JP2002310154A - Permanent magnet magnetic circuit and superconductive bearing device - Google Patents

Permanent magnet magnetic circuit and superconductive bearing device

Info

Publication number
JP2002310154A
JP2002310154A JP2001119246A JP2001119246A JP2002310154A JP 2002310154 A JP2002310154 A JP 2002310154A JP 2001119246 A JP2001119246 A JP 2001119246A JP 2001119246 A JP2001119246 A JP 2001119246A JP 2002310154 A JP2002310154 A JP 2002310154A
Authority
JP
Japan
Prior art keywords
permanent magnet
arrangement direction
soft magnetic
magnetic material
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001119246A
Other languages
Japanese (ja)
Other versions
JP2002310154A5 (en
Inventor
Yutaka Takano
豊 高野
Akihito Uetake
昭仁 植竹
Hitoshi Yamamoto
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Hitachi Metals Ltd
Original Assignee
Seiko Epson Corp
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Sumitomo Special Metals Co Ltd filed Critical Seiko Epson Corp
Priority to JP2001119246A priority Critical patent/JP2002310154A/en
Publication of JP2002310154A publication Critical patent/JP2002310154A/en
Publication of JP2002310154A5 publication Critical patent/JP2002310154A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet magnetic circuit for a superconductive bearing device capable of suppressing demagnetization in application on which a strong demagnetic field is applied for a long time and application where a permanent magnet is increased in temperature high. SOLUTION: A permanent magnet magnetic circuit 60 used in an axial type superconductive bearing device is formed that first - fourth annular permanent magnets 62a-62d which are different in inside and outside diameters from each other are concentrically situated. First - fifth annular yokes 64a-64e different in inside and outside diameter from each other though they have the same thicknesses are nipped between the first - fourth annular permanent magnets 62a-62d. A pair of adjoining annular permanent magnets on the inner peripheral side and the outer peripheral side are situated such that the same poles are positioned opposite to each other. The thicknesses of the first - fifth yokes are set to specified sizes (=t1 ) and the thicknesses (=t4 ) of the second and third annular permanent magnets are set larger than the thicknesses (=t5 ) of the first and fourth annular permanent magnets.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、モータ、各種ア
クチュエータ、発電機、電気自動車用モータや、余剰電
力をフライホイールの運動エネルギに変換して貯蔵する
電力貯蔵装置等のように、高磁場強度を発生することが
重要である永久磁石磁気回路及び超電導軸受装置に関す
る。特に、高磁場を発生するために、永久磁石どうしが
反発型構造をとり、対向する永久磁石からの磁場による
減磁場を強く受ける構造の永久磁石磁気回路及び超電導
軸受装置に有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor, various actuators, a generator, a motor for an electric vehicle, and a power storage device for converting surplus power into kinetic energy of a flywheel for storage. The present invention relates to a permanent magnet magnetic circuit and a superconducting bearing device in which it is important to generate a magnetic field. In particular, the present invention is effective for a permanent magnet magnetic circuit and a superconducting bearing device having a structure in which permanent magnets have a repulsive structure to generate a high magnetic field and strongly receive a demagnetizing field due to a magnetic field from an opposing permanent magnet.

【0002】[0002]

【従来の技術】前記永久磁石磁気回路を備えた装置とし
て、例えば、図28及び図29に示す特開平12-230551
号公報に記載のアキシャル型の超電導軸受装置(先願技
術1の装置2と称する)や、図30に示す特開平08-177
856 号公報に記載のラジアル型の超電導軸受装置(先願
技術2の装置30と称する)が知られている。
2. Description of the Related Art As an apparatus provided with the permanent magnet magnetic circuit, for example, Japanese Patent Application Laid-Open No. 12-230551 shown in FIGS.
An axial type superconducting bearing device (referred to as device 2 of the prior art 1) described in Japanese Patent Application Laid-Open No. 08-17778 shown in FIG.
A radial type superconducting bearing device (referred to as a device 30 of the prior art 2) described in Japanese Patent Application Publication No. 856 is known.

【0003】図28及び図29に示す先願技術1の装置
2は、永久磁石磁気回路(公報では磁石部と称してい
る)4を装着して回転軸部18回りに回転する回転体部
6と、回転体部6の下方において超電導体8を装着した
固定体部10とを備え、回転軸部18に沿う軸方向に磁
束を発生する永久磁石磁気回路4と超電導体8との回転
軸方向の反発力を利用して、回転体部6を固定体部10
に対して非接触状態で軸支するように構成されている。
図中番号12は保持部14に接続した冷却機、図中番号
16は冷却機12を制御する制御部であり、超電導体8
は、保持部14、冷却機12及び制御部16によって、
所要の条件を満たす温度に冷却される。
The apparatus 2 of the prior application 1 shown in FIGS. 28 and 29 is equipped with a permanent magnet magnetic circuit (referred to as a magnet section in the publication) 4 and a rotating body section 6 which rotates around a rotating shaft section 18. A permanent magnet magnetic circuit 4 that generates a magnetic flux in an axial direction along a rotating shaft 18 and a rotating shaft of the superconductor 8, the fixed body 10 having a superconductor 8 mounted below the rotating body 6. The rotating body 6 is fixed to the fixed body 10 by utilizing the repulsive force of
It is configured to be supported in a non-contact state with respect to.
In the figure, reference numeral 12 denotes a cooler connected to the holding unit 14, and reference numeral 16 denotes a control unit for controlling the cooler 12, and the superconductor 8
Is controlled by the holding unit 14, the cooler 12, and the control unit 16.
It is cooled to a temperature that meets the required conditions.

【0004】回転体部6は、前述した回転軸部18と、
回転軸部18に装着した円板部20と、この円板部20
とともに回転軸部18が中心部を貫通している挿通部材
22とを備え、円板部20及び挿通部材22に前記永久
磁石磁気回路4が支持されている。永久磁石磁気回路4
は、同一寸法の厚みを有しながら内外径が異なっている
複数の環状永久磁石24a〜24dを同心円状に配置
し、同一寸法の厚みを有しながら内外径が異なっている
環状軟質磁性体26a〜26eをそれぞれ環状永久磁石
24a〜24dの間、又は内周側、外周側に挟み込み、
あるいは密着して配置し、且つ環状軟質磁性体26b〜
26dを介して隣接している内周側及び外周側の一対の
環状永久磁石どうしを、同極が向き合うように配置して
いる。
[0004] The rotating body 6 includes the rotating shaft 18 described above,
A disk portion 20 mounted on the rotating shaft portion 18;
And a penetrating member 22 through which the rotating shaft 18 penetrates the center. The permanent magnet magnetic circuit 4 is supported by the disc 20 and the penetrating member 22. Permanent magnet magnetic circuit 4
A plurality of annular permanent magnets 24a to 24d having the same thickness and different inner and outer diameters are concentrically arranged, and the annular soft magnetic bodies 26a having the same thickness and different inner and outer diameters are arranged. To 26e are sandwiched between the annular permanent magnets 24a to 24d, or on the inner peripheral side and the outer peripheral side, respectively.
Alternatively, they are arranged in close contact with each other and the annular soft magnetic body 26b
A pair of annular permanent magnets on the inner peripheral side and the outer peripheral side adjacent to each other via 26d are disposed so that the same poles face each other.

【0005】また、図30に示す先願技術2の装置30
は、筒形状の固定体部32の外周に環形状の回転体部3
4を対向配置させ、固定体部32に設けた超電導体38
と、回転体部34に設けた永久磁石磁気回路48とのピ
ンニング効果により回転体部34を回転自在とし、これ
らをハウジング(図示せず)内に収納した装置である。
[0005] Further, an apparatus 30 of prior art 2 shown in FIG.
The ring-shaped rotating body 3 is provided on the outer periphery of the cylindrical fixed body 32.
4 are opposed to each other, and a superconductor 38 provided on the fixed body portion 32 is provided.
This is a device in which the rotating body portion 34 is rotatable by a pinning effect with a permanent magnet magnetic circuit 48 provided in the rotating body portion 34, and these are housed in a housing (not shown).

【0006】すなわち、ハウジング内には、ハウジング
に支持固定された円筒状の冷却ケース36が設けられ、
この冷却ケース36の外径側に、環状の超電導体38を
埋設した支持体40が固定されている。なお、図中番号
42は冷却ケース36を冷却する冷凍機、図中番号44
は冷凍機の温度制御を行う温度制御ユニットである。ま
た、回転体部34は、ハウジング内に収納された環状の
回転体46と、この回転体46の内周側に固着した永久
磁石磁気回路48とで構成されており、内外径が同一寸
法の複数の環状永久磁石50a〜50eと、これら環状
永久磁石50a〜50eと同一内外径寸法の環状軟質磁
性体52a〜52dを交互に軸方向に重ね合わせ、且つ
環状軟質磁性体52a〜52dを介して軸方向に隣接し
ている一対の環状永久磁石どうしを同極が向き合うよう
に配置している。一般に永久磁石どうしが同極で向き合
う構成にすると、自分自身の磁場が対向する永久磁石に
負の磁場(これを減磁場という)を及ぼし、減磁しやす
くなることが知られている。またこの構成では温度上昇
においても減磁(これを熱減磁という)しやすいことも
知られている。
That is, a cylindrical cooling case 36 supported and fixed to the housing is provided in the housing.
On the outer diameter side of the cooling case 36, a support body 40 in which an annular superconductor 38 is embedded is fixed. In the figure, reference numeral 42 denotes a refrigerator for cooling the cooling case 36, and reference numeral 44 denotes a refrigerator.
Is a temperature control unit for controlling the temperature of the refrigerator. The rotator portion 34 includes an annular rotator 46 housed in the housing and a permanent magnet magnetic circuit 48 fixed to the inner peripheral side of the rotator 46, and has the same inner and outer diameters. The plurality of annular permanent magnets 50a to 50e and the annular soft magnetic bodies 52a to 52d having the same inner and outer diameters as the annular permanent magnets 50a to 50e are alternately overlapped in the axial direction, and via the annular soft magnetic bodies 52a to 52d. A pair of annular permanent magnets adjacent to each other in the axial direction are arranged so that the same poles face each other. It is generally known that when permanent magnets face each other with the same polarity, their own magnetic field exerts a negative magnetic field (this is referred to as a demagnetizing field) on the opposing permanent magnets, which makes it easy to demagnetize. It is also known that this configuration is liable to be demagnetized (this is called thermal demagnetization) even at a temperature rise.

【0007】[0007]

【発明が解決しようとする課題】ところで、発明者等
は、余剰電力をフライホイールの運動エネルギに変換し
て貯蔵する電力貯蔵装置に、図28で示した装置と同一
構成のアキシャル型の超電導軸受装置を組み込み、長時
間運転(累積約1110時間)の超電導軸受装置の性能
試験を行った。
By the way, the inventors of the present invention have proposed an axial type superconducting bearing having the same configuration as that shown in FIG. 28 in a power storage device for converting surplus power into kinetic energy of a flywheel and storing it. The performance test of the superconducting bearing device for a long time operation (cumulatively about 1110 hours) was conducted by incorporating the device.

【0008】アキシャル型の超電導軸受装置は、永久磁
石磁気回路が、超電導体に対向して回転軸方向の反発力
を発生するが、磁場強度が変化することは反発力が変化
することにつながり、ひいては軸受性能に影響を及ぼ
す。前述した性能試験の結果から、長時間運転すると、
図31に示すように永久磁石磁気回路4の磁場強度が減
少する(減磁する)箇所が発生してしまい、軸受性能に
悪影響を与えることが判明した。
In the axial type superconducting bearing device, the permanent magnet magnetic circuit generates a repulsive force in the direction of the rotation axis facing the superconductor. However, a change in the magnetic field strength leads to a change in the repulsive force. In turn, it affects bearing performance. From the results of the performance test described above, when driving for a long time,
As shown in FIG. 31, it has been found that a portion where the magnetic field strength of the permanent magnet magnetic circuit 4 is reduced (demagnetized) occurs, which adversely affects the bearing performance.

【0009】すなわち、図31は、長時間運転前、長時
間運転後における永久磁石磁気回路4の磁場強度の測定
結果を示した図であり、この図の縦軸は磁場強度〔T〕
を示し、横軸は、図28において超電導体8に面してい
る側の永久磁石磁気回路4の回転軸部18の中心から外
周側までの距離(半径方向の位置)を示している。ここ
で、測定ギャップ長さは2mmである。
That is, FIG. 31 is a diagram showing the measurement results of the magnetic field strength of the permanent magnet magnetic circuit 4 before and after long-time operation, and the vertical axis of this figure indicates the magnetic field strength [T].
The horizontal axis indicates the distance (radial position) from the center of the rotating shaft portion 18 of the permanent magnet magnetic circuit 4 on the side facing the superconductor 8 in FIG. 28 to the outer peripheral side. Here, the measurement gap length is 2 mm.

【0010】この図31から明らかなように、運転後の
磁場強度は、運転前と比較して最大で約20%減少して
いる箇所が存在し、詳細には、永久磁石磁気回路4の半
径方向に並ぶ5ヶ所の磁場強度のピークのうち中央のピ
ークの磁場強度が21.1%減少して減磁していること
が判明した。ただし、永久磁石磁気回路4の内周側、或
いは外周側はほとんど磁場強度が変化せず(1.3%程
度)、減磁していない。
As is apparent from FIG. 31, there is a portion where the magnetic field strength after the operation is reduced by about 20% at the maximum as compared with that before the operation. It was found that the magnetic field intensity at the center peak among the five magnetic field intensity peaks arranged in the direction was reduced by 21.1% and demagnetized. However, the magnetic field intensity on the inner peripheral side or the outer peripheral side of the permanent magnet magnetic circuit 4 hardly changes (about 1.3%), and there is no demagnetization.

【0011】この要因を解明するために、図32に示す
模式図のように一定の厚さt1(=2mm)の軟質磁性体
Msと、一定の厚さt2(=8mm)の永久磁石Mpを交
互に接合し、永久磁石Mpどうしの同極を向かい合わせ
た永久磁石磁気回路(幅t3は20mmに設定)におけ
る、永久磁石Mpの特定位置のパーミアンス係数をコン
ピュータ解析により求めた。
To clarify this factor, as shown in the schematic diagram of FIG. 32, a soft magnetic material Ms having a constant thickness t1 (= 2 mm) and a permanent magnet Mp having a constant thickness t2 (= 8 mm) are used. A permeance coefficient at a specific position of the permanent magnet Mp in the permanent magnet magnetic circuit (width t3 is set to 20 mm) in which permanent magnets Mp were joined alternately and faced with the same polarity of each other was determined by computer analysis.

【0012】これによると、他の永久磁石Mpに最も近
接しているA点のパーミアンス係数は0.265であ
り、厚み方向の中央部であるB点のパーミアンス係数は
0.301であり、他の永久磁石Mpに対向していない
C点のパーミアンス係数は0.329となる。パーミア
ンス係数が小さい値である箇所は、磁場強度が減少して
減磁している箇所であり、パーミアンス係数が大きい値
である箇所は、磁場強度が減少せず減磁していない箇所
であることから、他の永久磁石Mpに最も近接している
A点は減磁しやすく、他の永久磁石Mpに対向していな
いC点は減磁しにくい箇所となる。
According to this, the permeance coefficient at the point A closest to the other permanent magnet Mp is 0.265, the permeance coefficient at the point B at the center in the thickness direction is 0.301, and The permeance coefficient at point C not facing the permanent magnet Mp is 0.329. The place where the permeance coefficient is small is a place where the magnetic field strength is reduced and demagnetized, and the place where the permeance coefficient is large is a place where the magnetic field strength is not reduced and not demagnetized. Therefore, the point A closest to the other permanent magnet Mp is easily demagnetized, and the point C which is not opposed to the other permanent magnet Mp is a place that is hardly demagnetized.

【0013】このような図32の関係を図28で示した
永久磁石磁気回路4に当てはめると、図33に示すよう
に、他の環状永久磁石に対して同極どうしが対向してい
る半径方向の中央に位置する環状永久磁石24b、24
cは、内周側及び外周側ともにパーミアンス係数が小さ
くなって減磁しやすく(減磁が大きい)、半径方向の最
も内側、或いは最も外側の環状永久磁石24a、24d
は、他の環状永久磁石に対面していない面側のパーミア
ンス係数が大きくなって減磁しにくい(減磁が小さい)
磁気回路となる。
When the relationship shown in FIG. 32 is applied to the permanent magnet magnetic circuit 4 shown in FIG. 28, as shown in FIG. 33, the radial direction in which the same poles are opposed to other annular permanent magnets, as shown in FIG. Annular permanent magnets 24b, 24 located at the center of
“c” indicates that the permeance coefficient is small on both the inner and outer peripheral sides to easily demagnetize (large demagnetization), and the radially innermost or outermost annular permanent magnets 24a and 24d
Means that the permeance coefficient on the side not facing other annular permanent magnets is large, making it difficult to demagnetize (small demagnetization)
It becomes a magnetic circuit.

【0014】このように、アキシャル型の超電導軸受装
置2では、フライホイールを支える軸受性能に悪影響を
与えないように、超電導体8に対向して限られた大きさ
で配置されている永久磁石磁気回路4の減磁をいかに抑
制するかが重要な課題となっている。一方、図30のラ
ジアル型の超電導軸受装置30を電力貯蔵装置に組み込
んだ場合にも、図34に示すように、他の環状永久磁石
に対して同極どうしが対向している軸方向の中央に位置
する環状永久磁石50b、50cが、上面側及び下面側
ともにパーミアンス係数が小さくなって減磁しやすく
(減磁が大きい)、軸方向の端部側に位置する環状永久
磁石50a、50dが、他の環状永久磁石に対面してい
ない面側のパーミアンス係数が大きくなって減磁しにく
い(減磁が小さい)永久磁石磁気回路48となる。した
がって、フライホイールを支える軸受性能に悪影響を与
えないために、超電導体38に対向して限られた大きさ
で配置されている永久磁石磁気回路48の減磁をいかに
抑制するかが重要な課題となっている。
As described above, in the axial type superconducting bearing device 2, the permanent magnet magnets arranged with a limited size facing the superconductor 8 so as not to adversely affect the performance of the bearing supporting the flywheel. An important issue is how to suppress the demagnetization of the circuit 4. On the other hand, when the radial type superconducting bearing device 30 of FIG. 30 is incorporated in an electric power storage device, as shown in FIG. 34, the center in the axial direction in which the same poles face other annular permanent magnets. The permanent magnets 50b and 50c located on the upper side and the lower side have low permeance coefficients and are easily demagnetized (large demagnetization). In addition, the permeance coefficient on the side not facing the other annular permanent magnet is increased, so that the permanent magnet magnetic circuit 48 is hardly demagnetized (small demagnetization). Therefore, in order not to adversely affect the performance of the bearing supporting the flywheel, it is an important issue how to suppress the demagnetization of the permanent magnet magnetic circuit 48 which is arranged with a limited size facing the superconductor 38. It has become.

【0015】本発明は上記事情に鑑みてなされたもので
あり、高磁場強度を長時間かつ安定して発生することが
重要であるところの永久磁石磁気回路及びそれを備えた
超電導軸受装置を提供することを目的としている。ま
た、本永久磁石磁気回路は高温下で長時間使用されるモ
ータ、各種アクチュエータ、発電機、電気自動車用モー
タにも有効で十分適用できる。
The present invention has been made in view of the above circumstances, and provides a permanent magnet magnetic circuit in which it is important to stably generate a high magnetic field strength for a long time and a superconducting bearing device having the same. It is intended to be. Further, the permanent magnet magnetic circuit is effective and sufficiently applicable to motors, various actuators, generators, and electric vehicle motors that are used for a long time at high temperatures.

【0016】[0016]

【課題を解決するための手段】本発明者等は、永久磁石
磁気回路の減磁を抑制する手段として、磁気回路中のパ
ーミアンス係数pについて着目した。図35に示す磁気
回路のモデルを参照してパーミアンス係数pを考える
と、永久磁石の動作点の磁場の強さ:Hd、永久磁石の
動作点の磁束密度:Bd、空隙の断面積:Sg、空隙の
長さ:Lg、永久磁石の断面積:Sm、永久磁石の長
さ:Lm、空気の透磁率:μ、漏洩係数:σ、レラクタ
ンス係数:rとすると、
Means for Solving the Problems The present inventors have paid attention to the permeance coefficient p in a magnetic circuit as means for suppressing demagnetization of a permanent magnet magnetic circuit. Considering the permeance coefficient p with reference to the model of the magnetic circuit shown in FIG. 35, the magnetic field strength at the operating point of the permanent magnet: Hd, the magnetic flux density at the operating point of the permanent magnet: Bd, the cross-sectional area of the gap: Sg, Assuming that the length of the air gap is Lg, the cross-sectional area of the permanent magnet is Sm, the length of the permanent magnet is Lm, the magnetic permeability of air is μ, the leakage coefficient is σ, and the reluctance coefficient is r.

【0017】[0017]

【数1】 (Equation 1)

【0018】の関係が得られる。したがって、パーミア
ンス係数pを大きくするには、前記(1)式の第1項
(σ・μ/r)が一定と仮定すると、第2項(Sg・L
m)/(Sm・Lg)が大きくなるようにすれば良い。
永久磁石の断面積Smが変わらず、従って空隙の断面積
Sgも変わらないと考えれば、パーミアンス係数pは、
永久磁石の長さLmと空隙の長さLgの比(Lm/L
g)の大きさによることになる。
The following relationship is obtained. Therefore, in order to increase the permeance coefficient p, assuming that the first term (σ · μ / r) of the equation (1) is constant, the second term (Sg · L
m) / (Sm · Lg) may be increased.
Assuming that the cross-sectional area Sm of the permanent magnet does not change and therefore the cross-sectional area Sg of the air gap does not change, the permeance coefficient p becomes
The ratio of the length Lm of the permanent magnet to the length Lg of the gap (Lm / L
g).

【0019】パーミアンス係数pが、永久磁石の長さL
mと空隙の長さLgの比(Lm/Lg)の大きさによる
ことを、本発明に係る軟質磁性体Msと永久磁石Mpを
交互に接合し、且つ永久磁石Mpどうしの同極を向かい
合わせた図36に示す永久磁石磁気回路で考えると、永
久磁石の厚さt2を大きく、又は、軟質磁性体の厚さt
1を大きくすると、永久磁石の厚さt2と空隙の長さL
gとの比が1より大となりパーミアンス係数が大きくな
る。
The permeance coefficient p is equal to the length L of the permanent magnet.
The difference between m and the length Lg of the gap (Lm / Lg) is determined by the fact that the soft magnetic material Ms and the permanent magnet Mp according to the present invention are alternately joined, and the same poles of the permanent magnets Mp face each other. Considering the permanent magnet magnetic circuit shown in FIG. 36, the thickness t2 of the permanent magnet is increased or the thickness t2 of the soft magnetic material is increased.
1 is increased, the thickness t2 of the permanent magnet and the length L of the air gap are increased.
The ratio to g is greater than 1 and the permeance coefficient increases.

【0020】このように、永久磁石の厚さt2、又は軟
質磁性体の厚さt1を厚くすることで、或いは、永久磁
石の厚さt2と、軟質磁性体の厚さt1の両者を厚くす
ることでパーミアンス係数pを大きくすることができ、
それにより減磁しにくい永久磁石磁気回路を得ることが
できる。さらには、永久磁石磁気回路の減磁を抑制する
他の手段として、保磁力が大きい材質の永久磁石を使用
するとも考えられ、このように保磁力が大きい永久磁石
を用いて永久磁石磁気回路を構成すると、減磁しにくい
回路を得ることができるとの知見も得た。
As described above, by increasing the thickness t2 of the permanent magnet or the thickness t1 of the soft magnetic material, or increasing both the thickness t2 of the permanent magnet and the thickness t1 of the soft magnetic material. Thus, the permeance coefficient p can be increased,
As a result, a permanent magnet magnetic circuit that is hardly demagnetized can be obtained. Further, as another means for suppressing the demagnetization of the permanent magnet magnetic circuit, it is conceivable to use a permanent magnet made of a material having a large coercive force. It has also been found that the configuration makes it possible to obtain a circuit that is hardly demagnetized.

【0021】したがって、本発明の請求項1記載の永久
磁石磁気回路は、複数の永久磁石を、それらの間に軟質
磁性体を挟み込んで並べて配置し、前記軟質磁性体を介
して互いに隣接する前記永久磁石どうしの同極を向き合
わせてなる永久磁石磁気回路において、前記永久磁石及
び前記軟質磁性体を並べた方向の中央部のパーミアンス
係数を大きな値に設定した。
Therefore, in the permanent magnet magnetic circuit according to the first aspect of the present invention, a plurality of permanent magnets are arranged side by side with a soft magnetic material interposed therebetween, and the permanent magnets are adjacent to each other via the soft magnetic material. In the permanent magnet magnetic circuit in which the same poles of the permanent magnets face each other, the permeance coefficient at the center in the direction in which the permanent magnet and the soft magnetic material are arranged is set to a large value.

【0022】また、請求項2記載の永久磁石磁気回路
は、前記永久磁石及び前記軟質磁性体の並び方向の中央
部に位置する前記永久磁石の並び方向の寸法を、並び方
向の端部に位置する永久磁石の並び方向の寸法より大き
くした。また、請求項3記載の永久磁石磁気回路は、前
記永久磁石及び前記軟質磁性体の並び方向の中央部に位
置する前記軟質磁性体の並び方向の寸法を、並び方向の
端部に位置する軟質磁性体の並び方向の寸法より大きく
した。
According to a second aspect of the present invention, in the permanent magnet magnetic circuit, the permanent magnet and the soft magnetic material are arranged at the center in the arrangement direction of the permanent magnet at the end in the arrangement direction. Larger than the size of the permanent magnets to be arranged. Further, in the permanent magnet magnetic circuit according to the third aspect, the size of the permanent magnet and the soft magnetic body in the arrangement direction of the soft magnetic body located at the center in the arrangement direction may be set to the size of the soft magnet positioned at the end in the arrangement direction. It was made larger than the dimension in the direction in which the magnetic bodies were arranged.

【0023】また、請求項4記載の永久磁石磁気回路
は、前記永久磁石及び前記軟質磁性体の並び方向の中央
部に位置する前記永久磁石は、並び方向の端部に位置す
る前記永久磁石より保磁力が大きい特性を有しているよ
うにした。また、請求項5記載の永久磁石磁気回路は、
前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記永久磁石の並び方向の寸法を、並び方向の
端部に位置する永久磁石の並び方向の寸法より大きくす
るとともに、並び方向の中央部に位置する前記軟質磁性
体の並び方向の寸法を、並び方向の端部に位置する軟質
磁性体の並び方向の寸法より大きくした。
According to a fourth aspect of the present invention, in the permanent magnet magnetic circuit, the permanent magnet positioned at the center in the direction in which the permanent magnet and the soft magnetic material are arranged is more than the permanent magnet positioned at the end in the direction in which the soft magnets are arranged. The coercive force has a large characteristic. Further, the permanent magnet magnetic circuit according to claim 5 is:
The dimension of the permanent magnet located in the central part of the arrangement direction of the permanent magnet and the soft magnetic material in the arrangement direction is made larger than the dimension of the permanent magnet located at the end of the arrangement direction, and The size of the soft magnetic material located at the center in the direction of arrangement is made larger than the size of the soft magnetic material located at the end in the direction of arrangement.

【0024】また、請求項6記載の永久磁石磁気回路
は、前記永久磁石及び前記軟質磁性体の並び方向の中央
部に位置する前記永久磁石の並び方向の寸法を、並び方
向の端部に位置する永久磁石の並び方向の寸法より大き
くするとともに、並び方向の中央部に位置する前記永久
磁石は、並び方向の端部に位置する前記永久磁石より保
磁力が大きい特性を有しているようにした。
According to a sixth aspect of the present invention, in the permanent magnet magnetic circuit, the permanent magnet and the soft magnetic material are arranged at the center in the arrangement direction of the permanent magnet in the arrangement direction at the end in the arrangement direction. The permanent magnets located at the center in the arrangement direction are larger than the permanent magnets located at the ends in the arrangement direction. did.

【0025】また、請求項7記載の永久磁石磁気回路
は、前記永久磁石及び前記軟質磁性体の並び方向の中央
部に位置する前記軟質磁性体の並び方向の寸法を、並び
方向の端部に位置する軟質磁性体の並び方向の寸法より
大きくするとともに、並び方向の中央部に位置する前記
永久磁石は、並び方向の端部に位置する前記永久磁石よ
り保磁力が大きい特性を有しているようにした。
According to a seventh aspect of the present invention, in the permanent magnet magnetic circuit, the size of the permanent magnet and the soft magnetic material in the arrangement direction of the soft magnetic material located at the center in the arrangement direction is set at the end in the arrangement direction. The permanent magnets located at the center in the arrangement direction have a larger coercive force than the permanent magnets located at the ends in the arrangement direction, while being larger than the size of the soft magnetic material located in the arrangement direction. I did it.

【0026】また、請求項8記載の永久磁石磁気回路
は、前記永久磁石及び前記軟質磁性体の並び方向の中央
部に位置する前記永久磁石の並び方向の寸法を、並び方
向の端部に位置する永久磁石の並び方向の寸法より大き
くし、並び方向の中央部に位置する前記軟質磁性体の並
び方向の寸法を、並び方向の端部に位置する軟質磁性体
の並び方向の寸法より大きくするとともに、並び方向の
中央部に位置する前記永久磁石は、並び方向の端部に位
置する前記永久磁石より保磁力が大きい特性を有してい
るようにした。
In the permanent magnet magnetic circuit according to the present invention, the dimension of the permanent magnet located in the center of the permanent magnet and the soft magnetic material in the direction in which the permanent magnets are aligned may be set at the end in the direction of the alignment. The size in the arrangement direction of the soft magnetic material located at the center in the arrangement direction is made larger than the size in the arrangement direction of the soft magnetic material located at the end in the arrangement direction. At the same time, the permanent magnet located at the center in the arrangement direction has a characteristic that the coercive force is larger than that of the permanent magnet located at the end in the arrangement direction.

【0027】一方、請求項9記載の超電導軸受装置は、
前記永久磁石及び前記軟質磁性体を環状体に形成し、前
記並び方向を回転軸に直交する径方向として前記永久磁
石及び前記軟質磁性体を前記径方向に並べて配置してな
る請求項1乃至8の何れかの永久磁石磁気回路を、超電
導体に相対回転自在に配置した装置である。さらに、請
求項10記載の超電導軸受装置は、前記永久磁石及び前
記軟質磁性体を環状体に形成し、前記並び方向を回転軸
に沿う軸方向として前記永久磁石及び前記軟質磁性体を
前記軸方向に層状に配置してなる請求項1乃至8の何れ
かの永久磁石磁気回路を、超電導体に相対回転自在に配
置した装置である。
On the other hand, the superconducting bearing device according to claim 9 is
9. The permanent magnet and the soft magnetic body are formed in an annular body, and the permanent magnet and the soft magnetic body are arranged side by side in the radial direction with the arrangement direction being a radial direction orthogonal to a rotation axis. 10. Is a device in which any one of the permanent magnet magnetic circuits is disposed so as to be rotatable relative to the superconductor. Further, in the superconducting bearing device according to claim 10, the permanent magnet and the soft magnetic body are formed in an annular body, and the permanent magnet and the soft magnetic body are aligned in the axial direction with the arrangement direction being an axial direction along a rotation axis. An apparatus in which the permanent magnet magnetic circuit according to any one of claims 1 to 8, which is arranged in layers, is arranged on a superconductor so as to be relatively rotatable.

【0028】[0028]

【発明の実施の形態】以下、本発明に係る永久磁石磁気
回路について、図面を参照して説明する。なお、図28
から図30に示した構成と同一構成部分には、同一符号
を付してその説明を省略する。図1は、図28に示した
アキシャル型の超電導軸受装置2の永久磁石磁気回路と
して使用される第1実施形態の永久磁石磁気回路であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A permanent magnet magnetic circuit according to the present invention will be described below with reference to the drawings. FIG. 28
30 are denoted by the same reference numerals and the description thereof will be omitted. FIG. 1 shows a permanent magnet magnetic circuit of the first embodiment used as a permanent magnet magnetic circuit of the axial type superconducting bearing device 2 shown in FIG.

【0029】本実施形態の永久磁石磁気回路60は、そ
れぞれ内外径が異なっている第1〜第4の環状永久磁石
62a〜62dを同心円状に配置し、同一寸法の厚みを
有しながら内外径が異なっている第1〜第5の環状のヨ
ーク(環状軟質磁性体)64a〜64eをそれぞれ第1
〜第4の環状永久磁石62a〜62dの間、又は内周
側、外周側に挟み込み、あるいは密着して配置し、且つ
第2〜第4のヨーク64b〜64dを介して隣接してい
る内周側及び外周側の一対の環状永久磁石どうしを、同
極が向き合うように配置している。
The permanent magnet magnetic circuit 60 of this embodiment has first to fourth annular permanent magnets 62a to 62d having different inner and outer diameters arranged concentrically, and has the same size and inner and outer diameters. The first to fifth annular yokes (annular soft magnetic bodies) 64a to 64e having different
Between the fourth to fourth annular permanent magnets 62a to 62d, or between the fourth and fourth annular permanent magnets 62a to 62d, or between the fourth and fourth annular permanent magnets 62a to 62d. The pair of annular permanent magnets on the side and the outer periphery are arranged so that the same poles face each other.

【0030】そして、本実施形態では、第1〜第5のヨ
ーク64a〜64eの厚さを一定の寸法(=t1)に設
定しているとともに、第1〜第4の環状永久磁石62a
〜62dのうち径方向の中央に位置している第2、第3
の環状永久磁石62b、62cの磁石厚さ(=t4)
を、径方向の端部側に位置している第1、第4の環状永
久磁石62a、62dの磁石厚さ(=t5)より大きな
寸法に設定している。
In the present embodiment, the thickness of the first to fifth yokes 64a to 64e is set to a fixed size (= t1), and the first to fourth annular permanent magnets 62a are set.
To 62d, the second and third positions located at the radial center.
Thickness of the annular permanent magnets 62b and 62c (= t4)
Is set to be larger than the magnet thickness (= t5) of the first and fourth annular permanent magnets 62a and 62d located on the radial end side.

【0031】このように中央部の磁石厚さ(=t4)を
端部の磁石厚さ(=t5)よりも厚くすることが、本発
明の特徴であるが、その厚さについて発明者等が鋭意検
討した結果、t4 >1.5×t5にすることにより、
さらに望ましくはt4>2×t5にすることが減磁量の
少ない有効な磁気回路となる。本実施形態のように、径
方向の中央に位置している第2、第3の環状永久磁石6
2b、62cの厚さを、径方向の端部側に位置している
第1、第4の環状永久磁石62a、62dの厚さより大
きな寸法に設定すると、第2、第3の環状永久磁石62
b、62cのパーミアンス係数pが大きくなり、局部的
に強い減磁場が作用しても、あるいは何らかの要因で永
久磁石が温度上昇することがあっても、永久磁石磁気回
路60の径方向の中央は減磁しにくい構造となる。
It is a feature of the present invention that the thickness of the magnet at the center (= t4) is made larger than the thickness of the magnet at the end (= t5). As a result of intensive studies, by setting t4> 1.5 × t5,
More desirably, t4> 2 × t5 is an effective magnetic circuit with a small amount of demagnetization. As in this embodiment, the second and third annular permanent magnets 6 located at the center in the radial direction
If the thicknesses of the second and third annular permanent magnets 62b and 62c are set to be larger than the thicknesses of the first and fourth annular permanent magnets 62a and 62d located on the radial end side, respectively.
Even if the permeance coefficient p of b and 62c increases and a strong demagnetizing field acts locally or the temperature of the permanent magnet may rise due to some factor, the center of the permanent magnet magnetic circuit 60 in the radial direction is The structure becomes hard to be demagnetized.

【0032】これにより、第2、第3の環状永久磁石6
2b、62cのパーミアンス係数pが大きくなり、第
1、第4の環状永久磁石62a、62dはパーミアンス
係数pが小さくならないので、径方向の全域にわたって
減磁しにくい永久磁石磁気回路60となる。この永久磁
石磁気回路60をアキシャル型の超電導軸受装置2に備
えると、超電導体8に対向している永久磁石磁気回路6
0が常に一定の磁場強度を発生するので、軸受性能の低
下を防止することができ、例えば余剰電力をフライホイ
ールの運動エネルギに変換して貯蔵する電力貯蔵装置に
好適な装置となる。
Thus, the second and third annular permanent magnets 6
Since the permeance coefficients p of 2b and 62c are large and the permeance coefficients p of the first and fourth annular permanent magnets 62a and 62d are not small, the permanent magnet magnetic circuit 60 is hard to be demagnetized over the entire area in the radial direction. When the permanent magnet magnetic circuit 60 is provided in the axial type superconducting bearing device 2, the permanent magnet magnetic circuit 6 facing the superconductor 8 is provided.
Since 0 always generates a constant magnetic field strength, deterioration of bearing performance can be prevented. For example, the device is suitable for a power storage device that converts surplus power into kinetic energy of a flywheel and stores it.

【0033】次に、図2は、アキシャル型の超電導軸受
装置2の永久磁石磁気回路として使用される第2実施形
態の永久磁石磁気回路である。本実施形態の永久磁石磁
気回路66は、同一寸法の厚み(=t2)を有して内外
径が異なっている第1〜第4の環状永久磁石66a〜6
6dを同心円状に配置し、第1〜第5の環状のヨーク6
8a〜68eをそれぞれ第1〜第4の環状永久磁石66
a〜66dの間、又は内周側、外周側に挟み込み、ある
いは密着して配置し、且つ第2〜第4のヨーク68b〜
68dを介して隣接している内周側及び外周側の一対の
環状永久磁石どうしを、同極が向き合うように配置して
いる。
Next, FIG. 2 shows a permanent magnet magnetic circuit of a second embodiment used as a permanent magnet magnetic circuit of the axial type superconducting bearing device 2. The permanent magnet magnetic circuit 66 of the present embodiment has first to fourth annular permanent magnets 66a to 66 having the same thickness (= t2) and different inner and outer diameters.
6d are arranged concentrically, and the first to fifth annular yokes 6
8a to 68e are connected to first to fourth annular permanent magnets 66, respectively.
a to 66d, or between the inner circumference side and the outer circumference side, or disposed in close contact therewith, and the second to fourth yokes 68b to
A pair of inner and outer annular permanent magnets adjacent to each other via 68d are arranged so that the same poles face each other.

【0034】そして、本実施形態では、第1〜第5のヨ
ーク68a〜68eのうち径方向の中央に位置している
第2、第3及び第4のヨーク68b、68c、68dの
厚さ(=t6)を、径方向の端部側に位置している第
1、第5のヨーク68a、68eの厚さ(=t1)より
大きな寸法に設定している。このように中央部のヨーク
厚さ(=t6)を端部のヨーク厚さ(=t1)よりも厚
くすることが、本発明の特徴であるが、その厚さについ
て発明者等が鋭意検討した結果、t1 >2×t2にす
ることにより、さらに望ましくはt1>3×t2にする
ことが減磁量の少ない有効な磁気回路となる。
In this embodiment, the thicknesses of the second, third, and fourth yokes 68b, 68c, 68d located at the radial center of the first to fifth yokes 68a to 68e ( = T6) is set to be larger than the thickness (= t1) of the first and fifth yokes 68a, 68e located on the radial end side. It is a feature of the present invention that the thickness of the yoke at the center (= t6) is larger than the thickness of the yoke at the end (= t1). The inventors have intensively studied the thickness. As a result, by setting t1> 2 × t2, and more preferably t1> 3 × t2, an effective magnetic circuit with a small amount of demagnetization is obtained.

【0035】本実施形態のように、径方向の中央に位置
している第2、第3及び第4のヨーク68b、68c、
68dの厚さ(=t6)を、径方向の端部側に位置して
いる第1、第5のヨーク68a、68eの厚さ(=t
1)より大きな寸法に設定すると、第2、第3の環状永
久磁石66b、66cのパーミアンス係数pが大きくな
り、局部的に強い減磁場が作用しても、あるいは何らか
の要因で永久磁石が温度上昇することがあっても、永久
磁石磁気回路66の径方向の中央は減磁しにくい構造と
なる。
As in the present embodiment, the second, third and fourth yokes 68b, 68c, which are located at the radial center,
The thickness (= t6) of the first and fifth yokes 68a and 68e (= t6) located on the radial end side
1) When the size is set to be larger, the permeance coefficient p of the second and third annular permanent magnets 66b and 66c increases, and even if a strong demagnetizing field acts locally, or the temperature of the permanent magnets rises for some reason. However, the center of the permanent magnet magnetic circuit 66 in the radial direction has a structure that is hardly demagnetized.

【0036】これにより、第2、第3の環状永久磁石6
6b、66cのパーミアンス係数pが大きくなり、第
1、第4の環状永久磁石66a、66dはパーミアンス
係数pが小さくならないので、径方向の全域にわたって
減磁しにくい永久磁石磁気回路66となる。したがっ
て、この永久磁石磁気回路66をアキシャル型の超電導
軸受装置2に備えると、超電導体8に対向している永久
磁石磁気回路66が常に一定の磁場強度を発生するの
で、軸受性能の低下を防止することができる。
Thus, the second and third annular permanent magnets 6
Since the permeance coefficients p of 6b and 66c are large and the permeance coefficients p of the first and fourth annular permanent magnets 66a and 66d are not small, the permanent magnet magnetic circuit 66 is hard to be demagnetized over the entire area in the radial direction. Therefore, when this permanent magnet magnetic circuit 66 is provided in the axial type superconducting bearing device 2, the permanent magnet magnetic circuit 66 facing the superconductor 8 always generates a constant magnetic field strength, thereby preventing a decrease in bearing performance. can do.

【0037】次に、図3は、アキシャル型の超電導軸受
装置2の永久磁石磁気回路として使用される第3実施形
態の永久磁石磁気回路である。本実施形態の永久磁石磁
気回路70は、同一寸法の厚み(=t2)を有して内外
径が異なっている第1〜第4の環状永久磁石72a〜7
2dを同心円状に配置し、同一の厚み(=t1)を有し
ている第1〜第5の環状のヨーク74a〜74eをそれ
ぞれ第1〜第4の環状永久磁石72a〜72dの間、又
は内周側、外周側に挟み込み、あるいは密着して配置
し、且つ第2〜第4のヨーク74b〜74dを介して隣
接している内周側及び外周側の一対の環状永久磁石どう
しを、同極が向き合うように配置している。
Next, FIG. 3 shows a permanent magnet magnetic circuit of a third embodiment used as a permanent magnet magnetic circuit of the axial type superconducting bearing device 2. The permanent magnet magnetic circuit 70 of the present embodiment has first to fourth annular permanent magnets 72a to 72 having the same thickness (= t2) and different inner and outer diameters.
2d are arranged concentrically, and the first to fifth annular yokes 74a to 74e having the same thickness (= t1) are respectively disposed between the first to fourth annular permanent magnets 72a to 72d, or A pair of inner and outer ring-shaped permanent magnets that are sandwiched or closely attached to the inner and outer peripheral sides and are adjacent to each other via the second to fourth yokes 74b to 74d are connected to each other. They are arranged so that the poles face each other.

【0038】そして、本実施形態では、第1〜第4の環
状永久磁石72a〜72dのうち径方向の中央に位置し
ている第2、第3の環状永久磁石72b、72cの材料
を、径方向の端部側に位置している第1、第4の環状永
久磁石72a、72dの材料より保磁力の高いものとし
ている。このように、中央部の磁石材料の保磁力(Hc
1)を端部の永久磁石の保磁力(Hc2)よりも大きく
することが、本発明の特徴であるが、その大きさについ
て発明者等が鋭意検討した結果、Hc1>1.2×Hc
2にすることにより、さらに望ましくはHc1>1.3
×Hc2にすることが減磁量の少ない有効な磁気回路と
なる。
In the present embodiment, the material of the second and third annular permanent magnets 72b and 72c located at the center in the radial direction among the first to fourth annular permanent magnets 72a to 72d is changed to the diameter. The first and fourth annular permanent magnets 72a and 72d located on the end side in the direction have higher coercive force than the material of the first and fourth annular permanent magnets 72a and 72d. Thus, the coercive force (Hc
It is a feature of the present invention to make 1) larger than the coercive force (Hc2) of the permanent magnet at the end. As a result of the inventor's intensive studies on the size, Hc1> 1.2 × Hc
2, more preferably, Hc1> 1.3.
XHc2 provides an effective magnetic circuit with a small amount of demagnetization.

【0039】本実施形態のように、径方向の中央に位置
している第2、第3の環状永久磁石72b、72cを、
径方向の端部側に位置している第1、第4の環状永久磁
石72a、72dより保磁力の高い材料としたことで、
永久磁石磁気回路70の径方向の中央が減磁しにくい構
造となる。これにより、径方向の全域にわたって減磁し
にくい永久磁石磁気回路70となる。
As in the present embodiment, the second and third annular permanent magnets 72b and 72c located at the center in the radial direction are
By using a material having a higher coercive force than the first and fourth annular permanent magnets 72a and 72d located on the radial end side,
A structure in which the radial center of the permanent magnet magnetic circuit 70 is hardly demagnetized is obtained. Thus, the permanent magnet magnetic circuit 70 is hardly demagnetized over the entire area in the radial direction.

【0040】したがって、この永久磁石磁気回路70を
アキシャル型の超電導軸受装置2に備えると、超電導体
8に対向している永久磁石磁気回路70が常に一定の磁
場強度を発生するので、軸受性能の低下を防止すること
ができる。さらに、図1から図3で述べた実施形態、す
なわち、径方向の中央に位置している第2、第3の環
状永久磁石62b、62cの厚さを大きな寸法に設定す
る、径方向の中央に位置している第2、第3及び第4
のヨーク68b、68c、68dの厚さを大きな寸法に
設定する、径方向の中央に位置している第2、第3の
環状永久磁石72b、72cを保磁力の高い材料とする
という構成のうち、とを組み合わせる構成、と
を組み合わせる構成、とを組み合わせる構成、と
及びの全てを組み合わせる構成とすると、さらに径
方向の全域にわたって減磁しにくい永久磁石磁気回路を
得ることができる。
Therefore, when the permanent magnet magnetic circuit 70 is provided in the axial type superconducting bearing device 2, the permanent magnet magnetic circuit 70 facing the superconductor 8 always generates a constant magnetic field strength, and therefore the bearing performance is reduced. The drop can be prevented. Further, in the embodiment described with reference to FIGS. 1 to 3, that is, in the radial center, the thicknesses of the second and third annular permanent magnets 62b and 62c located at the radial center are set to be large. Located at the second, third and fourth
The thicknesses of the yokes 68b, 68c, 68d are set to be large, and the second and third annular permanent magnets 72b, 72c located at the radial center are made of a material having a high coercive force. When the configuration is combined with the configuration, the configuration combined with the configuration, the configuration combined with the configuration, and the configuration combined with each other, it is possible to obtain a permanent magnet magnetic circuit that is less likely to be demagnetized over the entire area in the radial direction.

【0041】なお、図1から図3で示した永久磁石磁気
回路では、最も内周側及び最も外周側にヨークを配置し
た構成としているが、その位置にヨークを配置しなくと
も、上述した効果を得ることができる。一方、図4は、
図30で示したラジアル型の超電導軸受装置30の永久
磁石磁気回路として使用される第4実施形態の永久磁石
磁気回路である。
In the permanent magnet magnetic circuits shown in FIGS. 1 to 3, the yokes are arranged on the innermost side and the outermost side. Can be obtained. On the other hand, FIG.
31 is a permanent magnet magnetic circuit of a fourth embodiment used as a permanent magnet magnetic circuit of the radial type superconducting bearing device 30 shown in FIG. 30.

【0042】本実施形態の永久磁石磁気回路76は、内
外径が同一寸法の第1〜第4の環状永久磁石78a〜7
8dと、これら環状永久磁石78a〜78dと同一内外
径寸法の第1〜第5の環状のヨーク(環状軟質磁性体)
80a〜80eを交互に軸方向に重ね合わせ、且つヨー
ク80a〜80eを介して軸方向に隣接している一対の
環状永久磁石どうしを同極が向き合うように配置してい
る。
The permanent magnet magnetic circuit 76 of the present embodiment has first to fourth annular permanent magnets 78a to 78a having the same inner and outer diameters.
8d, and first to fifth annular yokes (annular soft magnetic bodies) having the same inner and outer diameters as the annular permanent magnets 78a to 78d.
80a to 80e are alternately overlapped in the axial direction, and a pair of annular permanent magnets adjacent in the axial direction via the yokes 80a to 80e are arranged so that the same poles face each other.

【0043】そして、本実施形態では、第1〜第5のヨ
ーク80a〜80eの厚さを一定の寸法(=t1)に設
定しているとともに、第1〜第4の環状永久磁石78a
〜78dのうち軸方向の中央に位置している第2、第3
の環状永久磁石78b、78cの厚さ(=t4)を、軸
方向の端部側に位置している第1、第4の環状永久磁石
78a、78dの厚さ(=t5)より大きな寸法に設定
している。なお、本実施形態の構成をの構成とする。
In the present embodiment, the thickness of the first to fifth yokes 80a to 80e is set to a fixed size (= t1), and the first to fourth annular permanent magnets 78a are set.
To 78d, the second and the third positioned at the center in the axial direction.
The thickness (= t4) of the ring-shaped permanent magnets 78b, 78c is larger than the thickness (= t5) of the first and fourth ring-shaped permanent magnets 78a, 78d located on the axial end side. You have set. The configuration of the present embodiment is assumed to be the configuration.

【0044】本実施形態のように、軸方向の中央に位置
している第2、第3の環状永久磁石78b、78cの厚
さを、軸方向の端部側に位置している第1、第4の環状
永久磁石78a、78dの厚さより大きな寸法に設定す
ると、第2、第3の環状永久磁石78b、78cのパー
ミアンス係数pが大きくなり、局部的に強い減磁場が作
用しても、あるいは何らかの要因で永久磁石が温度上昇
することがあっても、永久磁石磁気回路76の径方向の
中央は減磁しにくい構造となる。
As in the present embodiment, the thicknesses of the second and third annular permanent magnets 78b and 78c located at the center in the axial direction are the same as those of the first and second annular permanent magnets located at the axial end. If the dimension is set to be larger than the thickness of the fourth annular permanent magnets 78a, 78d, the permeance coefficient p of the second and third annular permanent magnets 78b, 78c increases, and even if a strong demagnetizing field acts locally, Alternatively, even if the temperature of the permanent magnet rises for some reason, the radial center of the permanent magnet magnetic circuit 76 has a structure that is hardly demagnetized.

【0045】これにより、第2、第3の環状永久磁石7
8b、78cのパーミアンス係数pが大きくなり、第
1、第4の環状永久磁石78a、78dはパーミアンス
係数pが小さくならないので、軸方向の全域にわたって
減磁しにくい永久磁石磁気回路76となる。この永久磁
石磁気回路76をラジアル型の超電導軸受装置30に備
えると、超電導体38に対向している永久磁石磁気回路
76が常に一定の磁場強度を発生するので、軸受性能の
低下を防止することができ、例えば余剰電力をフライホ
イールの運動エネルギに変換して貯蔵する電力貯蔵装置
に好適な装置となる。
Thus, the second and third annular permanent magnets 7
Since the permeance coefficients p of 8b and 78c are large and the permeance coefficients p of the first and fourth annular permanent magnets 78a and 78d are not small, the permanent magnet magnetic circuit 76 is hard to be demagnetized over the entire area in the axial direction. When the permanent magnet magnetic circuit 76 is provided in the radial type superconducting bearing device 30, the permanent magnet magnetic circuit 76 facing the superconductor 38 always generates a constant magnetic field strength, so that the deterioration of the bearing performance can be prevented. For example, a device suitable for a power storage device that converts surplus power into kinetic energy of a flywheel and stores the converted kinetic energy can be obtained.

【0046】また、図示しないが、第1〜第4の環状永
久磁石78a〜78dの厚さを一定にし、軸方向の中央
に位置する第2、第3、第4のヨーク80b、80c、
80dの厚さを、他のヨークの厚さより大きな寸法にす
ると、第2、第3の環状永久磁石78b、78cのパー
ミアンス係数pが大きくなり、第1、第4の環状永久磁
石78a、78dはパーミアンス係数pが小さくならな
いので、軸方向の全域にわたって減磁しにくい永久磁石
磁気回路を得ることができる。なお、この構成をの構
成とする。
Although not shown, the thicknesses of the first to fourth annular permanent magnets 78a to 78d are made constant, and the second, third, and fourth yokes 80b, 80c,
When the thickness of 80d is made larger than the thickness of the other yokes, the permeance coefficient p of the second and third annular permanent magnets 78b and 78c increases, and the first and fourth annular permanent magnets 78a and 78d become Since the permeance coefficient p does not decrease, it is possible to obtain a permanent magnet magnetic circuit that is hardly demagnetized over the entire area in the axial direction. Note that this configuration is referred to as the configuration.

【0047】さらに、第1〜第4の環状永久磁石78a
〜78dの厚さを一定にし、第1〜第5のヨーク80a
〜80eの厚さも一定にするとともに、軸方向の中央に
位置する第2、第3の環状永久磁石78b、78cの材
料を、軸方向の端部側の第1、第4の環状永久磁石78
a、78dの材料より保磁力の高いものにしても、軸方
向の全域にわたって減磁しにくい永久磁石磁気回路を得
ることができる。なお、この構成をの構成とする。
Further, the first to fourth annular permanent magnets 78a
The first to fifth yokes 80a
The thickness of the second and third annular permanent magnets 78b and 78c located at the center in the axial direction is also changed to the first and fourth annular permanent magnets 78 at the axial end.
Even if the coercive force is higher than that of the materials a and 78d, a permanent magnet magnetic circuit that is hardly demagnetized over the entire area in the axial direction can be obtained. Note that this configuration is referred to as the configuration.

【0048】そして、前述した、、の構成のう
ち、とを組み合わせる構成、とを組み合わせる
構成、とを組み合わせる構成、と及びの全て
を組み合わせる構成とすると、さらに軸方向の全域にわ
たって減磁しにくい永久磁石磁気回路を得ることができ
る。なお、上記各実施形態では、超電導軸受装置のよう
に回転体を支持する装置に永久磁石磁気回路を使用した
が、直線駆動で1次元、或いは2次元に動作する例えば
リニアモータ装置に本発明の永久磁石磁気回路を使用す
ると、減磁しにくい最適な永久磁石磁気回路となる。
In the above-mentioned configuration, the configuration combining the above, the configuration combining the above, the configuration combining the above, and the configuration combining all of the above configurations can further reduce permanent magnetism over the entire area in the axial direction. A magnet magnetic circuit can be obtained. In each of the above embodiments, a permanent magnet magnetic circuit is used for a device that supports a rotating body such as a superconducting bearing device. However, the present invention is applied to, for example, a linear motor device that operates linearly and one-dimensionally or two-dimensionally. The use of a permanent magnet magnetic circuit results in an optimal permanent magnet magnetic circuit that is hardly demagnetized.

【0049】また、図4で示した第4実施形態の永久磁
石磁気回路では、最上部及び最下部にヨークを配置した
構成としているが、その位置にヨークを配置しなくと
も、上述した効果を得ることができる。
In the permanent magnet magnetic circuit according to the fourth embodiment shown in FIG. 4, the yokes are arranged at the uppermost portion and the lowermost portion. Obtainable.

【0050】[0050]

【実施例】永久磁石磁気回路の減磁の原因はさまざまあ
るが、ここでは本発明の効果を速やかに確認するため、
本発明に係る永久磁石磁気回路のモデルを複数作成し、
それらのモデルの周囲温度を上げて熱減磁を強制的に発
生させて確認することとした。始めに室温の20℃で磁
場強度の測定を行っておき、その後、永久磁石磁気回路
のモデルを、温度制御した電気炉に90分間放置して高
温にしたあと、一旦、室温まで冷却して磁場強度を測定
した。設定温度は50℃、70℃、90℃、110℃、
130℃、150℃、170℃でそれぞれ同様の操作を
して磁場強度の測定を行っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Although there are various causes of demagnetization of a permanent magnet magnetic circuit, here, in order to quickly confirm the effects of the present invention,
Create a plurality of models of the permanent magnet magnetic circuit according to the present invention,
It was decided to raise the ambient temperature of those models to forcibly generate thermal demagnetization. First, the strength of the magnetic field was measured at room temperature of 20 ° C. After that, the model of the permanent magnet magnetic circuit was left in a temperature-controlled electric furnace for 90 minutes to increase the temperature, and then cooled to room temperature to temporarily reduce the magnetic field. The strength was measured. The set temperatures are 50 ° C, 70 ° C, 90 ° C, 110 ° C,
The same operation was performed at 130 ° C., 150 ° C., and 170 ° C. to measure the magnetic field strength.

【0051】図5に示すモデルは、永久磁石の材料とし
てNEOMAX44H(商標名:住友特殊金属(株)
製)を使用し、ヨーク(軟質磁性体)の材料としてSS
400を使用した。また、並び方向の中央に位置する永
久磁石は、厚さL1が8mm、16mmの二種類のものを使
用し、並び方向の端部に位置する永久磁石の厚さは8mm
に設定し、ヨークの厚さは2mmに設定した。
The model shown in FIG. 5 uses NEOMAX44H (trade name: Sumitomo Special Metals Co., Ltd.) as the material of the permanent magnet.
), And SS as the material of the yoke (soft magnetic material)
400 were used. The permanent magnet located at the center in the arrangement direction uses two kinds having a thickness L1 of 8 mm and 16 mm, and the thickness of the permanent magnet located at the end in the arrangement direction is 8 mm.
And the thickness of the yoke was set to 2 mm.

【0052】磁場強度の測定は、図5に示すように、ガ
ウスメータのプローブの測定ギャップを2mmに設定し、
ヨーク番号1〜5の位置で行った。図6〜図8の測定結
果から明らかなように、永久磁石の厚さが全て均一(厚
さが8mm)であるモデルと比較して、並び方向の中央の
永久磁石の厚さを厚くした(厚さ16mm)モデルの方
が、減磁しにくいという効果を得ることができる。次
に、図9に示すモデルは、図5のモデルで示した材料と
同一の材料とし、並び方向の中央に位置するヨークを、
厚さtが2mm、6mmの二種類のものを使用し、並び方向
の端部に位置するヨークの厚さを2mmに設定し、永久磁
石の厚さは全て8mmに設定した。そして、図5のモデル
と同様に、測定ギャップを2mmに設定したガウスメータ
のプローブにより、ヨーク番号1〜5の位置で磁場強度
を測定した。
As shown in FIG. 5, the measurement gap of the probe of the Gauss meter was set to 2 mm.
The test was performed at the positions of yoke numbers 1 to 5. As is clear from the measurement results in FIGS. 6 to 8, the thickness of the permanent magnet at the center in the arrangement direction is increased as compared to the model in which the thicknesses of the permanent magnets are all uniform (the thickness is 8 mm) ( The model with a thickness of 16 mm) can obtain the effect of being less likely to be demagnetized. Next, the model shown in FIG. 9 is made of the same material as the material shown in the model of FIG.
Two types having a thickness t of 2 mm and 6 mm were used. The thickness of the yokes located at the ends in the arrangement direction was set to 2 mm, and the thicknesses of the permanent magnets were all set to 8 mm. Then, similarly to the model of FIG. 5, the magnetic field intensity was measured at the positions of the yoke numbers 1 to 5 by using a Gauss meter probe with the measurement gap set to 2 mm.

【0053】図10〜図12の測定結果から明らかなよ
うに、ヨークの厚さが全て均一(厚さが2mm)であるモ
デルと比較して、並び方向の中央のヨークの厚さを厚く
した(厚さ6mm)モデルの方が、何らかの要因で永久磁
石に強い減磁場がかかった場合あるいは、周囲の温度上
昇や永久磁石自身に生じた渦電流による発熱により永久
磁石が高温になっても減磁しにくいという効果が得られ
る。
As is clear from the measurement results of FIGS. 10 to 12, the thickness of the central yoke in the arrangement direction is increased compared to the model in which the thicknesses of the yokes are all uniform (the thickness is 2 mm). (Thickness: 6mm) The model is reduced even if a strong demagnetizing field is applied to the permanent magnet for some reason, or even if the temperature of the permanent magnet becomes high due to the rise in ambient temperature or heat generated by the eddy current generated in the permanent magnet itself. The effect of being hard to magnetize is obtained.

【0054】次に、図13〜図15に示す測定結果は、
前述した図3のように、全てのヨークの厚さを均一の厚
さとし、永久磁石の保磁力を変化させたモデルの測定結
果である。すなわち、これらの図の■で示す測定結果
は、並び方向の中央の永久磁石を保磁力の高いものとし
(NEOMAX39SH(商標名:住友特殊金属(株)
製)、並び方向の端部の永久磁石を保磁力の低いものと
し(NEOMAX44H)とした。また、これらの図の
◆で示す測定結果は、全ての永久磁石を保磁力の低いも
の(NEOMAX44H)とした。
Next, the measurement results shown in FIGS.
As shown in FIG. 3 described above, this is a measurement result of a model in which the thickness of all yokes is made uniform and the coercive force of the permanent magnet is changed. That is, the measurement results indicated by ■ in these figures are based on the assumption that the central permanent magnet in the arrangement direction has a high coercive force (NEOMAX39SH (trade name: Sumitomo Special Metals Co., Ltd.)
And the permanent magnets at the ends in the direction of alignment have low coercive force (NEOMAX44H). In addition, the measurement results indicated by ◆ in these figures indicate that all the permanent magnets have a low coercive force (NEOMAX44H).

【0055】これら図13〜図15から明らかなよう
に、並び方向の中央の永久磁石を保磁力の高いものとす
ると、何らかの要因で永久磁石に強い減磁場がかかった
場合あるいは、周囲の温度上昇や永久磁石自身に生じた
渦電流による発熱により永久磁石が高温になっても減磁
しにくいという効果が得られる。次に、図16〜図18
に示す測定結果は、並び方向の中央の永久磁石の厚さを
厚くし、且つ並び方向の中央のヨークの厚さを厚くした
モデル(このモデルの測定値を図で■で示す)と、従来
のモデル(並び方向の厚さが均一な永久磁石及びヨーク
であり、これらの図で◆で示す測定値)とを比較した結
果である。なお、ヨーク番号2、3、4は、図5のヨー
ク番号に対応している。
As is apparent from FIGS. 13 to 15, when the permanent magnet in the center in the arrangement direction has a high coercive force, when a strong demagnetizing field is applied to the permanent magnet for some reason or when the temperature of the surroundings increases. Also, even if the temperature of the permanent magnet becomes high due to the heat generated by the eddy current generated in the permanent magnet itself, it is possible to obtain an effect that it is difficult to demagnetize. Next, FIGS.
The measurement results shown in (1) and (2) show a model in which the thickness of the central permanent magnet in the arrangement direction is increased and the thickness of the center yoke in the arrangement direction is increased (the measured values of this model are indicated by ■ in the figure). (A permanent magnet and a yoke having a uniform thickness in the arrangement direction, and measured values indicated by ◆ in these figures). The yoke numbers 2, 3, and 4 correspond to the yoke numbers in FIG.

【0056】これら図16〜図18から明らかなよう
に、並び方向の中央の永久磁石の厚さを厚くし、且つ並
び方向の中央のヨークの厚さを厚くすることで、さらに
減磁しにくいという効果が得られる。次に、図19〜図
21に示す測定結果は、並び方向の中央の永久磁石の厚
さを厚くし、且つ並び方向の中央の永久磁石の保磁力を
高めたモデル(このモデルの測定値を図で■で示す)
と、従来のモデル(並び方向の厚さが均一な永久磁石及
びヨークであり、これらの図で◆で示す測定値)とを比
較した結果である。
As is apparent from FIGS. 16 to 18, by increasing the thickness of the central permanent magnet in the arrangement direction and increasing the thickness of the central yoke in the arrangement direction, demagnetization is more difficult. The effect is obtained. Next, the measurement results shown in FIGS. 19 to 21 are based on a model in which the thickness of the central permanent magnet in the arrangement direction is increased and the coercive force of the central permanent magnet in the arrangement direction is increased. (Shown by ■ in the figure)
7 is a result of comparison between a conventional model (a permanent magnet and a yoke having a uniform thickness in the arrangement direction and measured values indicated by ◆ in these figures).

【0057】これら図19〜図21から明らかなよう
に、並び方向の中央の永久磁石の厚さを厚くし、且つ並
び方向の中央の永久磁石の保磁力を高めたことで、さら
に減磁しにくいという効果が得られる。次に、図22〜
図23に示す測定結果は、並び方向の中央のヨークの厚
さを厚くし、且つ並び方向の中央の永久磁石の保磁力を
高めたモデル(このモデルの測定値を図で■で示す)
と、従来のモデル(並び方向の厚さが均一な永久磁石及
びヨークであり、これらの図で◆で示す測定値)とを比
較した結果である。
As is apparent from FIGS. 19 to 21, the demagnetization is further reduced by increasing the thickness of the central permanent magnet in the arrangement direction and increasing the coercive force of the central permanent magnet in the arrangement direction. The effect of being difficult is obtained. Next, FIG.
The measurement result shown in FIG. 23 is a model in which the thickness of the central yoke in the arrangement direction is increased and the coercive force of the permanent magnet in the center in the arrangement direction is increased (the measured values of this model are indicated by ■ in the figure).
7 is a result of comparison between a conventional model (a permanent magnet and a yoke having a uniform thickness in the arrangement direction and measured values indicated by ◆ in these figures).

【0058】これら図22〜図23から明らかなよう
に、並び方向の中央のヨークの厚さを厚くし、且つ並び
方向の中央の永久磁石の保磁力を高めたことで、さらに
減磁しにくいという効果が得られる。さらに、図25〜
図27に示す測定結果は、並び方向の中央の永久磁石の
厚さを厚くし、並び方向の中央のヨークの厚さを厚くす
るとともに、並び方向の中央の永久磁石の保磁力を高め
たモデル(このモデルの測定値を図で■で示す)と、従
来のモデル(並び方向の厚さが均一な永久磁石及びヨー
クであり、これらの図で◆で示す測定値)とを比較した
結果である。
As is apparent from FIGS. 22 to 23, the thickness of the central yoke in the arrangement direction is increased, and the coercive force of the central permanent magnet in the arrangement direction is increased. The effect is obtained. Further, FIG.
The measurement results shown in FIG. 27 show a model in which the thickness of the central permanent magnet in the arrangement direction is increased, the thickness of the central yoke in the arrangement direction is increased, and the coercive force of the central permanent magnet in the arrangement direction is increased. (The measured values of this model are indicated by ■ in the figure) and the results of a comparison between the conventional model (a permanent magnet and a yoke having uniform thickness in the arrangement direction, and the measured values indicated by ◆ in these figures) is there.

【0059】並び方向の中央の永久磁石の厚さを厚く
し、並び方向の中央のヨークの厚さを厚くし、且つ並び
方向の中央の永久磁石の保磁力を高めたことで、特に図
26に示すように、ヨーク3の測定部分で磁場強度がほ
とんど変化せず、さらに減磁しにくいという効果が得ら
れる。なお、減磁のしにくさと磁場強度の大きさは、本
発明の永久磁石磁気回路の用途により適宜調整すればよ
い。磁場強度の調整は、適切な永久磁石材料を選定する
こと、あるいは永久磁石の厚さとヨークの厚さの比率を
90:10から50:50の間で適切な比率にすること
により行うことができる。
By increasing the thickness of the central permanent magnet in the arrangement direction, increasing the thickness of the central yoke in the arrangement direction, and increasing the coercive force of the central permanent magnet in the arrangement direction, FIG. As shown in (1), the magnetic field intensity hardly changes in the measurement portion of the yoke 3, and the effect of further reducing the demagnetization is obtained. The degree of the demagnetization and the strength of the magnetic field may be appropriately adjusted depending on the use of the permanent magnet magnetic circuit of the present invention. The adjustment of the magnetic field strength can be performed by selecting an appropriate permanent magnet material or by setting the ratio of the thickness of the permanent magnet to the thickness of the yoke to an appropriate ratio between 90:10 and 50:50. .

【0060】なお、本発明で使用する永久磁石の材料と
しては、前述したNEOMAX等のNdFeB磁石の他
に、SmCo5 磁石、Sm2 Co17磁石、フェライト磁
石、アルニコ磁石及び、これらのボンド磁石である。ま
た、本発明で使用する軟質磁性体(ヨーク)は、電磁軟
鉄、パーマロイ、パーメンジェール、SS−41、Si
Feなどが好適である。
As the material of the permanent magnet used in the present invention, in addition to the above-mentioned NdFeB magnet such as NEOMAX, SmCo 5 magnet, Sm 2 Co 17 magnet, ferrite magnet, alnico magnet, and these bond magnets is there. The soft magnetic material (yoke) used in the present invention is made of soft magnetic iron, permalloy, permengel, SS-41, Si
Fe is suitable.

【0061】[0061]

【発明の効果】以上説明したように、請求項1記載の永
久磁石磁気回路によると、永久磁石及び軟質磁性体を並
べた方向の中央部のパーミアンス係数を大きな値に設定
したので、何らかの要因で永久磁石に強い減磁場がかか
った場合あるいは、周囲の温度上昇や永久磁石自身に生
じた渦電流による発熱により永久磁石が高温になって
も、磁気回路の中央部は減磁しにくい。また、永久磁石
及び軟質磁性体を並べた方向の端部側のパーミアンス係
数は小さくなりにくいので、何らかの要因で永久磁石に
強い減磁場がかかった場合あるいは、周囲の温度上昇や
永久磁石自身に生じた渦電流による発熱により永久磁石
が高温になっても、前記端部側は減磁しにくい。これに
より、並び方向の全域にわたって減磁しにくい永久磁石
磁気回路を得ることができ、長時間強い減磁場のかかる
用途あるいは、永久磁石が高温になる用途でも高性能の
磁気回路を得ることができる。
As described above, according to the permanent magnet magnetic circuit of the first aspect, the permeance coefficient at the central portion in the direction in which the permanent magnet and the soft magnetic material are arranged is set to a large value. Even when a strong demagnetizing field is applied to the permanent magnet, or even when the temperature of the permanent magnet becomes high due to an increase in ambient temperature or heat generated by an eddy current generated in the permanent magnet itself, the central portion of the magnetic circuit is hardly demagnetized. In addition, the permeance coefficient on the end side in the direction in which the permanent magnet and the soft magnetic material are arranged is difficult to decrease, so if a strong demagnetizing field is applied to the permanent magnet for some reason, or if the ambient temperature rises or the permanent magnet itself occurs Even if the temperature of the permanent magnet becomes high due to the heat generated by the eddy current, the end portion is hardly demagnetized. This makes it possible to obtain a permanent magnet magnetic circuit that is hard to be demagnetized over the entire area in the arrangement direction, and that a high-performance magnetic circuit can be obtained even in applications where a strong demagnetizing field is applied for a long time, or in applications where the temperature of the permanent magnet is high. .

【0062】請求項2記載の発明によると、永久磁石及
び軟質磁性体の並び方向の中央部に位置する永久磁石の
並び方向の寸法を、並び方向の端部に位置する永久磁石
の並び方向の寸法より大きくしたので、並び方向の中央
部のパーミアンス係数が大きな値になる、したがって、
並び方向の全域にわたって減磁しにくい永久磁石磁気回
路を得ることができ、長時間強い減磁場のかかる用途あ
るいは、永久磁石が高温になる用途でも高性能の磁気回
路を得ることができる。
According to the second aspect of the present invention, the dimension of the permanent magnet located at the center in the arrangement direction of the permanent magnet and the soft magnetic material in the arrangement direction is set to be equal to the dimension of the arrangement direction of the permanent magnet located at the end of the arrangement direction. Because it is larger than the dimensions, the permeance coefficient at the center in the alignment direction becomes a large value.
A permanent magnet magnetic circuit that is hardly demagnetized can be obtained over the entire area in the arrangement direction, and a high-performance magnetic circuit can be obtained even in an application in which a strong demagnetizing field is applied for a long time or an application in which the permanent magnet is heated to a high temperature.

【0063】請求項3記載の発明によると、永久磁石及
び軟質磁性体の並び方向の中央部に位置する軟質磁性体
の並び方向の寸法を、並び方向の端部に位置する軟質磁
性体の並び方向の寸法より大きくしたので、並び方向の
中央部のパーミアンス係数が大きな値になる、したがっ
て、並び方向の全域にわたって減磁しにくい永久磁石磁
気回路を得ることができ、長時間強い減磁場のかかる用
途あるいは、永久磁石が高温になる用途でも高性能の磁
気回路を得ることができる。
According to the third aspect of the present invention, the dimension of the soft magnetic material located at the center in the arrangement direction of the permanent magnet and the soft magnetic material in the arrangement direction is made equal to the arrangement of the soft magnetic material located at the end in the arrangement direction. Since the dimension is larger than the dimension in the direction, the permeance coefficient in the central part in the direction of alignment becomes a large value.Therefore, it is possible to obtain a permanent magnet magnetic circuit that is difficult to demagnetize over the entire area in the direction of alignment, and a strong demagnetizing field is applied for a long time. A high performance magnetic circuit can be obtained even in applications or applications where the temperature of the permanent magnet is high.

【0064】請求項4記載の発明によると、永久磁石及
び軟質磁性体の並び方向の中央部に位置する永久磁石
は、並び方向の端部に位置する前記永久磁石より保磁力
が大きい特性を有しているようにしたので、並び方向の
全域にわたって減磁しにくい永久磁石磁気回路を得るこ
とができ、長時間強い減磁場のかかる用途あるいは、永
久磁石が高温になる用途でも高性能の磁気回路を得るこ
とができる。
According to the fourth aspect of the present invention, the permanent magnet located at the center in the arrangement direction of the permanent magnet and the soft magnetic material has a characteristic that the coercive force is larger than that of the permanent magnet located at the end in the arrangement direction. This makes it possible to obtain a permanent magnet magnetic circuit that is hard to demagnetize over the entire area in the arrangement direction, and is a high-performance magnetic circuit even in applications where a strong demagnetization field is applied for a long time or where the temperature of the permanent magnet is high. Can be obtained.

【0065】また、請求項5から請求項8記載の発明に
よると、並び方向の中央部のパーミアンス係数がさらに
大きな値になるので、並び方向の全域にわたってさらに
減磁しにくい永久磁石磁気回路を得ることができる。ま
た、請求項9記載の超電導軸受装置によると、永久磁石
及び軟質磁性体を環状体に形成し、並び方向を回転軸に
直交する径方向として永久磁石及び軟質磁性体を径方向
に並べて配置してなる請求項1乃至8の何れかの永久磁
石磁気回路を、超電導体に相対回転自在に配置している
ので、径方向の中央部のパーミアンス係数が大きな値に
なり、径方向の全域にわたって減磁しにくい永久磁石磁
気回路を備えることになり、超電導体に対向して限られ
た大きさで配置した永久磁石磁気回路の性能が向上する
ので、アキシャル型の超電導軸受装置の高性能化を図る
ことができる。
According to the fifth to eighth aspects of the present invention, since the permeance coefficient at the central portion in the arrangement direction has a larger value, a permanent magnet magnetic circuit which is harder to demagnetize over the entire area in the arrangement direction is obtained. be able to. According to the superconducting bearing device of the ninth aspect, the permanent magnet and the soft magnetic material are formed in an annular body, and the permanent magnet and the soft magnetic material are arranged side by side in the radial direction with the arrangement direction being the radial direction orthogonal to the rotation axis. Since the permanent magnet magnetic circuit according to any one of claims 1 to 8 is disposed so as to be rotatable relative to the superconductor, the permeance coefficient at the central portion in the radial direction has a large value, and the permeance coefficient is reduced over the entire area in the radial direction. A permanent magnet magnetic circuit that is difficult to magnetize will be provided, and the performance of the permanent magnet magnetic circuit arranged in a limited size facing the superconductor will be improved, so that the performance of the axial type superconducting bearing device will be improved. be able to.

【0066】さらに、請求項10記載の超電導軸受装置
によると、永久磁石及び軟質磁性体を環状体に形成し、
並び方向を回転軸に沿う軸方向として前記永久磁石及び
前記軟質磁性体を前記軸方向に層状に配置してなる請求
項1乃至8の何れかの永久磁石磁気回路を、超電導体に
相対回転自在に配置しているので、軸方向の中央部のパ
ーミアンス係数が大きな値になり、軸方向の全域にわた
って減磁しにくい永久磁石磁気回路を備えることにな
り、超電導体に対向して限られた大きさで配置した永久
磁石磁気回路の性能が向上するので、ラジアル型の超電
導軸受装置の高性能化を図ることができる。
Further, according to the superconducting bearing device of the tenth aspect, the permanent magnet and the soft magnetic material are formed in an annular body,
The permanent magnet magnetic circuit according to any one of claims 1 to 8, wherein the permanent magnet and the soft magnetic material are arranged in layers in the axial direction with the arrangement direction being the axial direction along the rotation axis. , The permeance coefficient at the central part in the axial direction is large, and a permanent magnet magnetic circuit that is hard to demagnetize over the entire area in the axial direction is provided. Since the performance of the permanent magnet magnetic circuit arranged as described above is improved, the performance of the radial type superconducting bearing device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施形態のアキシャル型の超
電導軸受装置で使用する永久磁石磁気回路を示す図であ
る。
FIG. 1 is a diagram showing a permanent magnet magnetic circuit used in an axial type superconducting bearing device according to a first embodiment of the present invention.

【図2】本発明に係る第2実施形態のアキシャル型の超
電導軸受装置で使用する永久磁石磁気回路を示す図であ
る。
FIG. 2 is a diagram showing a permanent magnet magnetic circuit used in an axial type superconducting bearing device according to a second embodiment of the present invention.

【図3】本発明に係る第3実施形態のアキシャル型の超
電導軸受装置で使用する永久磁石磁気回路を示す図であ
る。
FIG. 3 is a view showing a permanent magnet magnetic circuit used in an axial type superconducting bearing device according to a third embodiment of the present invention.

【図4】本発明に係る第4実施形態のラジアル型の超電
導軸受装置で使用する永久磁石磁気回路を示す図であ
る。
FIG. 4 is a diagram showing a permanent magnet magnetic circuit used in a radial type superconducting bearing device according to a fourth embodiment of the present invention.

【図5】本発明に係る第1の実施例を示すモデル図であ
る。
FIG. 5 is a model diagram showing a first embodiment according to the present invention.

【図6】第1の実施例の測定結果を示す第1の図であ
る。
FIG. 6 is a first diagram illustrating measurement results of the first example.

【図7】第1の実施例の測定結果を示す第2の図であ
る。
FIG. 7 is a second diagram showing the measurement results of the first example.

【図8】第1の実施例の測定結果を示す第3の図であ
る。
FIG. 8 is a third diagram showing measurement results of the first example.

【図9】本発明に係る第2の実施例を示すモデル図であ
る。
FIG. 9 is a model diagram showing a second embodiment according to the present invention.

【図10】第2の実施例の測定結果を示す第1の図であ
る。
FIG. 10 is a first diagram illustrating measurement results of the second example.

【図11】第2の実施例の測定結果を示す第2の図であ
る。
FIG. 11 is a second diagram illustrating measurement results of the second example.

【図12】第2の実施例の測定結果を示す第3の図であ
る。
FIG. 12 is a third diagram showing the measurement results of the second example.

【図13】第3の実施例の測定結果を示す第1の図であ
る。
FIG. 13 is a first diagram illustrating measurement results of the third example.

【図14】第3の実施例の測定結果を示す第2の図であ
る。
FIG. 14 is a second diagram showing measurement results of the third example.

【図15】第3の実施例の測定結果を示す第3の図であ
る。
FIG. 15 is a third diagram showing the measurement results of the third example.

【図16】第4の実施例の測定結果を示す第1の図であ
る。
FIG. 16 is a first diagram illustrating measurement results of the fourth example.

【図17】第4の実施例の測定結果を示す第2の図であ
る。
FIG. 17 is a second diagram illustrating measurement results of the fourth example.

【図18】第4の実施例の測定結果を示す第3の図であ
る。
FIG. 18 is a third diagram illustrating measurement results of the fourth example.

【図19】第5の実施例の測定結果を示す第1の図であ
る。
FIG. 19 is a first diagram illustrating measurement results of the fifth example.

【図20】第5の実施例の測定結果を示す第2の図であ
る。
FIG. 20 is a second diagram illustrating measurement results of the fifth example.

【図21】第5の実施例の測定結果を示す第3の図であ
る。
FIG. 21 is a third diagram showing the measurement results of the fifth example.

【図22】第6の実施例の測定結果を示す第1の図であ
る。
FIG. 22 is a first diagram illustrating measurement results of the sixth example.

【図23】第6の実施例の測定結果を示す第2の図であ
る。
FIG. 23 is a second diagram showing the measurement results of the sixth example.

【図24】第6の実施例の測定結果を示す第3の図であ
る。
FIG. 24 is a third diagram showing the measurement results of the sixth example.

【図25】第7の実施例の測定結果を示す第1の図であ
る。
FIG. 25 is a first diagram illustrating measurement results of the seventh example.

【図26】第7の実施例の測定結果を示す第2の図であ
る。
FIG. 26 is a second diagram illustrating measurement results of the seventh example.

【図27】第7の実施例の測定結果を示す第3の図であ
る。
FIG. 27 is a third diagram illustrating measurement results of the seventh example.

【図28】アキシャル型の超電導軸受装置を示す図であ
る。
FIG. 28 is a view showing an axial type superconducting bearing device.

【図29】アキシャル型の超電導軸受装置を構成してい
る永久磁石磁気回路を示す図である。
FIG. 29 is a diagram showing a permanent magnet magnetic circuit constituting the axial type superconducting bearing device.

【図30】ラジアル型の超電導軸受装置を示す図であ
る。
FIG. 30 is a view showing a radial type superconducting bearing device.

【図31】従来の永久磁石磁気回路において減磁が発生
している箇所を示す図である。
FIG. 31 is a diagram showing locations where demagnetization occurs in a conventional permanent magnet magnetic circuit.

【図32】パーミアンス係数の計算値を示す図である。FIG. 32 is a diagram showing calculated values of permeance coefficients.

【図33】アキシャル型の超電導軸受装置の永久磁石磁
気回路において減磁が発生する位置を示す図である。
FIG. 33 is a diagram showing positions where demagnetization occurs in the permanent magnet magnetic circuit of the axial type superconducting bearing device.

【図34】ラジアル型の超電導軸受装置の永久磁石磁気
回路において減磁が発生する位置を示す図である。
FIG. 34 is a diagram showing positions where demagnetization occurs in a permanent magnet magnetic circuit of a radial type superconducting bearing device.

【図35】永久磁石磁気回路のモデル図である。FIG. 35 is a model diagram of a permanent magnet magnetic circuit.

【図36】本発明における永久磁石磁気回路の磁束の流
れを説明する図である。
FIG. 36 is a diagram illustrating the flow of magnetic flux of the permanent magnet magnetic circuit according to the present invention.

【符号の説明】[Explanation of symbols]

2 アキシャル型の超電導軸受装置 30 ラジアル型の超電導軸受装置 60、66、70、76 永久磁石磁気回路 62a〜62d 環状永久磁石(永久磁石) 64a〜64e ヨーク(軟質磁性体) 66a〜66d 環状永久磁石(永久磁石) 68a〜68e ヨーク(軟質磁性体) 72a〜72d 環状永久磁石(永久磁石) 74a〜74e ヨーク(軟質磁性体) 78a〜78d 環状永久磁石(永久磁石) 80a〜80e ヨーク(軟質磁性体) t1、t6 ヨークの厚さ t2、t4、t5 環状永久磁石の厚さ 2 Axial type superconducting bearing device 30 Radial type superconducting bearing device 60, 66, 70, 76 Permanent magnet magnetic circuit 62a to 62d Ring permanent magnet (permanent magnet) 64a to 64e Yoke (soft magnetic material) 66a to 66d Ring permanent magnet (Permanent magnet) 68a-68e Yoke (soft magnetic material) 72a-72d Ring permanent magnet (permanent magnet) 74a-74e Yoke (soft magnetic material) 78a-78d Ring permanent magnet (permanent magnet) 80a-80e Yoke (soft magnetic material) T1, t6 Thickness of yoke t2, t4, t5 Thickness of annular permanent magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植竹 昭仁 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 山本 日登志 東京都豊島区高田3丁目13番2号 住友特 殊金属株式会社技術開発本部内 Fターム(参考) 3J102 AA01 BA02 CA27 DA02 DA03 DA07 DA11 DA25 DA29 GA13 GA20 5H607 AA00 BB01 BB02 BB07 BB13 BB14 BB17 CC01 DD03 FF06 GG01 GG17 GG23  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihito Uetake 3-5-3 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (72) Inventor Hitoshi Yamamoto 3-13-2 Takada 3-chome, Toshima-ku, Tokyo Sumitomo F-term in Technical Development Division, Special Metals Co., Ltd. (reference)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体を並べた方向の中央部
のパーミアンス係数を大きな値に設定したことを特徴と
する永久磁石磁気回路。
1. A permanent magnet magnet comprising: a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, a permeance coefficient at a central portion in a direction in which the permanent magnet and the soft magnetic material are arranged is set to a large value.
【請求項2】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記永久磁石の並び方向の寸法を、並び方向の
端部に位置する永久磁石の並び方向の寸法より大きくし
たことを特徴とする永久磁石磁気回路。
2. A permanent magnet magnet comprising: a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the permanent magnet and the soft magnetic body are arranged such that the dimension in the arrangement direction of the permanent magnet located at the center in the arrangement direction is larger than the dimension in the arrangement direction of the permanent magnets located at the end in the arrangement direction. Features permanent magnet magnetic circuit.
【請求項3】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記軟質磁性体の並び方向の寸法を、並び方向
の端部に位置する軟質磁性体の並び方向の寸法より大き
くしたことを特徴とする永久磁石磁気回路。
3. A permanent magnet magnet comprising a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the dimension in the arrangement direction of the soft magnetic material located at the center in the arrangement direction of the permanent magnet and the soft magnetic material is larger than the dimension in the arrangement direction of the soft magnetic material located at the end in the arrangement direction. A permanent magnet magnetic circuit, characterized in that:
【請求項4】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記永久磁石は、並び方向の端部に位置する前
記永久磁石より保磁力が大きい特性を有していることを
特徴とする永久磁石磁気回路。
4. A permanent magnet magnet comprising a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the permanent magnet located at the center in the direction in which the permanent magnet and the soft magnetic material are arranged has a characteristic that the coercive force is larger than that of the permanent magnet located at the end in the direction in which the magnets are arranged. And a permanent magnet magnetic circuit.
【請求項5】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記永久磁石の並び方向の寸法を、並び方向の
端部に位置する永久磁石の並び方向の寸法より大きくす
るとともに、 並び方向の中央部に位置する前記軟質磁性体の並び方向
の寸法を、並び方向の端部に位置する軟質磁性体の並び
方向の寸法より大きくしたことを特徴とする永久磁石磁
気回路。
5. A permanent magnet magnet comprising a plurality of permanent magnets arranged side by side with a soft magnetic material sandwiched therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the dimension of the permanent magnet located in the central part of the arrangement direction of the permanent magnet and the soft magnetic material in the arrangement direction is larger than the dimension of the permanent magnet located at the end of the arrangement direction, and A permanent magnet magnetic circuit, wherein a dimension in the arrangement direction of the soft magnetic material located at the center in the arrangement direction is larger than a dimension in the arrangement direction of the soft magnetic material located at an end in the arrangement direction.
【請求項6】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記永久磁石の並び方向の寸法を、並び方向の
端部に位置する永久磁石の並び方向の寸法より大きくす
るとともに、 並び方向の中央部に位置する前記永久磁石は、並び方向
の端部に位置する前記永久磁石より保磁力が大きい特性
を有していることを特徴とする永久磁石磁気回路。
6. A permanent magnet magnet comprising a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the dimension of the permanent magnet located in the central part of the arrangement direction of the permanent magnet and the soft magnetic material in the arrangement direction is larger than the dimension of the permanent magnet located at the end of the arrangement direction, and The permanent magnet magnetic circuit according to claim 1, wherein the permanent magnet located at the center in the arrangement direction has a characteristic that the coercive force is larger than that of the permanent magnet located at the end in the arrangement direction.
【請求項7】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記軟質磁性体の並び方向の寸法を、並び方向
の端部に位置する軟質磁性体の並び方向の寸法より大き
くするとともに、 並び方向の中央部に位置する前記永久磁石は、並び方向
の端部に位置する前記永久磁石より保磁力が大きい特性
を有していることを特徴とする永久磁石磁気回路。
7. A permanent magnet magnet comprising a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the dimension in the arrangement direction of the soft magnetic material located at the center in the arrangement direction of the permanent magnet and the soft magnetic material is made larger than the dimension in the arrangement direction of the soft magnetic material located at the end in the arrangement direction. A permanent magnet magnetic circuit characterized in that the permanent magnet located at the center in the arrangement direction has a characteristic that the coercive force is larger than that of the permanent magnet located at the end in the arrangement direction.
【請求項8】 複数の永久磁石を、それらの間に軟質磁
性体を挟み込んで並べて配置し、前記軟質磁性体を介し
て互いに隣接する前記永久磁石どうしの同極を向き合わ
せてなる永久磁石磁気回路において、 前記永久磁石及び前記軟質磁性体の並び方向の中央部に
位置する前記永久磁石の並び方向の寸法を、並び方向の
端部に位置する永久磁石の並び方向の寸法より大きく
し、 並び方向の中央部に位置する前記軟質磁性体の並び方向
の寸法を、並び方向の端部に位置する軟質磁性体の並び
方向の寸法より大きくするとともに、 並び方向の中央部に位置する前記永久磁石は、並び方向
の端部に位置する前記永久磁石より保磁力が大きい特性
を有していることを特徴とする永久磁石磁気回路。
8. A permanent magnet magnet comprising a plurality of permanent magnets arranged side by side with a soft magnetic material interposed therebetween, and facing the same poles of the permanent magnets adjacent to each other via the soft magnetic material. In the circuit, the dimension in the arrangement direction of the permanent magnets located at the central part in the arrangement direction of the permanent magnets and the soft magnetic material is made larger than the dimension in the arrangement direction of the permanent magnets located at the ends in the arrangement direction. The size of the soft magnetic material located at the center in the direction of alignment is larger than the size of the soft magnetic material located at the end in the direction of alignment, and the permanent magnet located at the center of the direction of alignment. Has a characteristic that the coercive force is larger than that of the permanent magnet located at the end in the arrangement direction.
【請求項9】 前記永久磁石及び前記軟質磁性体を環状
体に形成し、前記並び方向を回転軸に直交する径方向と
して前記永久磁石及び前記軟質磁性体を前記径方向に並
べて配置してなる請求項1乃至8の何れかの永久磁石磁
気回路を、超電導体に相対回転自在に配置したことを特
徴とする超電導軸受装置。
9. The permanent magnet and the soft magnetic material are formed in an annular body, and the permanent magnet and the soft magnetic material are arranged side by side in the radial direction with the arrangement direction being a radial direction orthogonal to a rotation axis. A superconducting bearing device, wherein the permanent magnet magnetic circuit according to any one of claims 1 to 8 is relatively rotatably disposed on the superconductor.
【請求項10】 前記永久磁石及び前記軟質磁性体を環
状体に形成し、前記並び方向を回転軸に沿う軸方向とし
て前記永久磁石及び前記軟質磁性体を前記軸方向に層状
に配置してなる請求項1乃至8の何れかの永久磁石磁気
回路を、超電導体に相対回転自在に配置したことを特徴
とする超電導軸受装置。
10. The permanent magnet and the soft magnetic material are formed in an annular body, and the permanent magnet and the soft magnetic material are arranged in a layered manner in the axial direction with the arrangement direction being the axial direction along the rotation axis. A superconducting bearing device, wherein the permanent magnet magnetic circuit according to any one of claims 1 to 8 is relatively rotatably disposed on the superconductor.
JP2001119246A 2001-04-18 2001-04-18 Permanent magnet magnetic circuit and superconductive bearing device Withdrawn JP2002310154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119246A JP2002310154A (en) 2001-04-18 2001-04-18 Permanent magnet magnetic circuit and superconductive bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119246A JP2002310154A (en) 2001-04-18 2001-04-18 Permanent magnet magnetic circuit and superconductive bearing device

Publications (2)

Publication Number Publication Date
JP2002310154A true JP2002310154A (en) 2002-10-23
JP2002310154A5 JP2002310154A5 (en) 2006-04-20

Family

ID=18969498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119246A Withdrawn JP2002310154A (en) 2001-04-18 2001-04-18 Permanent magnet magnetic circuit and superconductive bearing device

Country Status (1)

Country Link
JP (1) JP2002310154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385961A1 (en) * 2017-04-05 2018-10-10 Pfeiffer Vacuum Gmbh Monolithic permanent magnet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211619A (en) * 1986-01-24 1986-09-19 Himeji Denshi Kk Combustion improving device
JPH0410504A (en) * 1990-04-27 1992-01-14 Hitachi Metals Ltd Heat treatment method for rare-earth permanent magnet
JPH04186709A (en) * 1990-11-20 1992-07-03 Seiko Epson Corp Multipole magnetization
JPH08284956A (en) * 1995-04-11 1996-11-01 Seiko Epson Corp Super-conductive magnetic bearing device
JPH1014147A (en) * 1996-06-24 1998-01-16 Fuji Electric Co Ltd Rotary machine having circumferentially magnetized rotor and manufacture thereof
JPH11207643A (en) * 1998-01-26 1999-08-03 Mitsubishi Steel Mfg Co Ltd Magnet chuck
JP2000140923A (en) * 1998-11-04 2000-05-23 Canon Inc Magnet roller and conveying device
JP2000224828A (en) * 1999-02-02 2000-08-11 Sanyo Electric Co Ltd Movable magnet linear motor
JP2000253608A (en) * 1999-03-03 2000-09-14 Sharp Corp Brushlfss motor
JP2000354872A (en) * 1999-06-16 2000-12-26 Burein:Kk Water treatment apparatus
JP2001069735A (en) * 1999-08-31 2001-03-16 Toshiba Corp Permanent magnet type reluctance type rotary electric machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211619A (en) * 1986-01-24 1986-09-19 Himeji Denshi Kk Combustion improving device
JPH0410504A (en) * 1990-04-27 1992-01-14 Hitachi Metals Ltd Heat treatment method for rare-earth permanent magnet
JPH04186709A (en) * 1990-11-20 1992-07-03 Seiko Epson Corp Multipole magnetization
JPH08284956A (en) * 1995-04-11 1996-11-01 Seiko Epson Corp Super-conductive magnetic bearing device
JPH1014147A (en) * 1996-06-24 1998-01-16 Fuji Electric Co Ltd Rotary machine having circumferentially magnetized rotor and manufacture thereof
JPH11207643A (en) * 1998-01-26 1999-08-03 Mitsubishi Steel Mfg Co Ltd Magnet chuck
JP2000140923A (en) * 1998-11-04 2000-05-23 Canon Inc Magnet roller and conveying device
JP2000224828A (en) * 1999-02-02 2000-08-11 Sanyo Electric Co Ltd Movable magnet linear motor
JP2000253608A (en) * 1999-03-03 2000-09-14 Sharp Corp Brushlfss motor
JP2000354872A (en) * 1999-06-16 2000-12-26 Burein:Kk Water treatment apparatus
JP2001069735A (en) * 1999-08-31 2001-03-16 Toshiba Corp Permanent magnet type reluctance type rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385961A1 (en) * 2017-04-05 2018-10-10 Pfeiffer Vacuum Gmbh Monolithic permanent magnet

Similar Documents

Publication Publication Date Title
US7053508B2 (en) Rotary electric machine and a rotor of the same
CA2592161C (en) Axial gap type superconducting motor
JP4935799B2 (en) Rotating electric machine and its rotor
CN106337876B (en) Heteropolar formula permanent magnetic offset mixed radial magnetic bearing
US10804064B2 (en) Magnetic lift device for an x-ray tube
KR20110046488A (en) Superconducting Coil and Magnetic Field Generator
JP3455002B2 (en) Permanent magnet type rotating electric machine
JP2009201343A (en) Permanent magnet rotating electrical machine
JP4758703B2 (en) Superconducting device and axial gap type superconducting motor
JP3675010B2 (en) Superconducting bearing device
JP2002310154A (en) Permanent magnet magnetic circuit and superconductive bearing device
Kwon et al. Prospect of developing Nd–Fe–B-type magnet with high electrical resistivity
JP2000270502A (en) Rotating machine
JP3554054B2 (en) Superconducting bearing device
JP2009050131A (en) Polarizing apparatus
JP2777331B2 (en) Permanent magnet type rotating electric machine
JP2010141991A (en) Rotating motor
JP2006149007A (en) Stator yoke and radial gap type motor
JP2010154682A (en) Rotor and motor
JP2009232510A (en) Cylindrical power generating equipment floated by high temperature superconductor, with two-magnetic pole axes rotator
JP2020038027A (en) Rotator for magnetic refrigeration device, magnetic refrigeration device, and method of manufacturing magnetic refrigeration device
JPH09131025A (en) Method of magnetizing permanent magnet
JP2005094902A (en) Shifter
CN116201813A (en) Permanent magnet bias magnetic flux adjustable magnetic bearing
JP2004242392A (en) Brushless dc motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090126