JPS63213907A - Magnetization of permanent magnet - Google Patents

Magnetization of permanent magnet

Info

Publication number
JPS63213907A
JPS63213907A JP4953287A JP4953287A JPS63213907A JP S63213907 A JPS63213907 A JP S63213907A JP 4953287 A JP4953287 A JP 4953287A JP 4953287 A JP4953287 A JP 4953287A JP S63213907 A JPS63213907 A JP S63213907A
Authority
JP
Japan
Prior art keywords
magnetic field
rare earth
high frequency
magnetizing
becomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4953287A
Other languages
Japanese (ja)
Other versions
JPH0366802B2 (en
Inventor
Koji Sezaki
瀬崎 好司
Fumihito Mori
毛利 文仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4953287A priority Critical patent/JPS63213907A/en
Publication of JPS63213907A publication Critical patent/JPS63213907A/en
Publication of JPH0366802B2 publication Critical patent/JPH0366802B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable saturated magnetization in a lower magnetizing magnetic field without reducing the efficiency of magnetizing work by applying a specific high frequency magnetic field to a permanent magnet made of an intermetallic compound whose main components are a rare earth metal and a transition metal. CONSTITUTION:A permanent magnet made of an intermetallic compound whose main components are a rare earth metal and a transition metal is magnetized by applying a pulse magnetic field after applying a 10 KHz-50 MHz high frequency magnetic field. The high frequency loss generated when the high frequency magnetic field is applied to a rare earth magnet is transformed to heat and the rare earth magnet generates heat by itself. The coercive force of the rare earth magnet reduces with the rise of temperature. Accordingly, saturated magnetization becomes possible in a lower magnetizing magnetic field. When the frequency of the high frequency magnetic field becomes under 10 KHz, the high frequency loss becomes smaller, the rise of the temperature of the rare earth magnet becomes slow and the efficiency of magnetizing work is reduced. Meanwhile, if the frequency becomes over 50 MHz, to obtain a great intensity high frequency magnetic field becomes difficult and industrial merits are lost due to a greater and higher cost power source.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、希土類金属と遷移金属を主成分とする金属間
化合物からなる永久磁石の着磁方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of magnetizing a permanent magnet made of an intermetallic compound containing rare earth metals and transition metals as main components.

「従来技術と問題点」 希土類金属と遷移金属とを主成分とする合金磁石(以下
、希土類磁石という)は、従来のフェライト系、アルニ
コ系磁石に比べて優れた磁気特性を存しいるため、近年
小型モーターを中心として多方面に利用されている。
"Prior Art and Problems" Alloy magnets whose main components are rare earth metals and transition metals (hereinafter referred to as rare earth magnets) have superior magnetic properties compared to conventional ferrite and alnico magnets. In recent years, it has been used in a variety of fields, mainly in small motors.

これらの希±M&11石は、通常極めて高い保磁力(i
HC)を有しいるため、飽和着磁をするためには相当大
なる着磁磁場が必要である。しかし乍ら、このように高
い着磁磁場を発生させるためには大容量の着磁電源を必
要とし、着磁ヨークの構・造も複雑となり、着磁装置そ
のものが高価なものになる。且つ、高い着磁磁場を発生
させるためには着磁ヨークに大電流を流す必要があり、
かかる大電流のために着磁ヨークが発熱してしまい、連
続着磁ができなくなる。
These rare ±M&11 stones usually have extremely high coercivity (i
HC), a considerably large magnetizing magnetic field is required for saturation magnetization. However, in order to generate such a high magnetizing magnetic field, a large-capacity magnetizing power source is required, the structure of the magnetizing yoke becomes complicated, and the magnetizing device itself becomes expensive. In addition, in order to generate a high magnetizing magnetic field, it is necessary to flow a large current through the magnetizing yoke.
Such a large current causes the magnetizing yoke to generate heat, making continuous magnetization impossible.

「問題点を解決するための手段」 本発明は上記の従来技術の問題点に鑑み、希土類磁石に
関して、着磁作業の能率を低下させることなく、より低
い着磁磁場で飽和着磁が可能となる着磁方法を提供する
ことを目的とする。
"Means for Solving the Problems" In view of the problems of the prior art described above, the present invention aims to achieve saturation magnetization of rare earth magnets with a lower magnetization magnetic field without reducing the efficiency of magnetization work. The purpose of this invention is to provide a magnetization method.

即ち、本発明は、希土類金属と遷移金属を主成分とする
金属間化合物からなる永久磁石にl0KHz〜50MH
zの高周波磁界を印加した後に、前記永久磁石にパルス
磁界を印加して着磁することを特徴とする永久磁石の着
磁方法を内容とする。
That is, the present invention provides a permanent magnet made of an intermetallic compound containing rare earth metals and transition metals as main components.
The method of magnetizing a permanent magnet is characterized in that after applying a high frequency magnetic field of z, a pulsed magnetic field is applied to the permanent magnet to magnetize it.

希土類磁石に高周波磁界を印加した場合、ヒステリシス
損失及びうず電流損失等のいわゆる高周波損失が発生す
る。かかる高周波を置火は熱に変換されるため、高周波
磁界の印加によって希±v1磁石は自己発熱する。
When a high frequency magnetic field is applied to a rare earth magnet, so-called high frequency losses such as hysteresis loss and eddy current loss occur. Since such high frequency waves are converted into heat, the rare ±v1 magnet self-heats due to the application of the high frequency magnetic field.

通常、希土類磁石の保磁力(iHC)は負の温度係数を
有しており、温度の上昇にともなってiHcは低下する
0本発明はかかる希土類磁石のiHcの低下を、前記の
如く高周波磁界の印加による自己発熱によって実現せし
めたものである。しかる後、希土類磁石のi Hcが低
い状態の間に着磁磁場を印加することによって、より低
い着磁磁場で飽和着磁を可能とさせることができる。
Normally, the coercive force (iHC) of a rare earth magnet has a negative temperature coefficient, and iHc decreases as the temperature rises. This was achieved by self-heating due to the applied voltage. Thereafter, by applying a magnetizing magnetic field while the i Hc of the rare earth magnet is low, saturation magnetization can be made possible with a lower magnetizing magnetic field.

又、本発明の如き着磁方法によれば、パルス着磁装置の
電源を充電している間に高周波磁界を印加することがで
きるため、従来法の如きパルス着磁方法に比べて着磁作
業の能率を何ら低下させない利点がある。
Furthermore, according to the magnetization method of the present invention, a high-frequency magnetic field can be applied while the power supply of the pulse magnetization device is being charged, so the magnetization work is faster than that of the conventional pulse magnetization method. This has the advantage of not reducing efficiency in any way.

本発明における高周波(d界は10KHz〜50MHz
の範囲のものが用いられる。高周波磁界の周波数が10
KHzを下回ると、高周波損失が小さくなり、自己発熱
による希土類磁石の温度上昇が緩慢になり、着磁作業の
能率が低下するため好ましくない。一方、高周波磁界の
周波数が50KHzを越えると、磁界強慶大なる高周波
磁界を得るのが困難となるばかりでなく、高周波磁界発
生用電源が大型且つ高価となるため工業上のメリットが
なくなり、好ましくない。又、本発明における高周波磁
界の強さが1エルステツドを下回ると、前記したヒステ
リシス損、うず電流積等の高周波損失が、高周波磁界の
周波数が高(なったとしても大きくならず希土類磁石を
所望の温度まで上昇させるために長時間を要するため、
好ましくは高周波磁界の強さを1エルステッド以上とす
るのが望ましい。更に、自己発熱速度を大きくし、短時
間で所定温度に到達させるために、高周波磁界の強さが
10エルステッド以上であることがより望ましい。
High frequency (d field is 10KHz to 50MHz) in the present invention
Those within the range of are used. The frequency of the high frequency magnetic field is 10
If it is lower than KHz, the high frequency loss becomes small, the temperature rise of the rare earth magnet due to self-heating becomes slow, and the efficiency of magnetization work decreases, which is not preferable. On the other hand, if the frequency of the high-frequency magnetic field exceeds 50 KHz, it is not only difficult to obtain a high-frequency magnetic field with a strong magnetic field, but also the power source for generating the high-frequency magnetic field becomes large and expensive, which eliminates the industrial advantage. do not have. Furthermore, if the strength of the high-frequency magnetic field in the present invention is less than 1 oersted, the above-mentioned high-frequency losses such as hysteresis loss and eddy current product will not increase even if the frequency of the high-frequency magnetic field becomes high (even if the frequency becomes high), and the rare earth magnet cannot be Because it takes a long time to raise the temperature,
Preferably, the strength of the high frequency magnetic field is 1 Oe or more. Further, in order to increase the self-heating rate and reach the predetermined temperature in a short time, it is more desirable that the strength of the high frequency magnetic field is 10 Oe or more.

本発明の希土類金属と遷移金属とを主成分とする合金磁
石とは、SmCo5 、Sm−、Cot?あるいはNd
−Fe−B系合金磁石として知られている希土IHff
石、その他である。これらの中でも高い磁気性能を存す
るNd−Fe−B系合金磁石の着磁方法として用いるこ
とが好ましい。更には、希土類金属と遷移金属とを主成
分とする合金磁石粉を有機バインダーで固着せしめたプ
ラスチックモールド磁石の着磁方法としても本発明を用
いることができる。
The alloy magnets of the present invention whose main components are rare earth metals and transition metals include SmCo5, Sm-, Cot? Or Nd
-Rare earth IHff known as Fe-B alloy magnet
Stones, etc. Among these, it is preferable to use the method for magnetizing Nd-Fe-B alloy magnets, which have high magnetic performance. Furthermore, the present invention can also be used as a method for magnetizing a plastic molded magnet in which alloy magnet powder containing rare earth metals and transition metals as main components is fixed with an organic binder.

「実施例」 以下、本発明を実施例により、説明するが本発明はこれ
らにより何ら制限されるものではない。
"Examples" The present invention will be explained below with reference to Examples, but the present invention is not limited to these in any way.

実施例1 外径12.5龍、高さ8.5 mの円柱状のNd−Fa
−13焼結磁石を第1図に示した如き高周波磁界発生コ
イルに挿入し、周波数IMHz、励磁磁界の強さ50エ
ルステツドの条件の高周波磁界を5秒間印加した後に、
すぐに第2図に示した如き空心コイルによってパルス着
磁を行った。第3図に、パルス磁界の強さに対するNd
−Fe−B焼結磁石の総磁束量の変化を示した。総磁束
量の測定はフラックスメーターを用いて行った。
Example 1 Cylindrical Nd-Fa with an outer diameter of 12.5 mm and a height of 8.5 m
-13 A sintered magnet was inserted into a high-frequency magnetic field generating coil as shown in Fig. 1, and after applying a high-frequency magnetic field with a frequency of IMHz and an excitation magnetic field strength of 50 oersteds for 5 seconds,
Pulse magnetization was immediately performed using an air-core coil as shown in FIG. Figure 3 shows the relationship between Nd and the strength of the pulsed magnetic field.
-The change in total magnetic flux of the Fe-B sintered magnet is shown. The total amount of magnetic flux was measured using a flux meter.

実施例2 高周波磁界の印加時間を10秒とする以外は実施例1と
全(同様に操作して、パルス磁界の強さに対する総磁束
量の変化を第3図に示した。
Example 2 The procedure was the same as in Example 1 except that the high-frequency magnetic field was applied for 10 seconds, and the changes in the total magnetic flux with respect to the strength of the pulsed magnetic field are shown in FIG.

実施例3 高周波磁界の強さが0.5エルステツドであること以外
は実施例1と全く同様に操作して、パルス磁界の強さに
対する総磁束量の変化を第3図に示した。
Example 3 The operation was carried out in exactly the same manner as in Example 1 except that the strength of the high-frequency magnetic field was 0.5 oersted, and the change in the total magnetic flux amount with respect to the strength of the pulsed magnetic field is shown in FIG. 3.

比較例 実施例1と同様のNd−Fe−B焼結磁石を用い、高周
波磁界を印加しないで、第2図に示した空心コイルによ
ってパルス着磁を行った。パルス磁界の強さに対する総
磁束量の変化を第3図に示した。
Comparative Example Using the same Nd-Fe-B sintered magnet as in Example 1, pulse magnetization was performed using the air-core coil shown in FIG. 2 without applying a high-frequency magnetic field. Figure 3 shows the change in total magnetic flux with respect to the strength of the pulsed magnetic field.

第3図から明らかなように、本発明の実施例1〜3によ
れば、従来の着磁力法である比較例に比ベてより低いパ
ルス着In Tff場で飽和着磁することが可能となる
。又、高周波磁界の強さを大きくするか、印加時間を長
くすることで、より低い磁場での飽和着磁が可能となる
As is clear from FIG. 3, according to Examples 1 to 3 of the present invention, it is possible to achieve saturation magnetization with a lower pulsed In Tff field than in the comparative example using the conventional magnetizing force method. Become. Furthermore, by increasing the strength of the high-frequency magnetic field or lengthening the application time, saturation magnetization can be achieved with a lower magnetic field.

「作用・効果」 以上詳述した如く、本発明の着磁方法を用いることによ
って、従来、飽和着磁するために高い着磁磁場を必要と
していた希土類磁石をより低い着は磁場でしかも着磁作
業の能率を低下させることなく飽和着磁をすることが可
能となる。
"Function/Effects" As detailed above, by using the magnetization method of the present invention, rare earth magnets that conventionally required a high magnetization magnetic field for saturation magnetization can be magnetized with a lower magnetic field. It becomes possible to perform saturation magnetization without reducing work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる高周波磁界印加方法を示す説明
図、第2図は通常のパルス着磁法を示す説明図、第3図
は本発明の実施例と比較例のパルス着磁磁場の強さに対
する総磁束量の変化を示すグラフである。 1・・・Nd−Fe−B焼結磁石 2・・・高周波磁界発生用コイル 3・・・パルス着磁用コイル 第1 図 零2図 第3図
Fig. 1 is an explanatory diagram showing the high frequency magnetic field application method used in the present invention, Fig. 2 is an explanatory diagram showing the normal pulse magnetization method, and Fig. 3 is an explanatory diagram showing the pulse magnetization magnetic field of the example of the present invention and the comparative example. It is a graph showing changes in total magnetic flux amount with respect to strength. 1... Nd-Fe-B sintered magnet 2... High-frequency magnetic field generation coil 3... Pulse magnetization coil 1 Figure 0 2 Figure 3

Claims (1)

【特許請求の範囲】 1、希土類金属と遷移金属を主成分とする金属間化合物
からなる永久磁石に10KHz〜50MHzの高周波磁
界を印加した後に、前記永久磁石にパルス磁界を印加し
て着磁することを特徴とする永久磁石の着磁方法。 2、高周波磁界の強さが1エルステッド以上である特許
請求の範囲第1項記載の着磁方法。
[Claims] 1. After applying a high frequency magnetic field of 10 KHz to 50 MHz to a permanent magnet made of an intermetallic compound containing rare earth metals and transition metals as main components, a pulsed magnetic field is applied to the permanent magnet to magnetize it. A method of magnetizing a permanent magnet, characterized by: 2. The magnetization method according to claim 1, wherein the strength of the high-frequency magnetic field is 1 Oe or more.
JP4953287A 1987-03-03 1987-03-03 Magnetization of permanent magnet Granted JPS63213907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4953287A JPS63213907A (en) 1987-03-03 1987-03-03 Magnetization of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4953287A JPS63213907A (en) 1987-03-03 1987-03-03 Magnetization of permanent magnet

Publications (2)

Publication Number Publication Date
JPS63213907A true JPS63213907A (en) 1988-09-06
JPH0366802B2 JPH0366802B2 (en) 1991-10-18

Family

ID=12833767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4953287A Granted JPS63213907A (en) 1987-03-03 1987-03-03 Magnetization of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63213907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346204A (en) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu Method of improving magnetizing properties by high frequency magne- tic field
JPH0346205A (en) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu Method of improving magnetizing properties by ac or pulse currents
JP2008091443A (en) * 2006-09-29 2008-04-17 Tdk Corp Method and apparatus for magnetizing magnet material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346204A (en) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu Method of improving magnetizing properties by high frequency magne- tic field
JPH0346205A (en) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu Method of improving magnetizing properties by ac or pulse currents
JP2008091443A (en) * 2006-09-29 2008-04-17 Tdk Corp Method and apparatus for magnetizing magnet material

Also Published As

Publication number Publication date
JPH0366802B2 (en) 1991-10-18

Similar Documents

Publication Publication Date Title
Strnat Modern permanent magnets for applications in electro-technology
JP3119707B2 (en) Magnetostrictive element
JP2940048B2 (en) Permanent magnet magnetization method
US4920326A (en) Method of magnetizing high energy rare earth alloy magnets
CN100369166C (en) Convergent oscillation type demagnetization device
JPS63213907A (en) Magnetization of permanent magnet
JP3671442B2 (en) Demagnetizing method and demagnetizing device
JPH0372606A (en) Magnetization of magnetic material
JPS6076110A (en) Assembling and magnetizing method for magnetic circuit
Gould Permanent magnets
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
Yoneyama et al. High performance RFeCoZrB bonded magnets having low Nd content
JPH09131025A (en) Method of magnetizing permanent magnet
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
CN2694445Y (en) Demagnetization apparatus containing a demagnetization oscillating circuit
Fujii et al. Concerning magnetic characteristics of (R2-xR′ x) Fe12Co2B (R= Pr and Nd, R′= Tb and Dy)
JPH04192315A (en) Demagnetizing method of rare earth metal magnet
JP2002231540A (en) Magnetic core having magnet for magnetic bias and inductance part using it
JPH01248077A (en) Method and apparatus for measuring magnetic characteristic of magnetic body
JPH01289883A (en) Ferromagnetic adhesive
JP3077280B2 (en) Magnetizing apparatus and method of magnetizing permanent magnet using the same
SU1735923A1 (en) Device for magnetizing high-coercivity magnets incorporated in electromagnetic drives
CA1082301A (en) Method of preparing and installing cobalt-rare earth permanent magnets, and the product of the method
Handstein et al. Jumps of magnetic polarization in Sm/sub 2/Co/sub 17/-based magnets
Komura et al. Establishment of multipole magnetizing method and apparatus using a heating system for Nd-Fe-B isotropic bonded magnets