JPH0372606A - Magnetization of magnetic material - Google Patents

Magnetization of magnetic material

Info

Publication number
JPH0372606A
JPH0372606A JP20872089A JP20872089A JPH0372606A JP H0372606 A JPH0372606 A JP H0372606A JP 20872089 A JP20872089 A JP 20872089A JP 20872089 A JP20872089 A JP 20872089A JP H0372606 A JPH0372606 A JP H0372606A
Authority
JP
Japan
Prior art keywords
magnetized
magnetizing
magnet
coercive force
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20872089A
Other languages
Japanese (ja)
Inventor
Toyosaku Matsumoto
松本 豊作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP20872089A priority Critical patent/JPH0372606A/en
Publication of JPH0372606A publication Critical patent/JPH0372606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enable the rare earth cobalt base magnet, etc., to be magnetized even by any conventional magnetizer of relatively small output by a method wherein a magnetic material, after preheating process at specific temperature, is magnetized by the magnetizer and then restored to the room temperature. CONSTITUTION:As for the magnetic material, the material having the higher coercive force than that of ferrite magnet especially rare earth cobalt base magnetic material, neodymium ferromagnetic material, etc., are applicable. The magnetic material in specific size and shape is, after preheating process, heated in a magnetizer from 50 deg.C up to the temperature not exceeding the Curie point to be magnetized by the magnetism generated by a magnetizing coil and then restored to the room temperature. Through these procedures, the coercive force of the material to be magnetized can be abated by magnetizing in the state at high temperature so that the rare earth cobalt base magnetic material may be easily magnetized even by the magnetizer in relatively small output. Later, the coercive force can represent the original high value again by restoring the material to the room temperature.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、永久磁石または永久磁石を具える磁気回路
等を着磁させるための方法に係わり、特に、永久磁石と
して、保磁力の大きいサマリウムコバルト系、ネオジウ
ムコバルト系などの希土類コバルト系永久磁石の着磁に
好適な着磁方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention relates to a method for magnetizing a permanent magnet or a magnetic circuit including a permanent magnet, and particularly relates to a method for magnetizing a permanent magnet or a magnetic circuit including a permanent magnet. The present invention relates to a magnetization method suitable for magnetizing rare earth cobalt-based permanent magnets such as cobalt-based and neodymium cobalt-based permanent magnets.

「従来の技術」 希土類コバルト系永久磁石は、次に示ず上うな特長を備
え、極めて優秀な磁性材料として種々研究がなされてき
ている。
"Prior Art" Rare earth cobalt-based permanent magnets have the following features and have been studied in various ways as extremely excellent magnetic materials.

■磁石エネルギー積が実用磁石中で際立って大きく、機
器に磁石を組み込む場合の必要磁石体積をごく小さくす
ることができ、機器の小型化、軽量化が可能となる。
■The magnetic energy product is outstandingly large among practical magnets, and the required magnet volume when incorporating the magnet into equipment can be minimized, making it possible to make equipment smaller and lighter.

■保磁力がフェライト磁石の3〜4倍と極めて大きく、
またM !−1cにおいては優に30kOeを越えるも
のもあり、極めて安定性が高い。
■The coercive force is extremely large, 3 to 4 times that of ferrite magnets,
M again! -1c, some of which easily exceed 30 kOe and are extremely stable.

■残留磁束密度Brは、はぼアルニコ磁石に匹敵し、フ
ェライト磁石の3〜4倍を示す。
(2) The residual magnetic flux density Br is comparable to that of alnico magnets and is 3 to 4 times that of ferrite magnets.

■減磁曲線がほとんど直線に近く、リコイル透磁率が1
に近い。
■The demagnetization curve is almost a straight line, and the recoil permeability is 1.
Close to.

■材料の均一性、機械的性質が良好である。■The material has good uniformity and mechanical properties.

■完全に焼結されているため、安定で耐候性に優れてい
る。またキュリー点、磁束の温度係数、比重、強度など
がアルニコ磁石に近く、(Jぼ同様39− の取り扱いができ、実用化に有利である。
■Since it is completely sintered, it is stable and has excellent weather resistance. In addition, its Curie point, temperature coefficient of magnetic flux, specific gravity, strength, etc. are close to those of alnico magnets, and it can be handled in the same way as J, making it advantageous for practical use.

この希土類コバルト系磁石は、単体で、あるいは各種の
ヨークと組み合わ+U−て内磁型の磁気回路あるいは外
磁型の磁気回路を構威し、各種機器、例えばスピーカー
等に組み込まれて使用される。
These rare earth cobalt-based magnets are used alone or in combination with various yokes to form an internal magnetic circuit or an external magnetic circuit, and are incorporated into various devices such as speakers. .

ところで、このような磁石材料に着磁を行う方法として
は、従来、着磁コイルを備えた着磁機を用いて行なわれ
ている。
By the way, as a method of magnetizing such a magnet material, conventionally, it is carried out using a magnetizing machine equipped with a magnetizing coil.

第1図は、従来の着磁機の一例を示す図である。FIG. 1 is a diagram showing an example of a conventional magnetizing machine.

これはコンデンサ形着磁機といわれるものであって、図
中符号lは着磁コイル、2は被着磁物、3はコンデンサ
、4は整流器、5は可変昇圧器である。この着磁機を用
いて被着磁物の着磁を行うには、着磁コイルI内に被着
磁物2を入れ、コンデンサ3に蓄えられた電荷を着磁コ
イルlに放出し、通常数m5ec程度の時間、被着磁物
に高い磁束密度の磁力を作用させて着磁を行う。また、
これとは別に、上記コンデンサ形着磁機からコンデンサ
3を取り去り、代わりに直流電流供給能力を上げること
により、直接的に高い磁束密度を得るようにした直流形
着磁機といわれるものもある。いずれの形でも、大出力
のものは高価になる。
This is called a capacitor type magnetizer, and in the figure, reference numeral 1 is a magnetizing coil, 2 is a magnetized object, 3 is a capacitor, 4 is a rectifier, and 5 is a variable booster. To magnetize an object using this magnetizer, the object 2 is placed in the magnetizing coil I, the charge stored in the capacitor 3 is discharged to the magnetizing coil L, and the Magnetization is performed by applying a magnetic force with a high magnetic flux density to the object to be magnetized for a period of about several m5 ec. Also,
Apart from this, there is also a so-called DC type magnetizer which directly obtains a high magnetic flux density by removing the capacitor 3 from the capacitor type magnetizer and increasing the DC current supply capability instead. In either form, high-output devices are expensive.

「発明が解決しようとする課題」 希土類コバルト系磁石は、アルニコ磁石やフェライト磁
石と比べ、保磁力が遥かに高いために、着磁に際しては
、より大きなエネルギーが必要となり、このためにフェ
ライト磁石着磁用等の小出力の着磁機を用いて希土類コ
バルト系磁石を着磁するのは困難であり、着磁すべき磁
石材料の保磁力に見合った高磁束を発生する大出力の着
磁機を必要とした。そのような着磁機は極めて高価格と
なってしまった。
"Problem to be Solved by the Invention" Rare earth cobalt magnets have a much higher coercive force than alnico magnets and ferrite magnets, so they require more energy to magnetize. It is difficult to magnetize rare earth cobalt-based magnets using a small-output magnetizing machine such as a magnetizer, so a high-output magnetizing machine that generates a high magnetic flux commensurate with the coercive force of the magnet material to be magnetized is required. required. Such magnetizers have become extremely expensive.

この発明は、上記事情に鑑みてなされたもので、従来の
比較的小出力の着磁機でも希土類コバルト系磁石等を容
易に着磁することのできる着磁方法の提供を目的として
いる。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a magnetization method that can easily magnetize rare earth cobalt magnets and the like even with a conventional magnetization machine of relatively low output.

「課題を解決するための手段」 この発明は、磁石材料を予め50℃〜当該磁石のキュリ
ー点以下の塩度に加熱して該磁石材料の保磁力を低下さ
せた状態で、着磁機に上り着磁を行い、その後室温に戻
すという手法を採ることによって、上記課題を解決した
"Means for Solving the Problems" The present invention is directed to heating a magnet material in advance to a salinity of 50°C to below the Curie point of the magnet to reduce the coercive force of the magnet material, and then applying the magnet to a magnetizing machine. The above problem was solved by performing upward magnetization and then returning the temperature to room temperature.

以下、この発明の着磁方法を詳しく説明する。The magnetization method of the present invention will be explained in detail below.

この発明を実施するに好適な磁石材料としては、フェラ
イト磁石よりも高い保磁力を有する高保磁力磁石材料で
あり、特にSmCo5、SmvCO+7、YCo、、C
eCO5、PrCo5、(S m、 P r)・COs
などの希土類コバルト磁石材料、ネオジウム鉄磁石材料
などが好適に使用される。
Suitable magnet materials for implementing this invention include high coercive force magnet materials having a higher coercive force than ferrite magnets, particularly SmCo5, SmvCO+7, YCo, C
eCO5, PrCo5, (S m, Pr) COs
Rare earth cobalt magnet materials, neodymium iron magnet materials, etc. are preferably used.

この希土類コバルト磁石材料は、通常焼結法によって形
成され、所望の大きさ、形状の磁石材料を作製するには
、所望の大きさ、形状となるように焼結するか、大きな
焼結体を研削して所望の大きさ、形状のものを得るよう
にしても良い。
This rare earth cobalt magnet material is usually formed by a sintering method, and in order to produce a magnet material of a desired size and shape, it is necessary to sinter it to the desired size and shape, or to form a large sintered body. The desired size and shape may be obtained by grinding.

所望の大きさ、形状とされた磁石材料(以下、被着磁物
という)は、次に、従来同様の着磁機を用いて着磁を行
う。
The magnet material (hereinafter referred to as a magnetized object) that has been made into a desired size and shape is then magnetized using a conventional magnetizing machine.

この着磁の際には、予め被着磁物をオーブン等で加熱し
ておき、着磁機内で50℃から被着磁物ずなわち高保磁
力磁石材料のキュリー点以下の温一 度となるようにし、この状態で着磁コイルから磁力を発
生させて着磁を行う。そして、その後室温まで戻す。こ
のように被着磁物を高温状態にして着磁することにより
、被着磁物の保磁力(Hc)を低下させることができ、
その結果、比較的小出力の着磁機であっても、容易に高
保磁力の希土類コバルト系磁石材料の着磁を行うことが
可能となる。
During this magnetization, the object to be magnetized is heated in advance in an oven or the like, and the temperature within the magnetizing machine is adjusted from 50°C to below the Curie point of the object to be magnetized, that is, the high coercive force magnet material. In this state, the magnetizing coil generates magnetic force to perform magnetization. Then bring it back to room temperature. By magnetizing the magnetized object in a high temperature state in this way, the coercive force (Hc) of the magnetized object can be lowered,
As a result, even with a relatively low-power magnetizing machine, it is possible to easily magnetize a rare earth cobalt-based magnet material with a high coercive force.

この発明で使用される高保磁力磁石材料(MHcが20
KOe以上のもの)は、材料の温度変化に伴う保磁力の
変化が可逆性を示し、すなわち被着磁物を高温状態にす
ることによって保磁力は低下し、被着磁物の温度を室温
に戻すことによって保磁力が再び元の高い値を示す。
High coercive force magnet material used in this invention (MHc is 20
KOe or higher) exhibits reversibility in the change in coercive force associated with changes in material temperature; that is, the coercive force decreases when the magnetized object is brought to a high temperature, and when the temperature of the magnetized object is brought to room temperature. By returning it, the coercive force returns to its original high value.

この被着磁物の加熱温度が50℃以下であると、被着磁
物の保磁力の低下度合が少なく効果が少ない。すなわち
着磁の際に必要な磁力エネルギーがそれほど減らないの
で小出力用の着磁機ではやはり十分に着磁することがで
きず、得られる磁石の磁束密度が十分に得られないこと
になる。一方、被着磁物の温度がキュリー点以上の温度
であると、」二記可逆性が成立しなくなり、被着磁物へ
の着磁が困難となる。
If the heating temperature of the magnetized object is 50° C. or lower, the coercive force of the magnetized object will decrease only a little and the effect will be small. In other words, since the magnetic energy required for magnetization is not reduced so much, a small-output magnetizer cannot sufficiently magnetize the magnet, and the resulting magnet cannot have a sufficient magnetic flux density. On the other hand, if the temperature of the object to be magnetized is equal to or higher than the Curie point, the two-note reversibility will not hold, making it difficult to magnetize the object.

この発明において使用される高保磁力磁石材料のキコリ
ー点は、それぞれの材料によって別個の値を有し、例え
ばネオジウムコバルト磁石で約300℃程度である。し
たがってこのネオジウムコバルト磁石を着磁する場合に
は、磁石材料を50℃〜約300℃の範囲内の温度に加
熱して、着磁機で磁力を作用させれば良い。しかし実際
の着磁操作を考えると、ヨークと磁石を組み合わせた磁
気回路等では、使用される接着剤等の耐熱性の面の問題
もあり、また被着磁物の加熱・冷却操作の容易性などか
ら、着磁時の温度はできるだけ低い方か望ましく、上記
ネオジウムコバルト磁石においては、着磁の際の材料温
度は100〜120°C程度とするのが特に好ましい。
The Kichory point of the high coercive force magnet material used in this invention has a different value depending on each material, and is about 300° C. for a neodymium cobalt magnet, for example. Therefore, when magnetizing this neodymium cobalt magnet, it is sufficient to heat the magnet material to a temperature within the range of 50° C. to about 300° C. and apply magnetic force using a magnetizing machine. However, when considering the actual magnetization operation, there are problems with the heat resistance of the adhesive used in magnetic circuits that combine a yoke and a magnet, and the ease of heating and cooling operations for the magnetized object. For these reasons, it is desirable that the temperature at the time of magnetization be as low as possible, and in the above-mentioned neodymium cobalt magnet, it is particularly preferable that the material temperature at the time of magnetization be about 100 to 120°C.

この温度範囲内では、着磁後の磁束密度が、50°Cと
なるように加熱して着磁した場合の磁束密度よりも高く
、また120°C以上の温度で加熱して着磁した場合の
磁束密度とほぼ同等である。
Within this temperature range, the magnetic flux density after magnetization is higher than the magnetic flux density when magnetized by heating to 50°C, and when magnetized by heating to a temperature of 120°C or higher. It is almost equivalent to the magnetic flux density of .

そして、被着磁物を温度上昇させて着磁することによっ
て、被着磁物は十分に保磁力に打ち勝って着磁され、こ
れを室温に戻すことで充分に高い磁束密度を有する磁石
、あるいは磁気回路が形成されるのである。なお、着磁
の後、室温に戻した磁石の保磁力は再び高いレベルとな
り、減磁することはほとんどない。
By raising the temperature of the magnetized object and magnetizing it, the object is magnetized by sufficiently overcoming the coercive force, and by returning it to room temperature, a magnet with a sufficiently high magnetic flux density or A magnetic circuit is formed. Note that after magnetization, the coercive force of the magnet returned to room temperature returns to a high level, and there is almost no demagnetization.

このように、高保磁力磁石材料の加熱による保磁力低下
現象の一例を第2図を参照して説明する。
An example of the phenomenon in which the coercive force decreases due to heating of a high coercive force magnet material will be described with reference to FIG. 2.

第2図は、ザマリウムコバルト磁石における温度と磁気
特性との関係の一例を示すもので、この図に示すように
、ザマリウムコバルト磁石の保磁力は20°Cでは高く
、温度が上昇するに従って低下し、100℃の保磁力は
20℃の約半分程度となっている。
Figure 2 shows an example of the relationship between temperature and magnetic properties of a zamarium cobalt magnet. As shown in this figure, the coercive force of a zamarium cobalt magnet is high at 20°C, and as the temperature rises, The coercive force at 100°C is about half that at 20°C.

この発明では、高保磁力磁石材料を着磁する際に、磁石
材料を高温状態として保磁力を低下させた状態で着磁を
行うので、希土類コバルト磁石材料などの高保磁力磁石
材料を有する被着磁物を、通常では十分な着磁が不可能
な小出力着磁機を用いた場合でも極めて容易にフルチャ
ージすることができ、高い磁束密度の磁石あるいは磁気
回路を簡単、安価に作製することができる。
In this invention, when magnetizing a high coercive force magnet material, magnetization is performed while the magnet material is in a high temperature state and the coercive force is reduced. It is extremely easy to fully charge objects even when using a small-output magnetizer that normally cannot sufficiently magnetize them, and it is possible to easily and inexpensively produce magnets or magnetic circuits with high magnetic flux density. can.

以下、実施例によりこの発明の作用効果を一層明確化す
る。
Hereinafter, the effects of this invention will be further clarified with reference to Examples.

(実施例) 直径55mm、厚さ10mmの円盤状のネオジウム磁石
材料を、外径85mm、内径55mm、高さ40mmの
有底円筒状のヨークに固定し、第3図に示す内磁型磁気
回路11を構成した。この磁気回路におけるギヤツブG
は1.25mmとした。
(Example) A disk-shaped neodymium magnet material with a diameter of 55 mm and a thickness of 10 mm was fixed to a bottomed cylindrical yoke with an outer diameter of 85 mm, an inner diameter of 55 mm, and a height of 40 mm to form an internal magnet type magnetic circuit as shown in Fig. 3. 11 were constructed. The gear G in this magnetic circuit
was set to 1.25 mm.

次に、磁石材料12を固定した磁気回路11を着磁機の
着磁コイル内に入れて着磁を行った。
Next, the magnetic circuit 11 to which the magnet material 12 was fixed was placed in a magnetizing coil of a magnetizing machine and magnetized.

なお着磁機は、第4図に示すように、上下に着磁コイル
I 3.14を配し、各着磁コイル間に磁気回路11を
挿入して着磁を行う直流形着磁機を用いた。この着磁機
の性能は次の通りである。
As shown in Fig. 4, the magnetizing machine is a direct current type magnetizing machine in which magnetizing coils I 3.14 are placed above and below, and a magnetic circuit 11 is inserted between each magnetizing coil. Using. The performance of this magnetizing machine is as follows.

入力・・・交流200■ 出ノノ電流・・・直流150A 出力電圧・・・200■ 着磁コイル径・・・直径320mm 発生磁界・・・50mmギャップにおいて180000
 e着磁コイル巻数・・・上下コイル合計980回着磁
コイル抵抗・・・R=0.85Ω この着磁機の着磁コイル内に予めオーブン等加熱手段に
より磁気回路11を加熱して配置しく熱容量が大きいの
ですぐには冷めない)、室温〜120℃までの個々の温
度で着磁し、それぞれの場合の磁気回路の磁束密度(ギ
ヤツブGの磁束密度)を測定した。この結果を第5図に
示す。
Input...AC 200■ Output current...DC 150A Output voltage...200■ Magnetizing coil diameter...Diameter 320mm Generated magnetic field...180,000 at 50mm gap
eNumber of turns of the magnetizing coil...Total of 980 times in the upper and lower coilsResistance of the magnetizing coil...R=0.85Ω The magnetic circuit 11 must be heated and placed in the magnetizing coil of this magnetizer using a heating means such as an oven in advance. (Because it has a large heat capacity, it does not cool down quickly) and was magnetized at individual temperatures from room temperature to 120°C, and the magnetic flux density of the magnetic circuit (magnetic flux density of gear G) in each case was measured. The results are shown in FIG.

第5図に示すように、着磁温度を50℃としたものは、
室温で着磁したものに比べ、磁束密度が大幅に増加して
いる。更に着磁温度が100℃のものは、着磁温度が5
0°Cのものよりも高い磁束密度を示した。
As shown in Figure 5, the magnetization temperature is 50℃.
The magnetic flux density has increased significantly compared to those magnetized at room temperature. Furthermore, those with a magnetization temperature of 100℃ have a magnetization temperature of 5
It showed a higher magnetic flux density than that at 0°C.

また、100 ’Cで着磁して作製した磁気回路の磁気
特性は、 ギャップの磁束密度−12870,3gauss(実測
値)漏れ係数−2,21059(計算値) 起磁力損失係数−1,04281(計算値)パーミアン
ス係数−5,81924(計算値)動作点磁束密度−9
762,73gauss (計算値)動作点減磁界−1
677,660e (計算値)であった。
In addition, the magnetic characteristics of the magnetic circuit created by magnetizing at 100'C are: Gap magnetic flux density - 12870, 3 gauss (actual value) Leakage coefficient - 2,21059 (calculated value) Magnetomotive force loss coefficient - 1,04281 ( Calculated value) Permeance coefficient -5,81924 (Calculated value) Operating point magnetic flux density -9
762,73 gauss (calculated value) Operating point demagnetizing field -1
677,660e (calculated value).

「発明の効果」 以上説明したように、この発明の磁石材料の着磁方法は
、磁石材料を着磁する際に、磁石材料を高温状態にして
保磁力を低下させた状態で着磁を行うようにしたので、
希土類コバルト磁石材料などの高保磁力磁石材料を、通
常では十分な着磁が不可能な比較的小出力の着磁機を用
い極めて容易にフルチャージすることができ、高い磁束
密度の磁石、あるいは磁気回路を簡単、安価に形成する
ことができる。
"Effects of the Invention" As explained above, in the method of magnetizing a magnet material of the present invention, when magnetizing the magnet material, the magnet material is magnetized in a state where the magnet material is brought to a high temperature and the coercive force is reduced. I did it like this,
High coercive force magnet materials, such as rare earth cobalt magnet materials, can be fully charged extremely easily using a relatively low-output magnetizing machine that normally cannot be sufficiently magnetized. Circuits can be formed easily and inexpensively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を実施するに好適に使用される着磁
機の一例を示す概略構成図。 第2図は、サマリウムコバルト磁石の温度と磁気特性の
関係を示すグラフ。 第3図は、この発明の実施例において使用した磁気回路
を示す断面図。 第4図は、この発明の実施例において使用した着磁機の
要部概略構成図。 第5図は、この発明の実施例において作製した磁気回路
の着磁温度と磁束密度との関係を示すグラフである。 1.13.14・・・着磁コイル 11・・・磁気回路
FIG. 1 is a schematic configuration diagram showing an example of a magnetizing machine suitably used to carry out the present invention. FIG. 2 is a graph showing the relationship between temperature and magnetic properties of samarium cobalt magnets. FIG. 3 is a sectional view showing a magnetic circuit used in an embodiment of the invention. FIG. 4 is a schematic diagram of the main parts of the magnetizing machine used in the embodiment of the present invention. FIG. 5 is a graph showing the relationship between magnetization temperature and magnetic flux density of the magnetic circuit produced in the example of the present invention. 1.13.14... Magnetizing coil 11... Magnetic circuit

Claims (1)

【特許請求の範囲】  磁石材料を着磁コイル内に配し、この着磁コイルに磁
気を生じさせて該磁石材料に着磁を行う着磁方法であっ
て、 磁石材料を予め50℃〜当該磁石のキュリー点以下の温
度に加熱して該磁石材料の保磁力を低下させた状態とし
、その状態で前記着磁を行い、その後室温状態に戻すよ
うにしたことを特徴とする磁石材料の着磁方法。
[Claims] A magnetizing method in which a magnetic material is arranged in a magnetizing coil, and the magnetic material is magnetized by generating magnetism in the magnetizing coil, the magnetizing method comprising: heating the magnetic material in advance at 50°C to A magnet material is heated to a temperature below the Curie point of the magnet to reduce the coercive force of the magnet material, the magnetization is performed in that state, and the magnet material is then returned to room temperature. magnetic method.
JP20872089A 1989-08-11 1989-08-11 Magnetization of magnetic material Pending JPH0372606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20872089A JPH0372606A (en) 1989-08-11 1989-08-11 Magnetization of magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20872089A JPH0372606A (en) 1989-08-11 1989-08-11 Magnetization of magnetic material

Publications (1)

Publication Number Publication Date
JPH0372606A true JPH0372606A (en) 1991-03-27

Family

ID=16560968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20872089A Pending JPH0372606A (en) 1989-08-11 1989-08-11 Magnetization of magnetic material

Country Status (1)

Country Link
JP (1) JPH0372606A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068188A1 (en) * 2004-12-24 2006-06-29 Fdk Corporation Magnetizing method for permanent magnet
WO2006098410A1 (en) * 2005-03-17 2006-09-21 Fdk Corporation Permanent magnet magnetization device and permanent magnet magnetization method
JP2006261460A (en) * 2005-03-17 2006-09-28 Fdk Corp Magnetizing device of permanent magnet
JP2006294934A (en) * 2005-04-12 2006-10-26 Fdk Corp Device of magnetizing permanent magnet
JP2006294936A (en) * 2005-04-12 2006-10-26 Fdk Corp Method and device magnetizing of permanent magnet
JP2006295122A (en) * 2005-03-17 2006-10-26 Fdk Corp Device of magnetizing permanent magnet
WO2015056324A1 (en) * 2013-10-17 2015-04-23 秀雄 中庄谷 Simplified magnetization device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532782A (en) * 1978-08-30 1980-03-07 Matsushita Electric Works Ltd Material for inorganic cured body
JPS6076110A (en) * 1983-10-03 1985-04-30 Sumitomo Special Metals Co Ltd Assembling and magnetizing method for magnetic circuit
JPS61281505A (en) * 1985-06-06 1986-12-11 Seiko Epson Corp Magnetizing method of rare earth magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532782A (en) * 1978-08-30 1980-03-07 Matsushita Electric Works Ltd Material for inorganic cured body
JPS6076110A (en) * 1983-10-03 1985-04-30 Sumitomo Special Metals Co Ltd Assembling and magnetizing method for magnetic circuit
JPS61281505A (en) * 1985-06-06 1986-12-11 Seiko Epson Corp Magnetizing method of rare earth magnet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068188A1 (en) * 2004-12-24 2006-06-29 Fdk Corporation Magnetizing method for permanent magnet
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet
US9082546B2 (en) 2004-12-24 2015-07-14 Minebea Co., Ltd. Method of magnetizing into permanent magnet
JP4697736B2 (en) * 2004-12-24 2011-06-08 ミネベア株式会社 Magnetization method of permanent magnet
JP2006295122A (en) * 2005-03-17 2006-10-26 Fdk Corp Device of magnetizing permanent magnet
US7821365B2 (en) 2005-03-17 2010-10-26 Fdk Corporation Permanent magnet magnetizing apparatus and permanent magnet magnetizing method
JP4674799B2 (en) * 2005-03-17 2011-04-20 ミネベア株式会社 Multipolar ring permanent magnet magnetizer
JP4678774B2 (en) * 2005-03-17 2011-04-27 ミネベア株式会社 Multipolar ring permanent magnet magnetizer
JP2006261460A (en) * 2005-03-17 2006-09-28 Fdk Corp Magnetizing device of permanent magnet
WO2006098410A1 (en) * 2005-03-17 2006-09-21 Fdk Corporation Permanent magnet magnetization device and permanent magnet magnetization method
JP2006294936A (en) * 2005-04-12 2006-10-26 Fdk Corp Method and device magnetizing of permanent magnet
JP2006294934A (en) * 2005-04-12 2006-10-26 Fdk Corp Device of magnetizing permanent magnet
JP4671278B2 (en) * 2005-04-12 2011-04-13 ミネベア株式会社 Multi-pole magnetizing method and apparatus for ring-shaped permanent magnet
JP4671277B2 (en) * 2005-04-12 2011-04-13 ミネベア株式会社 Ring permanent magnet magnetizer
WO2015056324A1 (en) * 2013-10-17 2015-04-23 秀雄 中庄谷 Simplified magnetization device

Similar Documents

Publication Publication Date Title
JP4697736B2 (en) Magnetization method of permanent magnet
CN107077934B (en) The sintered magnet and preparation method thereof based on MnBi of thermal stability with raising
Hirosawa et al. Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Co x) 14B measured on single crystals
US4347086A (en) Selective magnetization of rare-earth transition metal alloys
CN104616855A (en) Magnetizing method and device for sintered neodymium-iron-boron magnet or magnet assembly
JPH0372606A (en) Magnetization of magnetic material
JP3671442B2 (en) Demagnetizing method and demagnetizing device
WO1980002297A1 (en) Process for producing permanent magnet alloy
US4920326A (en) Method of magnetizing high energy rare earth alloy magnets
JP2940048B2 (en) Permanent magnet magnetization method
CN100369166C (en) Convergent oscillation type demagnetization device
Popov et al. Preparation of sintered Nd-Fe-B magnets by pressless process
JPS6076110A (en) Assembling and magnetizing method for magnetic circuit
JP2011249612A (en) Demagnetization method and demagnetization apparatus
JP2015035558A (en) Demagnetization method and demagnetizer
CN106233402B (en) SmCo based rare earth sintered magnets
Bollero et al. Intergrain interactions in nanocrystalline isotropic PrFeB-based magnets
CN105845424A (en) Forming method of magnetic ring
JPH09131025A (en) Method of magnetizing permanent magnet
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JPS63213907A (en) Magnetization of permanent magnet
CN117038258B (en) Demagnetizing method of permanent magnet and magnet
JPH06140248A (en) Magnetizing method for permanent magnet rotor
Komura et al. Establishment of multipole magnetizing method and apparatus using a heating system for Nd-Fe-B isotropic bonded magnets
RU2217828C2 (en) Method for reversal magnetization of multipole permanent magnets and magnetic systems