5r6Co5
系磁石では、本発明の熱処理方法でなげでは高い磁気特
性を得ることができないこと、また、従来の組成及び熱
処理技術では、大型のSmCo5 [石を亀裂及び/又
は割れの発生なしには作製できないことがわかる。
This example shows that the conventional heat treatment method is necessary for the SmCo5 magnet with the conventional composition, and the 5r6Co5 magnet with the present composition.
In the case of magnets, high magnetic properties cannot be obtained with the heat treatment method of the present invention, and with conventional compositions and heat treatment techniques, large SmCo5 [stones] cannot be produced without cracking and/or cracking. I understand that.

実施例3 Go型重量63.50.64.25及び64.50%残
部Smから成る永久磁石合金を実施例1と同様にして、
インゴットとなし、実施例1と同様の手法により126
X53X30mm、重量路2000 gの焼結体を得た
。次いで本発明の熱処理方法による最初の保持温度T+
、炉冷速度Vt及び低温側での静置温度T2の条件を種
々変化させて処理を行い実施例1と同様にしてAr雰囲
気下で静置徐冷した。結果の1部を第2表に示す。表か
らT、が焼結温度よりも300゜C以上低下した試料階
9では保持力の低下が著しいが、この理由は第1図に示
す相図で析出が生じる均−固溶体域の下限ないしはそれ
以下の温度になるためiHcを増加させる2/7相の析
出が十分に生じないためであると言える。また炉冷速度
Vtが4”(/ll1in程度に大である試料に6では
、Br、 bHc共に低下しており、炉冷中の各温度に
おける析出が追随できないためと考えられる。一方、T
2が焼結温度よりも500゜C以上低下した試料Nα5
でも保磁力の低下が生じているが、この原因は穏やかで
あるとは言え−es tendorp効果が生じている
ためと解釈される。Vtが0.03゜C以下と極めて遅
い速度であっても充分な保磁力iHcを出現させること
は充分に可能であるが、工業的に見て熱処理に余りにも
多大の時間を費すことは得策ではない。第2表に示す以
上の結果から本発明の熱処理方法に通用できる温度範囲
として、高温側の保持温度T。
Example 3 A permanent magnet alloy consisting of a Go type weight of 63.50.64.25% and a balance of 64.50% Sm was prepared in the same manner as in Example 1.
126 ingots and pears using the same method as in Example 1.
A sintered body measuring 53 mm x 30 mm and weighing 2000 g was obtained. Next, the initial holding temperature T+ by the heat treatment method of the present invention
The treatment was carried out by variously changing the conditions of the furnace cooling rate Vt and the standing temperature T2 on the low temperature side, and the process was carried out in the same manner as in Example 1, and the samples were allowed to stand and slowly cool under an Ar atmosphere. A portion of the results are shown in Table 2. From the table, it can be seen that in sample 9, where T was lower than the sintering temperature by more than 300°C, the holding force decreased significantly. This can be said to be because the precipitation of the 2/7 phase that increases iHc does not occur sufficiently because the temperature is below. In addition, in sample 6 where the furnace cooling rate Vt was as high as 4" (/11in), both Br and bHc decreased, which is thought to be because the precipitation at each temperature during furnace cooling could not be followed. On the other hand, T
Sample Nα5 where 2 was lower than the sintering temperature by 500°C or more
However, a decrease in coercive force occurs, but this is interpreted to be due to the occurrence of an -es tendorp effect, although it is mild. Although it is quite possible to generate a sufficient coercive force iHc even at an extremely slow rate with Vt of 0.03°C or less, from an industrial perspective, it is important to avoid spending too much time on heat treatment. It's not a good idea. From the above results shown in Table 2, the holding temperature T on the high temperature side is the temperature range that can be used in the heat treatment method of the present invention.

は焼結温度よりも300℃以内の低温に、炉冷速度Vt
は0.03〜3゜Cに、また低温側保持温度T2は焼結
温度よりも500℃以内の低温にそれぞれ限定した。
is lower than the sintering temperature by 300°C, and the furnace cooling rate Vt
was limited to 0.03 to 3°C, and the low-temperature side holding temperature T2 was limited to a low temperature within 500°C below the sintering temperature.

また、Co量が63.00〜65.00重置%の組成範
囲内では、上記の限定範囲内で磁気特性的に優れた永久
磁石を製造することができる。なお、第2表に示すT1
及びT2の保持時間は、大型の磁石であるため、磁石表
面と内部との均熱化を図る目的でそれぞれ2時間及び1
5時間に設定して評価を行った。
Moreover, within the composition range in which the Co amount is 63.00 to 65.00% by weight, a permanent magnet with excellent magnetic properties can be manufactured within the above-mentioned limited range. In addition, T1 shown in Table 2
Since the magnets are large, the retention times for T2 and T2 are 2 hours and 1 hour, respectively, in order to equalize the heat between the magnet surface and the inside.
The evaluation was performed by setting the time to 5 hours.

実施例4 金属CeMM (ミツシュメタル)37重量%、Co6
2重量%、Fe、Ni、Cuの内の1種1重量%を選択
して秤量配合し、高周波溶解炉により、Ar保護雰囲気
下において、それぞれCeMM−Co−Fe、 CeM
M−Co−Ni及びCeMM−Co−Cu系の組成を有
する永久磁石合金を溶製し、インゴットに鋳造した。次
いで、実施例1と同様に粉砕して得た微粉末を、それぞ
れ、円板状及びリング状の成形空間を有する金型内に充
填し、10kOeの印加磁場と平行方向に1.2 t/
cm2の圧力を印加して、それぞれ、円板形状で略33
0g/個及びリング形状で略280 g /個の成形体
を得た。次いで、組成に応しNO□−1200”cの温
度範囲でアルゴン中での焼結を行い、それぞれ円板状で
略φ50 X 20 tmm及びリング状でφ50Xφ
2゜×20tIIIII+の焼結体を得た。形状は組成
によって略1mm程度のばらつきがある。これらのリン
グ磁石を実施例1とほぼ同様の条件下でAr中静置放冷
を含む熱処理を行った。第2表に磁気特性の測定結果を
示す。
Example 4 Metal CeMM (Mitshu Metal) 37% by weight, Co6
2% by weight, 1% by weight of one of Fe, Ni, and Cu were weighed and blended, and then CeMM-Co-Fe and CeM were melted in a high-frequency melting furnace under an Ar protective atmosphere, respectively.
Permanent magnet alloys having compositions of M-Co-Ni and CeMM-Co-Cu systems were melted and cast into ingots. Next, the fine powder obtained by pulverization in the same manner as in Example 1 was filled into molds having disk-shaped and ring-shaped molding spaces, respectively, and heated at 1.2 t/min in a direction parallel to an applied magnetic field of 10 kOe.
By applying a pressure of cm2, each plate has a disc shape of approximately 33 mm.
A ring-shaped molded product weighing approximately 280 g/piece was obtained. Next, sintering was carried out in argon at a temperature range of NO□-1200"c depending on the composition, and the disc shape was approximately φ50 x 20 tmm and the ring shape was φ50 x φ.
A sintered body of 2°×20tIII+ was obtained. The shape varies by about 1 mm depending on the composition. These ring magnets were heat-treated under substantially the same conditions as in Example 1, including cooling in Ar. Table 2 shows the measurement results of magnetic properties.

第3表 第3表の磁気特性は、第1表のそれに比較して低い値で
あるが、この理由は希土類元素が磁気特性も高いが価格
的にも高価であるSmの代りに、安価なCeを主体とす
る数種の希土類元素から成る合金CeMMを原料として
いるためであり、本実施例で述べているように厚さtが
201m[lと比較的厚みのある円板状、リング状ない
しは円筒状とすることでパーミアンス係数を高くすると
共に全磁束量を増加させることにより工業的に利用する
ことができる。また、本実施例での成形法は、外部磁界
の方向に対して平行に圧力を印加しているため実施例1
で述べた外部磁界に対して垂直方向に加圧成形する場合
に比較してBr値が略10%程度低下することになる。
The magnetic properties in Table 3 are lower than those in Table 1. The reason for this is that rare earth elements have good magnetic properties but are also expensive instead of Sm. This is because the raw material is CeMM, an alloy consisting of several kinds of rare earth elements, mainly Ce. Alternatively, by making it cylindrical, the permeance coefficient is increased and the total amount of magnetic flux is increased, so that it can be used industrially. In addition, since the molding method in this example applies pressure parallel to the direction of the external magnetic field, Example 1
Compared to the case of pressure forming in the direction perpendicular to the external magnetic field mentioned above, the Br value is reduced by about 10%.

得られた磁石は、実施例1と同様に手研後に外観検査を
行ったが亀裂及び割れの発生は認められなかった。
The obtained magnet was visually inspected after manual polishing in the same manner as in Example 1, but no cracks or cracks were observed.

一方、実施例1と同様にして、象、冷処理を含む従来の
熱処理を行った結果すべての試料に亀裂が発生した。
On the other hand, as in Example 1, cracks were generated in all samples as a result of conventional heat treatment including cold treatment.

実施例5 実施例1〜3では本発明の組成及び熱処理法を用いて、
大型の希土類磁石について具体的に述べてきた。しかし
ながら、本発明の組成系は、従来の小型形状の磁石にも
十分に適用が可能であり、熱処理についても、焼結温度
よりも500゜C以内の低温度で1時間以上、好ましく
は4時間以上保持した後、油中急冷等の急冷処理を施す
ことδこよっても磁石特性に優れた磁石を得ることがで
きる。
Example 5 In Examples 1 to 3, using the composition and heat treatment method of the present invention,
We have specifically discussed large rare earth magnets. However, the composition system of the present invention can be sufficiently applied to conventional small-sized magnets, and the heat treatment can be performed at a temperature lower than the sintering temperature by 500°C for 1 hour or more, preferably 4 hours. After the above holding, a magnet with excellent magnetic properties can also be obtained by performing a quenching treatment such as quenching in oil.

Co量が63.0〜65.0重量%、残部Smから成る
永久磁石合金を実施例1と同様に処理して、120X6
0X12mmの焼結体を得た。次いで、超音波による打
抜き加工により、該焼結体からφ10×φ5×12tl
IIIlのいわゆる経方向2極の円筒状磁石とした。磁
石1個当りの重量は略5gであった。
A permanent magnet alloy having a Co content of 63.0 to 65.0% by weight and the balance being Sm was treated in the same manner as in Example 1 to obtain a 120X6
A sintered body of 0×12 mm was obtained. Next, by punching using ultrasonic waves, the sintered body was cut into φ10×φ5×12tl.
A cylindrical magnet with two poles in the longitudinal direction was used. The weight of each magnet was approximately 5 g.

得られた該円筒状磁石を実施例1と同様にして、焼結温
度よりも略300゜C以内の低温すなわち950〜11
00゜Cで1h保持した後、0.1〜2゜C/minで
炉冷を行い、焼結温度よりも略500 ’C以内の低温
すなわち690〜870″Cで4時間以上保持した後油
中急冷を行った。冷却後、テストピースを切り出して測
定した磁気特性の測定結果を第4表に示す。
The obtained cylindrical magnet was heated in the same manner as in Example 1 at a low temperature of about 300°C or less than the sintering temperature, that is, 950°C to 11°C.
After holding at 00°C for 1 hour, furnace cooling was performed at 0.1 to 2°C/min, and the temperature was kept at a low temperature of about 500'C or less than the sintering temperature, that is, 690 to 870'C, for more than 4 hours. After cooling, the test piece was cut out and the magnetic properties measured are shown in Table 4.

表から明らかなように、本発明の磁石は、小型形状の場
合には、焼結温度よりも略500″C以内の低温で一定
時間以上保持した後、急冷処理を行った場合にも高い磁
気特性を得ることがわかる。しかしながら、本実施例で
得た円筒状磁石を実施例2に述べた従来の急冷を含む熱
処理を施した結果、実施例2の結果と同様にBrが74
00〜7800Gレベルの低い特性であった。
As is clear from the table, the magnet of the present invention, in the case of a small size, has high magnetism even when it is held at a low temperature approximately 500"C or less than the sintering temperature for a certain period of time and then rapidly cooled. However, as a result of subjecting the cylindrical magnet obtained in this example to the conventional heat treatment including rapid cooling described in Example 2, the Br was 74 as in the result of Example 2.
The characteristics were low at the 00-7800G level.

〔発明の効果〕〔Effect of the invention〕

本発明の熱処理方法は、以上記述のような構成及び作用
であるため、従来不可能であった200 g以上、更に
は1000 g以上の高い磁気特性を有するRM5系希
土類永久磁石を亀裂の発生を伴うことなく角及び円板状
、リング状ないしは円筒状の形状で提供でき、更に従来
の小型形状の磁石も同様に得ることができるという効果
がある。
Since the heat treatment method of the present invention has the structure and operation as described above, it is possible to treat RM5 rare earth permanent magnets with high magnetic properties of 200 g or more, even 1000 g or more, which was previously impossible, without causing cracks. It has the advantage that it can be provided in square, disc, ring, or cylindrical shapes without any accompanying magnets, and that conventional small-sized magnets can also be obtained in the same way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSm−Co系の相図、第2図は本発明に係る永
久磁石の用いられるウィグラの一例を示す図、第3図は
本発明に係るハイブリッド型アンデュレータの組立模式
図、第4図は本発明に係る第3図に示す組立時における
磁束の流れのシュミレーションを示す図、第5図は本発
明に係る磁石の組込み位置による反磁界の強度変化を示
す図である。
Fig. 1 is a phase diagram of the Sm-Co system, Fig. 2 is a diagram showing an example of a wiggler in which the permanent magnet according to the present invention is used, Fig. 3 is a schematic assembly diagram of a hybrid undulator according to the present invention, FIG. 4 is a diagram showing a simulation of the flow of magnetic flux during the assembly shown in FIG. 3 according to the present invention, and FIG. 5 is a diagram showing changes in the strength of the demagnetizing field depending on the installation position of the magnet according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)Rで示される少く共1種類の希土類元素とMで示
されるCo又はCoとFe,Ni,Cu群の少く共1種
の元素の組合せとからRM_5及びR_2M_7相を焼
結生成物内に生じさせるような組成を有するR及びMか
ら成る焼結生成物において、Mの比率が重量部で63%
から65.0%の範囲内にあり、焼結及び熱処理後の磁
気特性のB−H曲線上の第2象限における保磁力をbH
cとしたとき、第2象限における4πI−H曲線上の変
曲点の絶対値が1.3×bHcの絶対値よりも大である
希土類永久磁石の製造法であり、焼結温度よりも300
゜C以内の低温度にまで再昇温を行い、前記温度で10
分以上保持した後、0.03〜3℃/minの冷却速度
で焼結温度よりも500℃以内の低温度にまで炉冷を行
い、該温度で1時間以上保持した後、平均冷却速度5〜
50℃/minで略400℃以下まで徐冷することを特
徴とする希土類磁石の熱処理方法。
(1) The RM_5 and R_2M_7 phases are formed in the sintered product from a combination of at least one rare earth element represented by R and Co or Co and at least one element from the Fe, Ni, and Cu group, represented by M. In a sintered product consisting of R and M having a composition such that the proportion of M is 63% by weight
The coercive force in the second quadrant on the B-H curve of magnetic properties after sintering and heat treatment is bH.
This is a manufacturing method for rare earth permanent magnets in which the absolute value of the inflection point on the 4πI-H curve in the second quadrant is greater than the absolute value of 1.3×bHc, and the sintering temperature is 300
The temperature was raised again to a low temperature within °C, and the temperature was increased for 10
After holding for more than 1 hour, furnace cooling was performed at a cooling rate of 0.03 to 3°C/min to a lower temperature within 500°C than the sintering temperature, and after holding at this temperature for more than 1 hour, an average cooling rate of 5 ~
A method for heat treatment of rare earth magnets, characterized by slow cooling to approximately 400°C or less at a rate of 50°C/min.
(2)請求項(1)に記載の組成を有する焼結生成物を
請求項(1)に記載の方法で熱処理を施すにあたり、焼
結温度よりも500℃以内の低温度にまで炉冷を行い、
該温度で1時間以上保持した後、油冷却、流動床冷却も
しくは衝風冷却等の方法により急冷することを特徴とす
る希土類磁石の熱処理方法。
(2) When heat-treating the sintered product having the composition described in claim (1) by the method described in claim (1), furnace cooling is performed to a temperature lower than the sintering temperature by 500°C or less. conduct,
A method for heat treatment of rare earth magnets, which comprises maintaining the temperature at the temperature for one hour or more, and then rapidly cooling it by oil cooling, fluidized bed cooling, blast cooling, or the like.
JP2112675A 1990-04-27 1990-04-27 Heat treatment method for rare-earth permanent magnet Pending JPH0410504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112675A JPH0410504A (en) 1990-04-27 1990-04-27 Heat treatment method for rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112675A JPH0410504A (en) 1990-04-27 1990-04-27 Heat treatment method for rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH0410504A true JPH0410504A (en) 1992-01-14

Family

ID=14592664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112675A Pending JPH0410504A (en) 1990-04-27 1990-04-27 Heat treatment method for rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH0410504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310154A (en) * 2001-04-18 2002-10-23 Seiko Epson Corp Permanent magnet magnetic circuit and superconductive bearing device
WO2003040421A1 (en) * 2001-11-09 2003-05-15 Santoku Corporation ALLOY FOR Sm-Co BASED MAGNET, METHOD FOR PRODUCTION THEREOF, SINTERED MAGNET AND BONDED MAGNET

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310154A (en) * 2001-04-18 2002-10-23 Seiko Epson Corp Permanent magnet magnetic circuit and superconductive bearing device
WO2003040421A1 (en) * 2001-11-09 2003-05-15 Santoku Corporation ALLOY FOR Sm-Co BASED MAGNET, METHOD FOR PRODUCTION THEREOF, SINTERED MAGNET AND BONDED MAGNET
US7338566B2 (en) 2001-11-09 2008-03-04 Santoku Corporation Alloy for sm-co based magnet, method for production thereof, sintered magnet and bonded magnet

Similar Documents

Publication Publication Date Title
Brown et al. Developments in the processing and properties of NdFeb-type permanent magnets
JP2017523586A (en) Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
CN103971919B (en) A kind of sintering method of neodymium iron boron magnetic body
KR100524827B1 (en) Axial pressing method for improved magnetic alignment of rare earth magnet and apparatus thereof
JP2020191449A (en) Manufacturing method of sintered R2M17 magnet and R2M17 magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH0410504A (en) Heat treatment method for rare-earth permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
JPH08181009A (en) Permanent magnet and its manufacturing method
EP0460528B1 (en) Rare earth permanent magnet, method of heat treatment of same, and magnet body
Mukai et al. New method of hot rolling for fabricating anisotropic Pr‐Fe‐B‐based magnets
JPH0294603A (en) Rolled anisotropic rare earth magnet and manufacture thereof
JPH04143221A (en) Production of permanent magnet
JPS62203303A (en) Cast rare earth element-iron system permanent magnet
JPH0410505A (en) Heat treatment method for rare-earth permanent magnet
JPH07240307A (en) Nitrogen-bearing rare-earth permanent magnet and its manufacture
JPH048923B2 (en)
Popov et al. Microstructure and magnetic properties of R-Fe-B-Cu (R= Pr, Nd) alloys deformed by equal-channel angular pressing and subsequent hot upsetting
JPS62119903A (en) Manufacture of rare earth permanent magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH04343204A (en) Manufacture of rare earth element-transition element-b anisotropic permanent magnet
KR20240030327A (en) METHOD OF PREPARING ThMn12 MAGNETIC MATERIAL POWDER
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH03208305A (en) Rare earth magnet
JPS63287005A (en) Permanent magnet and manufacture thereof