JPH09131025A - Method of magnetizing permanent magnet - Google Patents

Method of magnetizing permanent magnet

Info

Publication number
JPH09131025A
JPH09131025A JP28155895A JP28155895A JPH09131025A JP H09131025 A JPH09131025 A JP H09131025A JP 28155895 A JP28155895 A JP 28155895A JP 28155895 A JP28155895 A JP 28155895A JP H09131025 A JPH09131025 A JP H09131025A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
magnetizing
magnetic field
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28155895A
Other languages
Japanese (ja)
Inventor
Munehisa Hasegawa
統久 長谷川
Takashi Sasaki
崇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP28155895A priority Critical patent/JPH09131025A/en
Publication of JPH09131025A publication Critical patent/JPH09131025A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To magnetize a permanent magnet even in the case that sufficient magnetizing field strength is hard to get, by performing magnetization after heating a permanent magnet until the tenacity of the permanent magnet falls under the magnetizing field intensity, and cooling it to room temperature, keeping it so that the permeance coefficient may be the straight part of a demagnetization curve. SOLUTION: A permanent magnet 3 is set between the pole pieces of a magnetizer, being caught with SS-41 ferromagnetic substances having heaters 100mm in diameter and 10mm in thickness. Next, an Nd-Fe-B magnet part is heated t0 140 deg.C by the heater, and a magnetizing field is applied to it to perform magnetization. The intensity of magnetizing field at this time is 8kOe. After magnetization of the magnet, the magnetizing field is removed, and an SS-41 ferromagnetic substance yoke is attached so that the SS-41 ferromagnetic substances catching the magnet may close the magnetic circuit. After attachment, the magnet and the SS-41 ferromagnetic substances are removed from a magnetizer while being set, and they are cooled to room temperature. As a result, even in case that enough magnetizing field intensity is hard to get, magnetization can be made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高磁場を発生させ
るための大がかりな設備を用いることなしに、高保磁力
型の永久磁石あるいは大型形状の磁石のように、十分な
着磁磁界強度を得にくい場合でも着磁できる永久磁石の
着磁方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a sufficient magnetizing magnetic field strength, such as a high coercive force type permanent magnet or a large-sized magnet, without using a large-scale facility for generating a high magnetic field. The present invention relates to a method of magnetizing a permanent magnet that can be magnetized even when it is difficult.

【0002】[0002]

【従来の技術】近年、電子機器や精密機器の小型、軽量
化の市場傾向に伴い、永久磁石においては従来のアルニ
コやフェライト磁石に代わり希土類磁石が多くの分野で
利用されるようになってきた。これら希土類磁石の着磁
方法は、室温で着磁コイルあるいはポールピース内に未
着磁の界磁用永久磁石単体を置き、磁化電源装置により
パルス磁場あるいは静磁場を印加する方法あるいは界磁
用永久磁石に軟磁性ヨークを取付けた後パルス磁場ある
いは静磁場をを印加することにより行なわれている。ま
た、特開平6−178507号に記載されているよう
に、希土類磁石の高温における保磁力の減少を利用した
着磁方法も採用されている。これは、磁石をヨークに組
み込んだ後に着磁する方法で、組み込んだ後では形状的
な制約のために大きな着磁磁界を発生できないので、低
磁場でも着磁できるように永久磁石を加熱し保磁力を下
げることにより着磁する方法である。
2. Description of the Related Art In recent years, along with the market trend toward smaller and lighter electronic equipment and precision equipment, rare earth magnets have been used in many fields in permanent magnets instead of conventional alnico and ferrite magnets. . These rare earth magnets are magnetized by placing an unmagnetized field permanent magnet alone in a magnetizing coil or pole piece at room temperature and applying a pulsed magnetic field or a static magnetic field by a magnetizing power supply device or a permanent magnet for field magnetization. This is done by attaching a soft magnetic yoke to the magnet and then applying a pulsed magnetic field or a static magnetic field. Further, as described in JP-A-6-178507, a magnetizing method utilizing a decrease in coercive force of a rare earth magnet at high temperature is also adopted. This is a method in which the magnet is magnetized after it is installed in the yoke, and after it is installed, a large magnetizing magnetic field cannot be generated due to shape restrictions, so the permanent magnet is heated and kept so that it can be magnetized even in a low magnetic field. This is a method of magnetizing by lowering the magnetic force.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高保磁
力型永久磁石あるいは大型形状磁石を室温で着磁するた
めには、永久磁石に高磁場を発生させる必要があり着磁
コイルに大電流を流す必要がある。そのため、永久磁石
を着磁するために磁化電源装置の大容量化および着磁コ
イル等着磁設備の大規模化が不可欠となる。そして、こ
れらの大規模かつ大容量の磁化電源装置は、通常使用さ
れる磁化電源装置に比較し、取扱い上非常に危険なもの
である。また、着磁コイルに大電流を流すことは、着磁
コイルの銅損の増加を招き、着磁コイルの発熱を増加さ
せることになり、磁化電源装置および着磁コイルの劣化
を促進することになる。さらに、高磁場を発生させるこ
とは渦電流の影響、着磁コイルの飽和の影響により、非
常に磁場が不安定かつ作業が困難なものである。さら
に、高磁場を発生させる着磁コイルとしては、その瞬間
高磁場による電磁応力が作用するために、その電磁応力
に耐え得る機械的強度も必要とされる。また、磁石をヨ
ークに組み込んで着磁する場合には磁石単体のパーミア
ンス係数(パーミアンス係数は磁石の形状に依存する係
数で、磁化方向の寸法が小さい場合にはパーミアンス係
数が小さくなり、磁石自身による反磁界が大きくな
る。)よりもそれほど大きくすることができないため
に、高温に加熱しすぎると磁石の減磁曲線の直線部分を
外れ、室温に戻したときには大きな不可逆減磁が観察さ
れる。
However, in order to magnetize a high coercive force type permanent magnet or a large-sized magnet at room temperature, it is necessary to generate a high magnetic field in the permanent magnet, and it is necessary to apply a large current to the magnetizing coil. There is. Therefore, in order to magnetize the permanent magnet, it is indispensable to increase the capacity of the magnetizing power supply device and increase the size of the magnetizing equipment such as the magnetizing coil. Further, these large-scale and large-capacity magnetizing power supply devices are extremely dangerous in handling, as compared with normally used magnetizing power supply devices. In addition, passing a large current through the magnetizing coil leads to an increase in copper loss of the magnetizing coil, increasing heat generation of the magnetizing coil, and promoting deterioration of the magnetizing power supply device and the magnetizing coil. Become. Furthermore, generating a high magnetic field is extremely unstable and difficult to work due to the effects of eddy current and saturation of the magnetizing coil. Further, a magnetizing coil for generating a high magnetic field is required to have mechanical strength capable of withstanding the electromagnetic stress due to the electromagnetic stress caused by the instantaneous high magnetic field. In addition, when magnets are magnetized by incorporating them into the yoke, the permeance coefficient of the magnet itself (permeance coefficient is a coefficient that depends on the shape of the magnet. The demagnetizing field becomes larger than that of the magnet.) Therefore, if heated too high, it deviates from the linear part of the demagnetization curve of the magnet, and a large irreversible demagnetization is observed when returning to room temperature.

【0004】そこで、本発明は、高磁場を発生させるた
めの大がかりな設備を用いることなしに、高保磁力型の
永久磁石あるいは大型形状の磁石のように、十分な着磁
磁界強度を得にくい場合でも着磁できる永久磁石の着磁
方法を提供することを目的とする。
Therefore, according to the present invention, when it is difficult to obtain a sufficient magnetic field strength, such as a high coercive force permanent magnet or a large-sized magnet, without using a large-scale facility for generating a high magnetic field. However, it is an object of the present invention to provide a method of magnetizing a permanent magnet that can be magnetized.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本永久磁石の着磁方法は、永久磁石を着磁をする際、
永久磁石の保磁力が着磁磁界強度以下になるまで加熱し
た後に着磁を行い、パーミアンス係数が減磁曲線の直線
部分になるようにしたまま室温まで冷却する永久磁石の
着磁方法であり、前記永久磁石がR−Fe−B系永久磁
石(RはYを含む希土類元素の1種または2種以上)で
ある永久磁石の着磁方法である。
A method of magnetizing a permanent magnet according to the present invention for solving the above-mentioned problems is as follows.
It is a method of magnetizing a permanent magnet that is cooled to room temperature while heating it until the coercive force of the permanent magnet becomes equal to or less than the magnetizing magnetic field strength, and then cooling it to room temperature while keeping the permeance coefficient in the linear portion of the demagnetization curve. The permanent magnet is a method for magnetizing a permanent magnet, wherein the permanent magnet is an R—Fe—B system permanent magnet (R is one or more rare earth elements including Y).

【0006】本発明は、高磁場を発生させるための大が
かりな設備を用いることなしに、高保磁力型の永久磁石
あるいは大型形状の磁石のように、十分な着磁磁界強度
を得にくい場合でも着磁できる永久磁石の着磁方法に関
するものである。すなわち、一般に永久磁石を着磁する
場合、保磁力以上の着磁磁界を永久磁石に印加する必要
があるが、高保磁力型永久磁石を着磁するには保磁力が
大きいので高磁場を発生させるための大がかりな設備が
必要となる。また、大型形状の磁石をポールピース間に
挟んで着磁するには、ポールピース間のギャップが大き
くなり大きな着磁磁界強度が得にくく高磁場を発生させ
るために大がかりな設備が必要となる。そこで、高保磁
力型永久磁石や大型形状の磁石を着磁する場合、永久磁
石における保磁力の温度係数が負であることを利用し永
久磁石を加熱することで永久磁石の保磁力を低下させ、
それにより大がかりな磁界発生装置を用いることなしに
通常の着磁磁界強度でも永久磁石の着磁率を上げること
ができる。しかし、加熱・着磁した永久磁石を熱いまま
着磁器から取り外す時、パーミアンス係数が永久磁石の
減磁曲線の直線部分から外れていると、磁石自身が有す
る磁極の反磁界により減磁が発生し磁気特性が低下して
しまう。そこで、永久磁石の保磁力が着磁磁界強度以下
になるまで加熱した後に着磁を行い、パーミアンス係数
が減磁曲線の直線部分になるように維持したまま永久磁
石を室温まで冷却することにより着磁率が高く磁気特性
の高い永久磁石を得ることができる。
According to the present invention, even when it is difficult to obtain a sufficient magnetic field strength such as a high coercive force type permanent magnet or a large-sized magnet without using a large-scale facility for generating a high magnetic field. The present invention relates to a method of magnetizing a permanent magnet that can be magnetized. That is, in general, when magnetizing a permanent magnet, it is necessary to apply a magnetizing magnetic field having a coercive force or more to the permanent magnet, but in order to magnetize a high coercive force type permanent magnet, the coercive force is large, so that a high magnetic field is generated. Therefore, large-scale equipment is required. Further, when magnetizing a large-sized magnet by sandwiching it between pole pieces, the gap between the pole pieces becomes large, and it becomes difficult to obtain a large magnetizing magnetic field strength, and thus large-scale equipment is required to generate a high magnetic field. Therefore, when magnetizing a high coercive force type permanent magnet or a large-sized magnet, the coercive force of the permanent magnet is lowered by heating the permanent magnet by utilizing the fact that the temperature coefficient of the coercive force in the permanent magnet is negative,
As a result, the magnetizing rate of the permanent magnet can be increased even with a normal magnetizing magnetic field strength without using a large-scale magnetic field generator. However, when the heated and magnetized permanent magnet is removed from the magnetizer while it is still hot, if the permeance coefficient deviates from the linear part of the demagnetization curve of the permanent magnet, demagnetization occurs due to the demagnetizing field of the magnetic pole of the magnet itself. The magnetic characteristics will deteriorate. Therefore, heating is performed until the coercive force of the permanent magnet becomes equal to or lower than the magnetizing magnetic field strength, and then the permanent magnet is magnetized by cooling it to room temperature while maintaining the permeance coefficient in the linear portion of the demagnetization curve. It is possible to obtain a permanent magnet having a high magnetic susceptibility and high magnetic properties.

【0007】そこで、本発明は、永久磁石の保磁力が着
磁磁界強度以下になるまで永久磁石を加熱し着磁した
後、パーミアンス係数が減磁曲線の直線部分になるよう
にしたまま室温まで冷却する永久磁石の着磁方法であっ
て、前記永久磁石は保磁力の温度係数が負で比較的大き
いR−Fe−B系永久磁石(RはYを含む希土類元素の
1種または2種以上)が好ましい。
Therefore, according to the present invention, the permanent magnet is heated and magnetized until the coercive force of the permanent magnet becomes equal to or less than the magnetizing magnetic field strength, and then the permeance coefficient is kept at room temperature with the linear portion of the demagnetization curve. A method of magnetizing a permanent magnet to be cooled, wherein the permanent magnet has a relatively large temperature coefficient of coercive force and is relatively large (R is one or more rare earth elements including Y). ) Is preferred.

【0008】以下、本発明の限定理由について示す。本
発明において、永久磁石の保磁力が着磁器の着磁磁界強
度以下になるまで永久磁石を加熱するのは、保磁力が着
磁磁界強度よりも大きいと永久磁石を十分に着磁するこ
とができないからである。また、加熱した後に着磁を行
い、パーミアンス係数が減磁曲線の直線部分になるよう
にしたまま永久磁石を室温まで冷却するのは、パーミア
ンス係数が減磁曲線の直線部分を外れたまま着磁器から
取り外すと、永久磁石は永久磁石自身の持つ磁極の反磁
界により永久減磁を生じ磁気特性が低下するからであ
る。そして、着磁する永久磁石としては保磁力の温度係
数が負でかつ他の磁石材料に比較して大きいR−Fe−
B系永久磁石(RはYを含む希土類元素の1種または2
種以上)が好ましい。また、予備加熱してから加熱装置
を有する着磁器を用いて着磁を行っても良い。
The reasons for limitation of the present invention will be described below. In the present invention, the permanent magnet is heated until the coercive force of the permanent magnet becomes equal to or less than the magnetizing magnetic field strength of the magnetizer. The coercive force is sufficiently magnetized if the coercive force is larger than the magnetizing magnetic field strength. Because you can't. Also, after heating, magnetization is performed and the permanent magnet is cooled to room temperature while the permeance coefficient is in the straight line part of the demagnetization curve. This is because the permanent magnets are permanently demagnetized by the demagnetizing field of the magnetic poles of the permanent magnets themselves, and the magnetic characteristics are deteriorated. As a magnetized permanent magnet, the temperature coefficient of coercive force is negative and R-Fe- is larger than that of other magnet materials.
B-based permanent magnet (R is one or two rare earth elements including Y)
Or more) are preferred. Alternatively, after preheating, the magnetization may be performed using a magnetizer having a heating device.

【0009】[0009]

【発明の実施の態様】以下、本発明を実施例によって具
体的に説明するが、本発明はこれらの実施例によって限
定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

【0010】(実施例1)図1に着磁器の概略図を示
す。この着磁器はポールピース2の先端断面の直径が1
00mmであり、ギャップが10mmで25kOeの着
磁磁界強度を発生させる。この着磁器を用いて40x7
0x30mm(着磁方向:30mm)のNd−Fe−B
系焼結磁石(Br=12.5kG、iHc=14.5k
Oe)を以下の手順で着磁した。まず初めに、この永久
磁石3を図2に示すように直径100mm、厚さ10m
mの加熱装置を有するSS−41強磁性体4にはさみ、
着磁器のポールピース2間にセットした。次に、加熱装
置によりNd−Fe−B系磁石部分を140℃に加熱
し、着磁磁界を印加し着磁を行った。この時の着磁磁界
強度は8kOeであった。磁石を着磁した後、着磁磁界
を取り除き、図3に示すにように磁石をはさんでいるS
S−41強磁性体が磁気回路的に閉じるようにSS−4
1強磁性体ヨークを取り付けた。取り付けた後、磁石お
よびSS−41強磁性体を組んだまま着磁器から取り外
し、室温まで冷却した。冷却後、磁石からSS−41強
磁性体を取り外し磁束を測定し、7300Gの磁束密度
を得た。図6に加熱・着磁した後の磁束の変化を模式的
に示す(a:室温→b:140℃→c:室温→d:強磁
性体を外した時)。
(Embodiment 1) FIG. 1 shows a schematic view of a magnetizer. This magnetizer has a pole piece 2 with a diameter of 1 at the tip cross section.
00 mm and a gap of 10 mm to generate a magnetizing field strength of 25 kOe. 40x7 using this magnetizer
0x30mm (magnetization direction: 30mm) Nd-Fe-B
System sintered magnet (Br = 12.5kG, iHc = 14.5k
Oe) was magnetized by the following procedure. First, as shown in FIG. 2, the permanent magnet 3 has a diameter of 100 mm and a thickness of 10 m.
scissors between SS-41 ferromagnets 4 with m heating device,
It was set between the pole pieces 2 of the magnetizer. Next, the Nd-Fe-B type | system | group magnet part was heated to 140 degreeC with the heating device, and the magnetizing magnetic field was applied and magnetized. The magnetizing magnetic field strength at this time was 8 kOe. After magnetizing the magnet, the magnetizing magnetic field is removed and the magnet is sandwiched as shown in FIG.
S-41 Ferromagnetic material SS-4 so that it closes like a magnetic circuit
1. A ferromagnetic yoke was attached. After mounting, the magnet and the SS-41 ferromagnetic material were removed from the magnetizer with the magnet and SS-41 ferromagnetic material assembled, and cooled to room temperature. After cooling, the SS-41 ferromagnetic material was removed from the magnet and the magnetic flux was measured to obtain a magnetic flux density of 7300G. FIG. 6 schematically shows changes in magnetic flux after heating and magnetization (a: room temperature → b: 140 ° C. → c: room temperature → d: when a ferromagnetic material is removed).

【0011】(実施例2)実施例1で用いた着磁器で4
0x70x30mm(磁化方向:30mm)のNd−F
e−B系焼結磁石(Br=12.5kG、iHc=1
4.5kOe)を以下の手順で着磁を行った。まず初め
に、この磁石を図2に示すように直径100mm、厚さ
10mmの加熱装置を有するパーメンダーにはさみ、着
磁器のポールピース間にセットした。次に、加熱装置に
よりNd−Fe−B系磁石部分を140℃に加熱し、着
磁磁界を印加し着磁を行った。この時の着磁磁界強度は
8.5kOeであった。磁石を着磁した後、着磁磁界を
取り除き、図3に示すように磁石をはさんでいるパーメ
ンダーが磁気回路的に閉じるようにSS−41ヨークを
取り付けた。取り付けた後、磁石、パーメンダーおよび
SS−41を組んだまま着磁器から取り外し室温まで冷
却した。冷却後、磁石からパーメンダーおよびSS−4
1を取り外し磁束を測定し、7350Gの磁束密度を得
た。
(Embodiment 2) With the magnetizer used in Embodiment 1, 4
Nd-F of 0x70x30mm (magnetization direction: 30mm)
e-B system sintered magnet (Br = 12.5kG, iHc = 1
4.5 kOe) was magnetized by the following procedure. First, as shown in FIG. 2, this magnet was sandwiched by a permender having a heating device having a diameter of 100 mm and a thickness of 10 mm, and set between pole pieces of a magnetizer. Next, the Nd-Fe-B type | system | group magnet part was heated to 140 degreeC with the heating device, and the magnetizing magnetic field was applied and magnetized. The magnetizing magnetic field strength at this time was 8.5 kOe. After magnetizing the magnet, the magnetizing magnetic field was removed, and an SS-41 yoke was attached so that the permenders sandwiching the magnet closed in a magnetic circuit as shown in FIG. After mounting, the magnet, the permendur and the SS-41 were removed from the magnetizer with the magnet assembled, and cooled to room temperature. After cooling, from magnet to permender and SS-4
1 was removed and the magnetic flux was measured to obtain a magnetic flux density of 7350G.

【0012】(実施例3)図1に示す着磁器を用いて1
0x11x10mm(着磁方向:10mm)のNd−F
e−B系焼結磁石(Br=12.5kG、iHc=1
4.5kOe)を以下の手順で着磁を行った。この磁石
を図4に示すようにポールピース間にセットし、25k
Oeの着磁磁界強度を印加し着磁を行った。着磁後、磁
石の減磁曲線を測定し図5(a)の減磁曲線を得た。
(Embodiment 3) Using the magnetizer shown in FIG.
Nd-F of 0x11x10mm (magnetization direction: 10mm)
e-B system sintered magnet (Br = 12.5kG, iHc = 1
4.5 kOe) was magnetized by the following procedure. Set this magnet between pole pieces as shown in Fig. 4,
Magnetization was performed by applying a magnetic field strength of Oe. After the magnetization, the demagnetization curve of the magnet was measured to obtain the demagnetization curve of FIG.

【0013】(比較例1)実施例1で用いた着磁器で4
0x70x30mm(着磁方向:30mm)のNd−F
e−B系焼結磁石(Br=12.5kG、iHc=1
4.5kOe)を以下の手順で着磁を行った。まず初め
に、この磁石を図2に示すように直径100mm、厚さ
10mmの加熱装置を有するパーメンダーにはさみ、着
磁器のポールピース間にセットした。次に、加熱装置に
よりNd−Fe−B系磁石部分を140℃に加熱し、着
磁磁界を印加し着磁を行った。この時の着磁磁界強度は
8.5kOeであった。磁石を着磁した後、熱いままポ
ールピースから取り外し室温まで冷却した。冷却後、ヨ
ークを取り外し磁束を測定し6500Gの磁束密度を得
た。図6に、加熱・着磁した後の磁束の変化を模式的に
示す(a':室温→b':140℃→c':室温減磁曲線
対応点→d':室温)。
(Comparative Example 1) In the magnetizer used in Example 1, 4
Nd-F of 0x70x30mm (magnetization direction: 30mm)
e-B system sintered magnet (Br = 12.5kG, iHc = 1
4.5 kOe) was magnetized by the following procedure. First, as shown in FIG. 2, this magnet was sandwiched by a permender having a heating device having a diameter of 100 mm and a thickness of 10 mm, and set between pole pieces of a magnetizer. Next, the Nd-Fe-B type | system | group magnet part was heated to 140 degreeC with the heating device, and the magnetizing magnetic field was applied and magnetized. The magnetizing magnetic field strength at this time was 8.5 kOe. After magnetizing the magnet, it was removed from the pole piece while still hot and cooled to room temperature. After cooling, the yoke was removed and the magnetic flux was measured to obtain a magnetic flux density of 6500G. FIG. 6 schematically shows changes in magnetic flux after heating and magnetization (a ′: room temperature → b ′: 140 ° C. → c ′: room temperature demagnetization curve corresponding point → d ′: room temperature).

【0014】(比較例2)図1に着磁器を用いて40x
70x30mm(着磁方向:30mm)のNd−Fe−
B系焼結磁石(Br=12.5kG、iHc=14.5
kOe)を以下の手順で着磁を行った。この磁石を図4
に示すようにポールピース間にセットし、着磁磁界を印
加し着磁を行った。この時の着磁磁界強度は8kOeで
あった。着磁後、実施例1と同様に磁束を測定し530
0Gの磁束密度を得た。
(Comparative Example 2) 40x using a magnetizer in FIG.
70x30 mm (magnetization direction: 30 mm) Nd-Fe-
B system sintered magnet (Br = 12.5 kG, iHc = 14.5
The kOe) was magnetized in the following procedure. This magnet is shown in Figure 4.
As shown in FIG. 5, the magnets were set between pole pieces and magnetized by applying a magnetizing magnetic field. The magnetizing magnetic field strength at this time was 8 kOe. After the magnetization, the magnetic flux is measured in the same manner as in Example 1 to obtain 530
A magnetic flux density of 0 G was obtained.

【0015】(比較例3)図1に示す着磁器を用いて1
0x11x10mm(着磁方向:10mm)のNd−F
e−B系焼結磁石(Br=12.5kG、iHc=1
4.5kOe)を以下の手順で着磁を行った。この磁石
を図4に示すようにポールピース間にセットし、8kO
eの着磁磁界を印加し着磁を行った。着磁後、磁石の減
磁曲線を測定し図5(b)の減磁曲線を得た。
Comparative Example 3 Using the magnetizer shown in FIG.
Nd-F of 0x11x10mm (magnetization direction: 10mm)
e-B system sintered magnet (Br = 12.5kG, iHc = 1
4.5 kOe) was magnetized by the following procedure. Set this magnet between pole pieces as shown in Fig. 4,
Magnetization was performed by applying the magnetic field of e. After magnetization, the demagnetization curve of the magnet was measured to obtain the demagnetization curve of FIG. 5 (b).

【0016】[0016]

【発明の効果】本発明によれば、高磁場を発生させるた
めの大がかりな設備を用いることなしに、高保磁力型の
永久磁石あるいは大型形状の磁石のように、十分な着磁
磁界強度を得にくい場合でも着磁でき、工業上その利用
価値は極めて高いものである。
According to the present invention, sufficient magnetizing magnetic field strength can be obtained like a high coercive force type permanent magnet or a large-sized magnet without using large-scale equipment for generating a high magnetic field. It can be magnetized even when it is difficult, and its utility value is extremely high in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】着磁器の概略図FIG. 1 is a schematic diagram of a magnetizer.

【図2】永久磁石を強磁性体に挟んだ図[Fig. 2] Diagram of a permanent magnet sandwiched between ferromagnetic materials

【図3】永久磁石と強磁性体で磁気回路を閉じた図[Fig. 3] A diagram in which a magnetic circuit is closed by a permanent magnet and a ferromagnetic material.

【図4】永久磁石をポールピースにセットした図FIG. 4 shows a permanent magnet set on a pole piece.

【図5】減磁曲線を示す図。FIG. 5 is a diagram showing a demagnetization curve.

【図6】磁束の変化を示す図FIG. 6 is a diagram showing changes in magnetic flux.

【符号の説明】[Explanation of symbols]

1 磁界発生用コイル、2 ポールピース、3 永久磁
石、4 強磁性体、5 パーミアンス係数、6 磁石か
ら得られる磁束密度、7 不可逆減。
1 magnetic field generating coil, 2 pole pieces, 3 permanent magnets, 4 ferromagnets, 5 permeance coefficient, 6 magnetic flux density obtained from magnets, 7 irreversible reduction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石の保磁力が着磁磁界強度以下に
なるまで永久磁石を加熱した後に着磁を行い、パーミア
ンス係数が減磁曲線の直線部分になるようにしたまま室
温まで冷却することを特徴とする永久磁石の着磁方法。
1. The permanent magnet is heated until the coercive force of the permanent magnet becomes equal to or less than the magnetizing magnetic field strength and then magnetized, and cooled to room temperature while the permeance coefficient is in the straight line portion of the demagnetization curve. A method for magnetizing a permanent magnet, characterized by:
【請求項2】 前記永久磁石がR−Fe−B系永久磁石
(RはYを含む希土類元素の1種または2種以上)であ
ることを特徴とする請求項1記載の永久磁石の着磁方
法。
2. The permanent magnet according to claim 1, wherein the permanent magnet is an R—Fe—B based permanent magnet (R is one or more rare earth elements including Y). Method.
JP28155895A 1995-10-30 1995-10-30 Method of magnetizing permanent magnet Pending JPH09131025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28155895A JPH09131025A (en) 1995-10-30 1995-10-30 Method of magnetizing permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28155895A JPH09131025A (en) 1995-10-30 1995-10-30 Method of magnetizing permanent magnet

Publications (1)

Publication Number Publication Date
JPH09131025A true JPH09131025A (en) 1997-05-16

Family

ID=17640865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28155895A Pending JPH09131025A (en) 1995-10-30 1995-10-30 Method of magnetizing permanent magnet

Country Status (1)

Country Link
JP (1) JPH09131025A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018246A (en) * 2006-07-14 2008-01-31 Ge Medical Systems Global Technology Co Llc Temperature operating method, magnetic field generating device, and mri apparatus
US7345560B2 (en) * 2001-04-03 2008-03-18 General Electric Company Method and apparatus for magnetizing a permanent magnet
JP2008135766A (en) * 2002-02-15 2008-06-12 Hitachi Metals Ltd Magnetic field generator, and method for manufacturing same
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345560B2 (en) * 2001-04-03 2008-03-18 General Electric Company Method and apparatus for magnetizing a permanent magnet
JP2008135766A (en) * 2002-02-15 2008-06-12 Hitachi Metals Ltd Magnetic field generator, and method for manufacturing same
JP4586850B2 (en) * 2002-02-15 2010-11-24 日立金属株式会社 Method for manufacturing magnetic field generator
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method
JP2008018246A (en) * 2006-07-14 2008-01-31 Ge Medical Systems Global Technology Co Llc Temperature operating method, magnetic field generating device, and mri apparatus

Similar Documents

Publication Publication Date Title
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
JP2006203173A (en) Polarizing method of permanent magnet
Kato et al. Coercivity enhancements by high-magnetic-field annealing in sintered Nd–Fe–B magnets
CN109195079A (en) The assemble method and magnetic charging system of magnetic circuit system
US4920326A (en) Method of magnetizing high energy rare earth alloy magnets
JP2940048B2 (en) Permanent magnet magnetization method
JPH09131025A (en) Method of magnetizing permanent magnet
JPH0897035A (en) Demagnetizing method and device
JPH0372606A (en) Magnetization of magnetic material
Gould Permanent magnets
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
CA1264064A (en) Magnetising apparatus for the magnetisation of keys and rotors of magnetic safety lock systems
JP4218762B2 (en) Magnetic field heat treatment equipment
JPH06140248A (en) Magnetizing method for permanent magnet rotor
JPH07183124A (en) Device for magnetizing permanent magnet and magnetization
Komura et al. Establishment of multipole magnetizing method and apparatus using a heating system for Nd-Fe-B isotropic bonded magnets
Agarwala Magnetizing rare‐earth alloy magnets at elevated temperatures
JPS6153843B2 (en)
JPS63213907A (en) Magnetization of permanent magnet
JP2002141223A (en) Method and device for demagnetizing rare-earth-based radially oriented ring magnet
CN115188557A (en) Magnetizing device and magnetizing method
Lemley A practical guide to permanent magnet DC motor production magnetizing
JPH01248077A (en) Method and apparatus for measuring magnetic characteristic of magnetic body
JPH01318211A (en) Magnetic circuit commonly used for magnetization and demagnetization
JPS63169710A (en) Magnetizing method for high coercive force permanent magnet