JPH01248077A - Method and apparatus for measuring magnetic characteristic of magnetic body - Google Patents

Method and apparatus for measuring magnetic characteristic of magnetic body

Info

Publication number
JPH01248077A
JPH01248077A JP7509888A JP7509888A JPH01248077A JP H01248077 A JPH01248077 A JP H01248077A JP 7509888 A JP7509888 A JP 7509888A JP 7509888 A JP7509888 A JP 7509888A JP H01248077 A JPH01248077 A JP H01248077A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
coil
current
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7509888A
Other languages
Japanese (ja)
Inventor
Toru Tsurumaki
弦巻 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7509888A priority Critical patent/JPH01248077A/en
Publication of JPH01248077A publication Critical patent/JPH01248077A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure an accurate magnetic characteristic by certainly bringing a magnetic body to a saturated magnetized state by applying a large magnetic field to the magnetic body, by superposing the pulse magnetic field obtained by the pulse current supplied to a coil on the DC magnetic field obtained by the DC current supplied to the coil in a saturation magnetizing process for bringing the magnetic body to the saturated magnetized state. CONSTITUTION:A magnetic characteristic measuring apparatus 7 is used in the measurement of a magnetic characteristic and a pair of pole pieces 2 are arranged in a mutually opposed state so as to be moved toward and away from each other and magnetic field coils 3 are wound around the outer peripheries of the pieces 2. A Hall element 4 for measuring a magnetic field, a B-coil 5 for measuring magnetization and a magnetic body 6 are arranged between the poles 2 and a pulse magnetic field is applied to the magnetic body 6 by the pulse coils 8 wound around the outer peripheries of the pieces 2. The pulse magnetic field obtained by the pulse current allowed to flow to the coils 8 is superposed on the DC magnetic field obtained by the DC current flowing to the coils 3 to intensify the saturation magnetization of the magnetic body 6 and, after the pulse magnetic field is removed, the DC magnetic field is continuously changed to accurately measure a magnetic characteristic.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、永久磁石の材料となる磁性体、中でも希土
類合金のように極めて高い残留磁気あるいは保磁力を示
す磁性体の磁気特性測定方法と、磁気特性測定に用いて
好適な磁気特性測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the magnetic properties of magnetic materials used as materials for permanent magnets, especially magnetic materials that exhibit extremely high remanence or coercive force, such as rare earth alloys. , relates to a magnetic property measuring device suitable for use in measuring magnetic properties.

[従来の技術] 永久磁石は、磁性材料を粉砕して得られた原料粉末から
製造され、その工程は、前記原料粉末を磁場をかけなが
ら圧縮して圧粉体となす磁場プレス、前記圧粉体を焼結
して焼結磁性体となす焼結工程、そして、前記焼結磁性
体を磁化させて永久磁石とする磁化処理に概ね分けられ
る。
[Prior Art] Permanent magnets are manufactured from raw material powder obtained by pulverizing a magnetic material, and the process includes a magnetic field press in which the raw powder is compressed while applying a magnetic field to form a green compact, It is roughly divided into a sintering process in which the body is sintered to form a sintered magnetic body, and a magnetization process in which the sintered magnetic body is magnetized to become a permanent magnet.

以上のようにして製造される永久磁石の強さは、磁化処
理においてかける磁場の強さもさることながら、磁場プ
レスや焼結での処理状況にも大きく左右される。このた
め、永久磁石の製造にあたって、焼結によって得られた
磁性体の磁気特性を測定することは、品質の一定な永久
磁石を提供する上で、欠かせぬものとなっている。
The strength of the permanent magnet manufactured as described above is greatly influenced not only by the strength of the magnetic field applied during magnetization treatment but also by the processing conditions during magnetic field pressing and sintering. For this reason, in manufacturing permanent magnets, it is essential to measure the magnetic properties of the magnetic material obtained by sintering in order to provide permanent magnets of constant quality.

従来より磁性体の磁気特性の測定は、その磁性体のヒス
テリンスループから残留磁気、保磁力あるいは磁気エネ
ルギー積を求めることで行われる。
Conventionally, the magnetic properties of a magnetic material have been measured by determining residual magnetism, coercive force, or magnetic energy product from the hysterin loop of the magnetic material.

すなイつち、第2図に示すように、磁性体にかかる磁場
の強さHを横軸に、磁性体の磁化の強さ、図の場合は磁
束密度Bを縦軸に取り、磁性体を原点0の位置から十〇
方向に飽和磁束密度Bsに達するまで飽和磁化させた後
、磁場を減じ、さらに−ト■方向に逆向きの磁場をかけ
ていった時(以下、この過程を減磁過程と言う)の磁性
体の磁束密度Bの変化を記録して、磁場Hが0に戻った
時の磁束密度すなイつち残留磁気Brと、磁性体の磁束
密度BがOとなった時の磁場の強さすなわち保磁力II
 cと、上述の減磁過程で記録された第2象現内の減磁
曲線上の任意の点の内、縦横軸におろした垂線と縦横軸
とで描く四角形の面積が最大となる点Pによって与えら
れる四角形の面積すなわち最大磁気エネルギー積(BH
)max、をそれぞれ求めるのであり、これら残留磁気
I3r、保磁力■(Cあるいは磁気エネルギー積(B 
H) m a x 、の大きい磁性体はど優れたしのと
される。
In other words, as shown in Figure 2, the horizontal axis represents the strength of the magnetic field H applied to the magnetic material, and the vertical axis represents the magnetization strength of the magnetic material, or in the case of the figure, the magnetic flux density B. After the body is saturated magnetized from the origin 0 position in the 10 direction until it reaches the saturation magnetic flux density Bs, the magnetic field is reduced, and a magnetic field in the opposite direction is applied in the -T ■ direction (hereinafter, this process is Record the changes in the magnetic flux density B of the magnetic material during the demagnetization process (referred to as the demagnetization process), and calculate the magnetic flux density when the magnetic field H returns to 0, that is, the residual magnetism Br, and the magnetic flux density B of the magnetic material when it becomes O. The strength of the magnetic field when it becomes, that is, the coercive force II
c, and the point P where the area of the rectangle drawn by the perpendicular line drawn to the vertical and horizontal axes and the vertical and horizontal axes is maximum among arbitrary points on the demagnetization curve in the second quadrant recorded in the above-mentioned demagnetization process. The area of the rectangle given by or the maximum magnetic energy product (BH
) max, respectively, and these residual magnetism I3r, coercive force ■ (C or magnetic energy product (B
H) Magnetic materials with large max are considered to be excellent materials.

ところで、上述の磁気特性の測定は、第3図に示すよう
な磁気特性測定装置を用いて行われており、以下第3図
を参照して簡略に説明する。
Incidentally, the measurement of the magnetic properties described above is performed using a magnetic property measuring device as shown in FIG. 3, and will be briefly explained below with reference to FIG. 3.

第3図(こ示すように、磁気特性測定装置(以下、測定
装置と略称する)!は、互いに対向させて、かつ近接、
離間可能に設けられた一対のポールピース2と、これら
ポールピース2の外周に巻き付けられた磁場コイル3と
、前記ポールピース2の間に設けられたホール素子4及
びBコイル5とから構成されている。前記磁場コイル3
は、ポールピース2の対向面2a間に挟持された磁性体
6に、磁場をかけるためのもので、ポールピース2を励
磁させる磁化電流には直流電流が用いられている。
FIG. 3 (As shown in this figure, magnetic property measuring devices (hereinafter abbreviated as measuring devices)! are placed facing each other and close to each other.
It is composed of a pair of pole pieces 2 that are separably provided, a magnetic field coil 3 that is wound around the outer periphery of these pole pieces 2, and a Hall element 4 and a B coil 5 that are provided between the pole pieces 2. There is. The magnetic field coil 3
is for applying a magnetic field to the magnetic body 6 held between the facing surfaces 2a of the pole piece 2, and a direct current is used as the magnetizing current for exciting the pole piece 2.

また、前記ホール素子4は、前記ポールピース2から磁
性体6にかけられる磁場の強さを測定するためのもので
ある。そして、前記Bコイル5は、磁性体6自身の磁束
密度の変化を測定するためのらのである。すなわち、B
コイル5は磁性体6の外周に巻き付けられた状態で使用
され、磁性体6を通過する磁束の変化を、誘導電流の変
化に置換して出力するようになっている。
Further, the Hall element 4 is used to measure the strength of the magnetic field applied from the pole piece 2 to the magnetic body 6. The B coil 5 is used to measure changes in the magnetic flux density of the magnetic body 6 itself. That is, B
The coil 5 is used while being wound around the outer periphery of the magnetic body 6, and is configured to replace changes in magnetic flux passing through the magnetic body 6 with changes in induced current and output the same.

以上の構成からなる測定装置Iを用いた磁気特性の測定
は、次のように行われる。
Measurement of magnetic properties using the measuring device I having the above configuration is performed as follows.

まず、磁性体6を、その外周にBコイル5を巻き付けた
上でポールピース2の対向面2a間にセットし、磁場コ
イル3に直流電流を供給して得られる磁場によって一旦
飽和磁化させる。
First, the magnetic body 6 is set between the facing surfaces 2a of the pole piece 2 after winding the B coil 5 around its outer periphery, and is once saturated magnetized by a magnetic field obtained by supplying a direct current to the magnetic field coil 3.

ついで、磁場コイル3に供給される直流電流の値を上述
の飽和磁化させた時の電流値から減少させ、さらには逆
方向へ上昇させることによって、磁性体6にかけられる
磁場の強さを、飽和磁化された磁性体6の磁束を減少さ
せるように変化させる。
Next, by decreasing the value of the DC current supplied to the magnetic field coil 3 from the current value at the time of saturation magnetization mentioned above and further increasing it in the opposite direction, the strength of the magnetic field applied to the magnetic body 6 is adjusted to saturation. The magnetic flux of the magnetized magnetic body 6 is changed to decrease.

すると、ホール素子4からは磁性体6にかけられる磁場
の強さの変化に応じた電流が、また磁性体6の外周に巻
き付けられたBコイル5からは、磁場コイル3が発する
磁場の強さの変化に応じた磁束の変化分に、磁性体6自
身の磁束の変化分を加算した誘導電流が出力されるため
、この誘導電流の変化値から、前述のホール素子4から
得られる磁場の強さの変化に応じた電流の変化値を差し
引けば磁性体6自身の磁束の変化が求められ、以上より
第2図に示すような減磁曲線が得られて前述の残留磁気
Br、保磁力Hcあるいは最大磁気エネルギー積(B 
H) m a x 、が求められるのである。
Then, the Hall element 4 generates a current according to the change in the strength of the magnetic field applied to the magnetic body 6, and the B coil 5 wound around the outer circumference of the magnetic body 6 generates a current according to the strength of the magnetic field generated by the magnetic field coil 3. An induced current is output by adding the change in the magnetic flux of the magnetic body 6 itself to the change in the magnetic flux corresponding to the change, so from the change in this induced current, the strength of the magnetic field obtained from the Hall element 4 described above can be determined. By subtracting the change value of the current according to the change in , the change in the magnetic flux of the magnetic body 6 itself can be obtained, and from the above, a demagnetization curve as shown in FIG. 2 is obtained, and the remanence Br and coercive force Hc Or the maximum magnetic energy product (B
H) max is calculated.

[発明が解決しようとする課題] ところで、上述した従来の測定装置lは、磁性体6にか
ける磁場の強さを連続的に変化さ仕るにめに磁場コイル
3に供給する磁化電流として直流電流を用いているか、
このことが害となって測定できる磁性体6の種類に制限
を受けるといった欠点があった。
[Problems to be Solved by the Invention] By the way, the conventional measuring device l described above uses direct current as a magnetizing current to be supplied to the magnetic field coil 3 in order to continuously change the strength of the magnetic field applied to the magnetic body 6. Does it use electric current?
This has the disadvantage that the types of magnetic material 6 that can be measured are limited.

すなわち、直流電流を磁場コイル3に供給してポールピ
ース2を励磁させる、いわゆる直流磁場による上述の測
定装置!では、得られる磁場の強さはポールピース2の
飽和磁束密度から制限を受lす、例えばポールピース2
の対向面2aのWJ積を極力小さくして、磁束密度を高
めたとしても磁束密度にして概ね20000ガウス程度
が限界とされている。
That is, the above-mentioned measuring device uses a so-called DC magnetic field, in which DC current is supplied to the magnetic field coil 3 to excite the pole piece 2! In this case, the strength of the obtained magnetic field is limited by the saturation magnetic flux density of pole piece 2. For example, when pole piece 2
Even if the WJ product of the facing surface 2a is made as small as possible and the magnetic flux density is increased, the limit of the magnetic flux density is approximately 20,000 Gauss.

この飽和磁束密度の値は、従来より広く用いられている
金属磁石やフェライト磁石では20000ガウスを下回
る程度であるために、何等支障なく測定できたが、最近
になって盛んに用いられるようになった希土類磁石、例
えばネオジミウム・鉄・ボロン磁石などでは約4000
0ガウスという極めて高い飽和磁束磁界を必要とするた
め、これら希土類合金の磁性体の測定時には、第2図に
破線で示すように減磁曲線の開始点が大きく下方にずれ
て正確な減磁曲線が得られなかったのである。
The value of this saturation magnetic flux density is less than 20,000 Gauss for conventionally widely used metal magnets and ferrite magnets, so it could be measured without any problems, but recently it has become widely used. 4,000 for rare earth magnets such as neodymium, iron, and boron magnets.
Because an extremely high saturation magnetic flux field of 0 Gauss is required, when measuring these rare earth alloy magnetic materials, the starting point of the demagnetization curve shifts significantly downward, as shown by the broken line in Figure 2, making it impossible to obtain an accurate demagnetization curve. was not obtained.

このため、磁場コイル3を空芯状態にしてポールピース
2の制限を受けない、より強い磁場を発生させる試みら
なされたが、磁場コイル3の発熱等が問題となって、前
述のネオジミウム・鉄・ポロン等の磁性体を飽和磁化さ
せるには至らなかった。単に強力な磁場を得る手段とし
て、コイルにパルス電流を供給して強力な磁場を得ると
いう手段らあるが、このパルス電流により得られろ磁場
はその変化の速度か速すぎて、磁性体6を減磁させる減
磁過程における磁場強さの変化を記録できないといった
欠点かあり、磁気特性の測定には使用できるものではな
かった。
For this reason, attempts have been made to make the magnetic field coil 3 into an air-core state to generate a stronger magnetic field that is not limited by the pole piece 2, but problems such as heat generation of the magnetic field coil 3 arise, and the neodymium/iron - It was not possible to achieve saturation magnetization of magnetic materials such as poron. One way to simply obtain a strong magnetic field is to supply a pulsed current to a coil to obtain a strong magnetic field, but the magnetic field obtained by this pulsed current changes too quickly, causing the magnetic material 6 to The drawback was that it was not possible to record changes in magnetic field strength during the demagnetization process, so it could not be used to measure magnetic properties.

この発明は、このような背景の下になされたしので、希
土類合金のように極めて強力な永久磁石となる磁性体を
確実に飽和磁化させて正確な磁気特性を測定することが
できる磁性体の磁気特性の測定方法と、この測定に適し
た測定装置を提供することを目的とする。
This invention was made against this background, and therefore it is possible to reliably saturate a magnetic material such as a rare earth alloy, which becomes an extremely strong permanent magnet, and measure its magnetic properties accurately. The purpose of the present invention is to provide a method for measuring magnetic properties and a measuring device suitable for this measurement.

[課題を解決するための手段] 上記課題を解決するためのこの発明の磁気特性測定方法
は、コイルに直流電流を供給して得られた直流磁場に、
コイルにパルス電流を供給して得られたパルス磁場を重
畳させて磁性体を飽和磁化させろ飽和磁化過程と、前記
パルス電流の供給を停止した状態で、前記直流電流を、
前記飽和磁化された磁性体の磁化を減する磁場が発生す
るように変化させ、この時の磁性体の磁化の変化を測定
する減磁過程とからなる磁性体の磁気特性測定方法であ
る。
[Means for Solving the Problems] In order to solve the above problems, the method for measuring magnetic properties of the present invention applies a direct current magnetic field obtained by supplying a direct current to a coil.
A pulsed magnetic field obtained by supplying a pulsed current to the coil is superimposed to saturate the magnetic material. During the saturation magnetization process, while the supply of the pulsed current is stopped, the DC current is
This method includes a demagnetization process in which a magnetic field is generated to reduce the magnetization of the saturated magnetic material, and the change in magnetization of the magnetic material at this time is measured.

また、上記方法に用いる磁気特性測定装置は、磁性体に
磁場をかける磁場発生手段と、前記磁性体にかけられる
磁場の強さを測定する磁場測定手段と、前記磁場発生手
段によってかけられた磁場により磁化された磁性体の磁
化強さを測定する磁化測定手段とを具備してなる磁気特
性測定装置であって、前記磁場発生手段は、直流電流か
供給される直流用コイルと、パルス電流が供給されるパ
ルス用コイルとからなることを特徴とするものである。
Further, the magnetic property measuring device used in the above method includes: a magnetic field generating means for applying a magnetic field to a magnetic body; a magnetic field measuring means for measuring the strength of the magnetic field applied to the magnetic body; A magnetic property measuring device comprising a magnetization measuring means for measuring the magnetization strength of a magnetized magnetic body, the magnetic field generating means comprising a direct current coil supplied with a direct current and a pulsed current supplied with the magnetic field generating means. It is characterized by comprising a pulse coil.

そして、上記磁気特性測定装置において、磁場発生手段
を、直流用コイル及びパルス電流用コイルに代えて、直
流電流とパルス電流とか重畳可能に設けられた磁場コイ
ルとすることもできる。
In the above-mentioned magnetic property measuring device, the magnetic field generating means may be replaced with a DC coil and a pulse current coil, and may be a magnetic field coil provided to be able to superimpose a DC current and a pulse current.

[作用コ 上記構成にあっては、飽和磁化過程においてコイルに供
給されたパルス電流によって瞬間的に強力なパルス磁場
が得られ、直流電流による直流磁場に重畳されたパルス
磁場によって容易に磁性体が飽和磁化される。
[Operation] With the above configuration, a strong pulsed magnetic field is instantaneously obtained by the pulsed current supplied to the coil during the saturation magnetization process, and the magnetic material is easily separated by the pulsed magnetic field superimposed on the DC magnetic field caused by the DC current. It is saturated magnetized.

そして減磁過程においてはパルス磁場が取り去られて直
流磁場のみがかけられるため、磁場強さを連続的に変化
させて磁性体の正確な減磁曲線を得ることができるので
ある。
During the demagnetization process, the pulsed magnetic field is removed and only the DC magnetic field is applied, making it possible to continuously change the magnetic field strength and obtain an accurate demagnetization curve for the magnetic material.

[実施例コ 以下、第1図を参照して、本発明の実施例を装置、測定
方法の順に説明する。なお、測定装置において上述した
従来の磁気特性測定装置と同様の構成要素については同
一符号を付し、その説明を簡略化する。
[Embodiment] Hereinafter, embodiments of the present invention will be described in order of the apparatus and the measuring method with reference to FIG. In addition, the same reference numerals are attached to the same components in the measuring device as in the conventional magnetic property measuring device described above, and the explanation thereof will be simplified.

第1図に示すように、本実施例の測定装置7は、上述し
た従来の測定装置!(第3図参照)と同様に、磁性体6
に磁場をかける磁場発生手段として、互いに対向させて
、かつ近接、離間可能に設けられた一対のポールピース
2と、これらポールピース2の外周に巻き付けられた磁
場コイル(直流用コイル)3を用い、また磁性体6にか
けられる磁場を測定する磁場測定手段及び磁性体6の磁
化を測定すう磁化測定手段として、前記ポールピース2
の間に設けられたホール素子4及びBコイル5を用いた
ものであり、磁性体6に磁場をかける手段として、さら
に前記ポールピース2の外周に、パルス用コイル8を、
前記磁場コイル3と隣接さ仕て設けたものである。
As shown in FIG. 1, the measuring device 7 of this embodiment is the conventional measuring device described above! (See Figure 3), magnetic material 6
As a magnetic field generating means for applying a magnetic field to the magnetic field, a pair of pole pieces 2 are provided facing each other and can be moved close to each other and separated from each other, and a magnetic field coil (direct current coil) 3 wound around the outer circumference of these pole pieces 2 is used. In addition, the pole piece 2 serves as a magnetic field measuring means for measuring the magnetic field applied to the magnetic body 6 and a magnetization measuring means for measuring the magnetization of the magnetic body 6.
This uses a Hall element 4 and a B coil 5 provided between the pole piece 2 and a pulse coil 8 on the outer periphery of the pole piece 2 as means for applying a magnetic field to the magnetic body 6.
It is provided adjacent to the magnetic field coil 3.

前記パルス用コイル8は、前記磁場コイル3に直流電流
が供給されるのに対してパルス電流が供給されるように
なっており、その継続時間は一例として!〜10m5e
c、程度とされ、ピーク電流値は10000〜1500
0A程度となっている。
The pulse coil 8 is supplied with a pulse current in contrast to the direct current supplied to the magnetic field coil 3, and the duration thereof is just an example! ~10m5e
c, and the peak current value is 10,000 to 1,500.
It is about 0A.

しかして以上の構成からなる測定装置7を用いた磁性体
6の磁気特性の測定は次のようにして行われる。
The measurement of the magnetic properties of the magnetic body 6 using the measuring device 7 having the above configuration is performed in the following manner.

まず従来の測定装置1と同様に、磁性体6を、その外周
にBコイル5を巻き付けた上でポールピース2の対向面
2a間にセットする。ついで、磁場コイル3に直流電流
を供給してポールピース2を励磁させ、磁性体6を飽和
磁化させるのであるが、この時、磁場コイル3に供給さ
れる直流電流の電流値を上昇させると共に、パルス用コ
イル8にパルス電流を供給する。
First, similarly to the conventional measuring device 1, the magnetic body 6 is set between the opposing surfaces 2a of the pole piece 2 after the B coil 5 is wound around its outer periphery. Next, a DC current is supplied to the magnetic field coil 3 to excite the pole piece 2 and the magnetic body 6 is saturated magnetized. At this time, the current value of the DC current supplied to the magnetic field coil 3 is increased, A pulse current is supplied to the pulse coil 8.

以上のようにして磁性体6を飽和磁化させたら、パルス
用コイル8へのパルス電流の供給を停止し、以下従来と
同様に、磁場コイル3に供給される直流電流の電流値を
減少させ、さらには逆方向へ上昇させることによって磁
性体6にかけられる磁場の強さを、飽和磁化された磁性
体6の磁束を減少させるように変化させる。すると、磁
性体6の磁束密度が連続的に減少さ仕られて、この時の
磁場変化と磁束密度の変化が、上述した従来の測定装置
1と同様にホール素子4及びBコイル5によって測定さ
れ、第2図に示す減磁曲線が求められて残留磁気Brや
保磁力Hcあるいは最大磁気エネルギー積(BH)ma
x、が求められるのである。
After the magnetic body 6 has been saturated magnetized as described above, the supply of pulse current to the pulse coil 8 is stopped, and the current value of the DC current supplied to the magnetic field coil 3 is decreased as in the conventional case. Furthermore, by raising the magnetic body 6 in the opposite direction, the strength of the magnetic field applied to the magnetic body 6 is changed so as to reduce the magnetic flux of the magnetic body 6 that has been magnetized to saturation. Then, the magnetic flux density of the magnetic body 6 is continuously reduced, and the changes in the magnetic field and the magnetic flux density at this time are measured by the Hall element 4 and the B coil 5 in the same way as the conventional measuring device 1 described above. , the demagnetization curve shown in Figure 2 is obtained and the remanence Br, coercive force Hc, or maximum magnetic energy product (BH) ma
x is required.

上述の測定方法においては、磁性体6を飽和磁化させる
飽和磁化過程で、磁場コイル3に直流電流を供給するこ
とにより得られる直流磁場に、パルス用コイル8に供給
されるパルス電流により得られるパルス磁場が重畳され
ているが、パルス電流が上述のごとく瞬間的に極めて高
い電流値のため、パルス用コイルから発生する磁場は極
めて強力なものとなる。従って、直流磁場のみでは飽和
磁化させることの出来ない飽和磁束密度Bsの大きな磁
性体6も容易に飽和磁化されるのである。
In the above measurement method, in the saturation magnetization process of saturating the magnetic body 6, a pulse obtained by a pulse current supplied to the pulse coil 8 is added to the DC magnetic field obtained by supplying a DC current to the magnetic field coil 3. Although a magnetic field is superimposed, since the pulse current has an extremely high instantaneous current value as described above, the magnetic field generated from the pulse coil becomes extremely strong. Therefore, even the magnetic body 6 with a large saturation magnetic flux density Bs, which cannot be saturated magnetized only by a DC magnetic field, is easily saturated magnetized.

そして、飽和磁化された磁性体6を減磁させる減磁過程
においては、磁場強さの変化が速すぎて連続的な減磁曲
線を得ることができないパルス磁場が取り除かれるため
、磁場コイル3に供給される直流電流の電流値の連続的
な変化によって磁性体6の正確な減磁曲線が測定される
のである。
In the demagnetization process of demagnetizing the saturated magnetic body 6, the pulsed magnetic field whose magnetic field strength changes too quickly to obtain a continuous demagnetization curve is removed, so the magnetic field coil 3 An accurate demagnetization curve of the magnetic body 6 can be measured by continuously changing the current value of the supplied DC current.

以上説明したように、本実施例の磁気特性測定装置7は
磁性体6に磁場をかける磁場発生手段として、直流電流
が供給される磁場コイル3とパルス電流が供給されるパ
ルス用コイル8とを設けたため、磁性体6を飽和磁化さ
せる飽和磁化過程において極めて強力な磁場を得ること
ができ、測定できる磁性体の種類の制限が大幅に緩和さ
れる。
As explained above, the magnetic property measuring device 7 of this embodiment uses the magnetic field coil 3 to which a direct current is supplied and the pulse coil 8 to which a pulse current is supplied as a magnetic field generating means for applying a magnetic field to the magnetic body 6. Because of this provision, an extremely strong magnetic field can be obtained in the saturation magnetization process of saturating the magnetic body 6, and restrictions on the types of magnetic bodies that can be measured are greatly relaxed.

そして、上述の測定装置7を用いて、磁性体6の磁気特
性を測定する測定方法では、直流磁場にに重畳されるパ
ルス磁場によって磁性体6が確実に飽和磁化され、また
、パルス磁場が除かれた状態での直流磁場の連続的に変
化によって磁性体が連続的に減磁されて正確な磁気特性
が測定できるのである。
In the measurement method of measuring the magnetic properties of the magnetic material 6 using the above-mentioned measuring device 7, the magnetic material 6 is reliably saturated magnetized by the pulsed magnetic field superimposed on the DC magnetic field, and the pulsed magnetic field is removed. The magnetic material is continuously demagnetized by the continuous change of the DC magnetic field in the magnetic state, making it possible to measure accurate magnetic properties.

なお、本実施例の測定装置7においては、パルス電流が
供給されるコイルを、磁場コイル3とは別のパルス電流
用コイル8としたが、本発明の磁気特性測定装置はこれ
に限るものでは無い。すなわち、磁場コイル3に供給さ
れる直流電流に、飽和磁化過程のみパルス電流を重畳さ
せるようにしても同様の結果か得られるものである。
In addition, in the measuring device 7 of this embodiment, the coil to which the pulse current is supplied is the pulse current coil 8 which is separate from the magnetic field coil 3, but the magnetic property measuring device of the present invention is not limited to this. None. That is, the same result can be obtained even if a pulse current is superimposed on the DC current supplied to the magnetic field coil 3 only during the saturation magnetization process.

[発明の効果] 以上説明したように、この発明の磁気特性測定方法にあ
っては、磁性体を飽和磁化させる飽和磁化過程で、コイ
ルに供給される直流電流により得られる直流磁場に、コ
イルに供給されるパルス電流により得られるパルス磁場
を重畳させるため、磁性体に極めて大きな磁場がかけら
れて、飽和磁束密度の大きな磁性体も確実に飽和磁化さ
れる。
[Effects of the Invention] As explained above, in the method for measuring magnetic properties of the present invention, in the saturation magnetization process of saturating the magnetic material, the coil is exposed to the DC magnetic field obtained by the DC current supplied to the coil. In order to superimpose the pulsed magnetic field obtained by the supplied pulsed current, an extremely large magnetic field is applied to the magnetic material, and even the magnetic material with a high saturation magnetic flux density is reliably saturated magnetized.

そして、磁性体を減磁させる減磁過程においてはパルス
磁場を取り除いて直流磁場のみをかけるため、直流磁場
の連続的な変化によって磁性体の磁化強さの変化が正確
に測定されるのである。
In the demagnetization process of demagnetizing the magnetic material, the pulsed magnetic field is removed and only the DC magnetic field is applied, so changes in the magnetization strength of the magnetic material can be accurately measured by continuous changes in the DC magnetic field.

そして、この発明の磁気特性測定装置にあっては、磁性
体に磁場をかける磁場発生手段として、直流電流が供給
される直流用コイルと、パルス電流が供給されるパルス
用コイルとを設けたため、磁化飽和過程において極めて
大きい磁場が得られて、測定可能な磁性体の種類に関す
る制限が大幅に援和されるのであり、また、磁場コイル
自体に直′t&電流とパルス電流を重畳させるようにし
てら同様の効果か得られるのである。
In the magnetic property measuring device of the present invention, a direct current coil to which a direct current is supplied and a pulse coil to which a pulse current is supplied are provided as magnetic field generating means for applying a magnetic field to a magnetic material. An extremely large magnetic field is obtained during the magnetization saturation process, which greatly alleviates the restrictions on the types of magnetic materials that can be measured.Also, by superimposing the direct current and pulsed current on the magnetic field coil itself, A similar effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気特性測定装置の
概略図、第2図は磁性体の磁気特性測定の元となるヒス
テリシスループの一例を示す図、そして、第3図は従来
の磁気特性測定装置の概略図である。 3・・・・・磁場コイル(直流用コイル)、4・・・・
・・ホール素子(磁場測定手段)、5・・・・・・Bコ
イル(磁化測定手段)、6・・・・・・磁性体、7・・
・・・・磁気特性測定装置、8・・・・・・パルス用コ
イル。
Fig. 1 is a schematic diagram of a magnetic property measuring device according to an embodiment of the present invention, Fig. 2 is a diagram showing an example of a hysteresis loop that is the basis for measuring the magnetic properties of a magnetic material, and Fig. 3 is a diagram showing a conventional magnetic property measuring device. FIG. 2 is a schematic diagram of a characteristic measuring device. 3...Magnetic field coil (DC coil), 4...
... Hall element (magnetic field measuring means), 5 ... B coil (magnetization measuring means), 6 ... Magnetic body, 7 ...
...Magnetic property measuring device, 8...Pulse coil.

Claims (3)

【特許請求の範囲】[Claims] (1)コイルに直流電流を供給して得られた直流磁場に
、コイルにパルス電流を供給して得られたパルス磁場を
重畳させて磁性体を飽和磁化させる飽和磁化過程と、前
記パルス電流の供給を停止した状態で、前記直流電流を
、前記飽和磁化された磁性体の磁化を減する磁場が発生
するように変化させ、この時の磁性体の磁化の変化を測
定する減磁過程とからなる磁性体の磁気特性測定方法。
(1) A saturation magnetization process in which a magnetic material is saturated magnetized by superimposing a pulsed magnetic field obtained by supplying a pulsed current to the coil on a DC magnetic field obtained by supplying a DC current to the coil, and A demagnetization process in which, with the supply stopped, the DC current is changed so as to generate a magnetic field that reduces the magnetization of the saturated magnetic material, and the change in magnetization of the magnetic material at this time is measured. A method for measuring the magnetic properties of magnetic materials.
(2)磁性体に磁場をかける磁場発生手段と、前記磁性
体にかけられる磁場の強さを測定する磁場測定手段と、
前記磁場発生手段によってかけられた磁場により磁化さ
れた磁性体の磁化強さを測定する磁化測定手段とを具備
してなる磁気特性測定装置であって、前記磁場発生手段
は、直流電流が供給される直流用コイルと、パルス電流
が供給されるパルス用コイルとからなることを特徴とす
る磁気特性測定装置。
(2) a magnetic field generating means for applying a magnetic field to a magnetic body; and a magnetic field measuring means for measuring the strength of the magnetic field applied to the magnetic body;
A magnetic property measuring device comprising magnetization measuring means for measuring the magnetization strength of a magnetic body magnetized by the magnetic field applied by the magnetic field generating means, wherein the magnetic field generating means is supplied with a direct current. 1. A magnetic property measuring device comprising a direct current coil and a pulse coil to which a pulse current is supplied.
(3)請求項2記載の磁気特性測定装置において、磁場
発生手段を、直流用コイル及びパルス電流用コイルに代
えて、直流電流とパルス電流とが重畳可能に設けられた
磁場コイルとしたことを特徴とする磁気特性測定装置。
(3) In the magnetic property measuring device according to claim 2, the magnetic field generating means is replaced by a magnetic field coil provided so that a direct current and a pulsed current can be superimposed, instead of a direct current coil and a pulsed current coil. Characteristic magnetic property measuring device.
JP7509888A 1988-03-29 1988-03-29 Method and apparatus for measuring magnetic characteristic of magnetic body Pending JPH01248077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7509888A JPH01248077A (en) 1988-03-29 1988-03-29 Method and apparatus for measuring magnetic characteristic of magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7509888A JPH01248077A (en) 1988-03-29 1988-03-29 Method and apparatus for measuring magnetic characteristic of magnetic body

Publications (1)

Publication Number Publication Date
JPH01248077A true JPH01248077A (en) 1989-10-03

Family

ID=13566357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7509888A Pending JPH01248077A (en) 1988-03-29 1988-03-29 Method and apparatus for measuring magnetic characteristic of magnetic body

Country Status (1)

Country Link
JP (1) JPH01248077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008249A1 (en) * 1992-10-07 1994-04-14 Hirst Magnetic Instruments Limited Characterisation of magnetic materials
JP2013024742A (en) * 2011-07-21 2013-02-04 Toyota Motor Corp Coercive force specification method for coercive force distribution magnet
JP2015099053A (en) * 2013-11-18 2015-05-28 株式会社日立産機システム Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008249A1 (en) * 1992-10-07 1994-04-14 Hirst Magnetic Instruments Limited Characterisation of magnetic materials
EP0672261A1 (en) * 1992-10-07 1995-09-20 Hirst Magnetic Instr Ltd Characterisation of magnetic materials.
JP2013024742A (en) * 2011-07-21 2013-02-04 Toyota Motor Corp Coercive force specification method for coercive force distribution magnet
JP2015099053A (en) * 2013-11-18 2015-05-28 株式会社日立産機システム Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method

Similar Documents

Publication Publication Date Title
US3768054A (en) Low flux leakage magnet construction
JPS6427208A (en) Cylindrical permanent magnet, motor using same and manufacture thereof
GB1139112A (en) Magnet structure
Fernández et al. Permanent magnets aging in variable flux permanent magnet synchronous machines
Nishio et al. More accurate hysteresis curve for large Nd–Fe–B sintered magnets employing a superconducting magnet-based vibrating sample magnetometer
JP2635714B2 (en) DC bias detection method for transformer core
JPH01248077A (en) Method and apparatus for measuring magnetic characteristic of magnetic body
JP2764458B2 (en) Magnetic field generator for MRI
JP3671442B2 (en) Demagnetizing method and demagnetizing device
JPH0387365A (en) Sputtering device equipped with electromagnet for impressing parallel magnetic field
JPH0372606A (en) Magnetization of magnetic material
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
GB1535609A (en) Method of magnetising and adjusting the magnetisation of a permanent magnet
RU2217828C2 (en) Method for reversal magnetization of multipole permanent magnets and magnetic systems
Nishio Accurate measurement of magnetic properties of Nd-Fe-B sintered magnets with high coercivity
JPH09131025A (en) Method of magnetizing permanent magnet
JPS63213907A (en) Magnetization of permanent magnet
JPH0215834B2 (en)
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
JPS6153843B2 (en)
JP2572299Y2 (en) Two-pole magnetized permanent magnet for flat coil vibration type voice coil motor
JPH03173406A (en) Multipolar magnetizer
JPS5726415A (en) Demagnetizing method
JPH01206605A (en) Magnetic field generating device
JPH05144628A (en) Magnetic field generator