JP4674799B2 - Multipolar ring permanent magnet magnetizer - Google Patents

Multipolar ring permanent magnet magnetizer Download PDF

Info

Publication number
JP4674799B2
JP4674799B2 JP2005078187A JP2005078187A JP4674799B2 JP 4674799 B2 JP4674799 B2 JP 4674799B2 JP 2005078187 A JP2005078187 A JP 2005078187A JP 2005078187 A JP2005078187 A JP 2005078187A JP 4674799 B2 JP4674799 B2 JP 4674799B2
Authority
JP
Japan
Prior art keywords
magnetized
heating
permanent magnet
magnetizing
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005078187A
Other languages
Japanese (ja)
Other versions
JP2006261460A (en
Inventor
治洋 幸村
幹雄 北岡
郁夫 大橋
照夫 清宮
佐知子 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2005078187A priority Critical patent/JP4674799B2/en
Priority to EP06729271A priority patent/EP1860670B1/en
Priority to CN2006800126179A priority patent/CN101160634B/en
Priority to PCT/JP2006/305278 priority patent/WO2006098410A1/en
Priority to US11/886,081 priority patent/US7821365B2/en
Priority to AT06729271T priority patent/ATE527670T1/en
Publication of JP2006261460A publication Critical patent/JP2006261460A/en
Application granted granted Critical
Publication of JP4674799B2 publication Critical patent/JP4674799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、永久磁石に着磁を施す装置に関し、更に詳しく述べると、被着磁物を、そのキュリー点以上の温度からキュリー点未満の温度まで降温させつつ、その間、着磁磁界を印加し続ける永久磁石の着磁方法で使用する着磁装置に関するものである。この技術は、特に限定されるものではないが、例えば極小径ステッピングモータのロータに用いるリング状永久磁石の多極着磁などに有効である。   The present invention relates to an apparatus for magnetizing a permanent magnet. More specifically, the present invention lowers the temperature of an object to be magnetized from a temperature above its Curie point to a temperature below its Curie point while applying a magnetizing magnetic field. The present invention relates to a magnetizing device used in a permanent magnet magnetizing method. Although this technique is not particularly limited, it is effective for, for example, multipolar magnetization of a ring-shaped permanent magnet used for a rotor of a very small diameter stepping motor.

ラジアルギャップ方式の永久磁石ステッピングモータなどに組み込むリング状永久磁石ロータを多極着磁するには、一般にコイル通電方式の着磁装置が用いられている。この種の着磁装置は、例えば磁気ヨークに、被着磁物であるリング状永久磁石を挿入・抜出可能な被着磁物収容穴を設けると共に、該被着磁物収容穴の内壁面に軸方向に延びる溝を多数形成し、該溝内に絶縁被覆導線を埋設して、隣り合う絶縁被覆導線がつづら折れ状に連続してコイルを形成する構造である。被着磁物を被着磁物収容穴に挿入し、コンデンサに蓄えた電荷を瞬時に放出することで、コイルにパルス電流を流し、それによって発生する磁界により着磁を行っている。   In order to multi-polarize a ring-shaped permanent magnet rotor incorporated in a radial gap type permanent magnet stepping motor or the like, a coil energization type magnetizing apparatus is generally used. This type of magnetizing device is provided with a magnetized object accommodation hole into which a ring-shaped permanent magnet, which is a magnetized object, can be inserted / extracted in a magnetic yoke, for example, and an inner wall surface of the magnetized object accommodation hole In this structure, a plurality of grooves extending in the axial direction are formed, and insulation-coated conductors are embedded in the grooves, and adjacent insulation-coated conductors are continuously folded to form a coil. The magnetized object is inserted into the magnetized object receiving hole, and the electric charge stored in the capacitor is instantaneously released, so that a pulse current is passed through the coil and magnetized by the magnetic field generated thereby.

周知のように、近年の電子機器の著しい小型化に対応して、それに使用するステッピングモータなども小型化・小径化が進んでいる。ロータとして用いるリング状永久磁石を多極着磁する際、上記のようなコイル通電方式の着磁装置を用いてパルス状の大きな電流を流すが、リング状永久磁石の小径化に伴い、着磁ピッチ(着磁極間距離)が狭くなり、そのため配設するコイルの導線径が細くなって、導線に流せる電流値が制限されるため、十分な着磁特性が得られない問題が生じてきた。   As is well known, in response to the recent remarkable downsizing of electronic devices, stepping motors and the like used therefor have also been downsized and reduced in diameter. When a ring-shaped permanent magnet used as a rotor is magnetized in multiple poles, a large pulsed current is passed using the coil energization type magnetizing device as described above. Since the pitch (distance between magnetized magnetic poles) is narrowed, the diameter of a conducting wire is reduced, and the current value that can be passed through the conducting wire is limited. Therefore, there has been a problem that sufficient magnetization characteristics cannot be obtained.

このような問題を解決できる一つの手法として、複数の永久磁石を放射状に配置することによって中心部に複数の反転磁極を形成し、その中心部に被着磁物を配置することにより4極以上の多極着磁を行う方法が提案されている(特許文献1参照)。確かに、このような永久磁石方式の着磁装置の使用によって、被着磁物の磁極ピッチの狭小化に際して問題となる着磁不足は、ある程度改善できる。   As one method that can solve such a problem, a plurality of inverted magnetic poles are formed in the central portion by arranging a plurality of permanent magnets radially, and four or more poles are provided by arranging an adherend in the central portion. Has been proposed (see Patent Document 1). Certainly, by using such a permanent magnet type magnetizing apparatus, the insufficient magnetization which becomes a problem when the magnetic pole pitch of the object to be magnetized is reduced can be improved to some extent.

しかし、最近のステッピングモータの小型化(小径化)・高性能化に対する要望は極めて大きい。例えば携帯映像機器のオートフォーカス機構などでは、高精細な画像を得るためにレンズアクチュエータを高精度で制御できる狭ピッチ多極着磁されたステッピングモータが重要な電子部品となっている。ここでは、ロータを構成するリング状永久磁石としては、例えば直径3mm以下、着磁極数が10極以上の狭ピッチ構造に対して、飽和着磁レベルの着磁特性というような要求がある。このような着磁構造に対しては、上記のような従来の着磁方法では、例え永久磁石方式であっても着磁不足が生じ、しかも表面磁束密度ピーク値のばらつきが大きい問題が生じる。   However, there is a great demand for downsizing (smaller diameter) and higher performance of recent stepping motors. For example, in an autofocus mechanism of a portable video device, a stepping motor magnetized with a narrow pitch multipolar magnet capable of controlling a lens actuator with high accuracy in order to obtain a high-definition image is an important electronic component. Here, as a ring-shaped permanent magnet constituting the rotor, for example, there is a demand for a magnetization characteristic of a saturation magnetization level for a narrow pitch structure having a diameter of 3 mm or less and a number of magnetic poles of 10 or more. For such a magnetized structure, in the conventional magnetizing method as described above, there is a problem that magnetization is insufficient even if the permanent magnet method is used, and the variation of the surface magnetic flux density peak value is large.

着磁不足を改善する技術として、被着磁物を高温の雰囲気や液中における飽和着磁磁界の減少を利用して着磁する方法も提案されている(特許文献2など参照)。例えば、希土類永久磁石の一種であるPr−Fe−B磁石において、100℃での着磁磁界は25℃での着磁磁界に比較して低い値をもつから、この温度領域で着磁を行うことにより、安定な低磁界での飽和着磁をすることが可能であることが開示されている。   As a technique for improving the lack of magnetization, a method of magnetizing an object to be magnetized using a decrease in saturation magnetization magnetic field in a high-temperature atmosphere or liquid has been proposed (see Patent Document 2). For example, in a Pr—Fe—B magnet, which is a kind of rare earth permanent magnet, the magnetization magnetic field at 100 ° C. has a lower value than the magnetization magnetic field at 25 ° C., and thus magnetization is performed in this temperature region. Thus, it is disclosed that it is possible to perform saturation magnetization in a stable low magnetic field.

ところが、実際に着磁を行ってみると、前記のような極小径・多極といった着磁ピッチの狭いリング状永久磁石では、表面磁束密度ピーク値全極の平均値については多少の着磁特性の向上はみられるものの、依然として、表面磁束密度ピーク値のばらつきは大きく、高品質の着磁は極めて困難である。
特開2001−268860公報 特開平6−140248号公報
However, when actually magnetizing, in the ring-shaped permanent magnet with a narrow magnetization pitch such as the above-mentioned minimum diameter and multipole, the average value of all the poles of the surface magnetic flux density peak value is somewhat magnetized. However, the variation in the surface magnetic flux density peak value is still large, and high quality magnetization is extremely difficult.
JP 2001-268860 A JP-A-6-140248

本発明が解決しようとする課題は、極小径・多極といった着磁ピッチの狭いリング状永久磁石でも、着磁不足が生じず、着磁品質を高めることができ、低コストで強力な着磁作業を効率よく迅速に行えるような装置を提供することである。   The problem to be solved by the present invention is that even with a ring-shaped permanent magnet with a narrow magnetization pitch, such as extremely small diameters and multiple poles, there is no shortage of magnetization, the magnetization quality can be improved, and strong magnetization at low cost. It is to provide a device that can perform work efficiently and quickly.

着磁不足が生じず、着磁品質を高めることができる技術として、本発明者等は、先に、被着磁物である永久磁石を、そのキュリー点以上の温度からキュリー点未満の温度まで降温させつつ、その間、被着磁物に着磁磁界を印加し続ける永久磁石の着磁方法を提案した(特願2004−374918)。この方法によれば、極小径・多極着磁構造でも、着磁特性(磁力特性)が高く、且つ着磁品質の良好なリング状永久磁石が得られる。   As a technique that does not cause insufficient magnetization and can improve the magnetization quality, the present inventors have first made a permanent magnet, which is an object to be magnetized, from a temperature above its Curie point to a temperature below its Curie point. A method of magnetizing a permanent magnet that continues to apply a magnetizing magnetic field to an object to be magnetized while lowering the temperature was proposed (Japanese Patent Application No. 2004-374918). According to this method, it is possible to obtain a ring-shaped permanent magnet having high magnetization characteristics (magnetic force characteristics) and good magnetization quality even with a very small diameter / multipole magnetization structure.

本発明は、このような着磁方法を実施するのに有効な装置である。発明は、基本的には、加熱部と着磁部を別体構造として軸方向に配設すると共に前記加熱部と着磁部とを相対的に接近・離間自在に支持し、且つ被着磁物の保持部材を前記加熱部及び着磁部に対して相対的に移動可能とし、着磁部と離間している加熱部で被着磁物が加熱され、該被着磁物が加熱されたままの状態で着磁部と加熱部を接近させ、次いで被着磁物が着磁部に移されて着磁され、着磁部と加熱部とが離間するように構成した永久磁石の着磁装置である。本発明では、着磁部を固定し加熱部を可動としてもよいし、逆に加熱部を固定し着磁部を可動としてもよい。また、着磁部及び加熱部に対して被着磁物の保持部材を移動してもよいし、逆に被着磁物の保持部材を固定し、それに対して加熱部と着磁部を移動するように構成してもよい。 The present invention is an apparatus effective for implementing such a magnetization method. In the present invention, basically, the heating part and the magnetized part are arranged in the axial direction as separate structures, and the heating part and the magnetized part are supported so as to be relatively close to and away from each other. The holding member for the magnetic material can be moved relative to the heating unit and the magnetizing unit, the magnetized material is heated by the heating unit separated from the magnetized unit, and the magnetized material is heated. The magnetized part and the heating part are brought close to each other as they are, and then the magnetized material is moved to the magnetized part and magnetized, so that the magnetized part and the heating part are separated from each other. It is a magnetic device. In the present invention, the magnetized part may be fixed and the heating part may be movable, or conversely, the heating part may be fixed and the magnetized part may be movable. Further, the holding member for the magnetized object may be moved with respect to the magnetized part and the heating part, or conversely, the holding member for the magnetized object is fixed and the heating part and the magnetized part are moved relative thereto. You may comprise.

具体的には本発明は、筒型構造をなし内周面が加熱面となってリング状の被着磁物を加熱する加熱部と筒型構造をなし内周面が着磁面となって前記被着磁物に着磁磁界を印加し外周面に多極着磁を行う着磁部とを、別体構造として軸方向に配設すると共に前記加熱部と前記着磁部とを相対的に接近・離間自在に支持し、且つリング状の被着磁物を保持する棒状の保持部材が前記加熱部及び前記着磁部を貫通して軸方向に相対的に移動可能に設置されており前記着磁部と離間している状態の前記加熱部前記被着磁物が加熱され、該被着磁物が加熱されたままの状態で前記着磁部と前記加熱部を接近させ、次いで前記加熱部内の被着磁物が前記着磁部に移され、前記着磁部と前記加熱部が離間し、前記着磁部で着磁させるようにしたことを特徴とする多極のリング状永久磁石の着磁装置である。


Specifically, the present invention includes a heating unit you heat the ring-shaped deposition磁物What circumferential plane forms a tubular structure Do the heating surface, the peripheral surface in a tubular structure is magnetized surface the magnetization and the magnetized portion for performing multiple poles the the outer circumferential surface by applying a magnetizing magnetic field to the deposition磁物I Do, while axially disposed separately structure, and the heating unit a Department relatively toward and away rotatably supported, and the ring-shaped rod-like holding member for holding the deposition磁物can relatively move in the axial direction through said heating unit and said magnetized portion is installed in said magnetized portion and said by the heating unit in a state of separated deposition磁物is heated, the said magnetized portion in a state where該被adhesive磁物is heated the heating unit is brought close, then deposition磁物in the heating unit is transferred into the magnetized portion, the magnetized portion and the heating portion is separated, and so as to magnetized in the magnetized portion DOO is a magnetizing apparatus for multipolar ring-shaped permanent magnet according to claim.


着磁部は、コイルに通電することにより発生する磁界を印加するコイル通電方式でもよいが、特に極小径の永久磁石を多極着磁するような場合には、永久磁石による磁界を印加する永久磁石方式の方が好ましい。そのような着磁部の例としては、非磁性ブロックの中央に被着磁物を挿入・抜出可能な円形の被着磁物収容穴を設けると共に、該被着磁物収容穴の内壁面から放射状に延びる多数本の溝を等角度で設け、各溝に被着磁物よりもキュリー点が高い着磁用永久磁石をそれぞれ埋設した構造がある。   The magnetized portion may be a coil energization system that applies a magnetic field generated by energizing the coil, but in particular when a very small permanent magnet is magnetized in multiple poles, a permanent magnet that applies a magnetic field by the permanent magnet is used. A magnet system is preferred. As an example of such a magnetized portion, a circular magnetized object receiving hole into which a magnetized object can be inserted / extracted is provided at the center of the nonmagnetic block, and the inner wall surface of the magnetized object receiving hole is provided. There is a structure in which a plurality of grooves extending radially from the same angle are provided at equal angles, and permanent magnets for magnetization having higher Curie points than the magnetized objects are embedded in the grooves.

本発明は、着磁部と加熱部が縦に配列され、軸の方向が垂直となる竪配置形式であってもよいし、加熱部と着磁部が横に並べられ、軸の方向が水平となる横配置形式でもよい。着磁部と加熱部の間に断熱部材を介装してもよい。   The present invention may be a saddle arrangement type in which magnetized portions and heating portions are arranged vertically and the axis direction is vertical, or the heating portions and magnetized portions are arranged side by side, and the axis direction is horizontal. It may be a horizontal arrangement form. A heat insulating member may be interposed between the magnetized part and the heating part.

本発明の着磁装置は、加熱部と着磁部を別体構造とし、それらが接近・離間自在とし、それら加熱部と着磁部に対して被着磁物の保持部材が相対的に移動可能となるように構成されているので、被着磁物を加熱部でキュリー点以上の温度に加熱し、次いで素早く着磁部に移してキュリー点未満の温度まで降温させつつ、その間、着磁磁界を印加し続ける作業を、一連の操作で容易に行うことができ、着磁の作業性が向上する。これによって、極小径・多極といった着磁ピッチの狭いリング状永久磁石でも、着磁不足が生じず、着磁品質を高めることができ、低コストで強力な着磁が効率よく行える。   In the magnetizing apparatus of the present invention, the heating part and the magnetizing part are separated from each other so that they can be approached and separated, and the holding member of the magnetized object moves relative to the heating part and the magnetizing part. Since it is configured to be possible, the object to be magnetized is heated to a temperature above the Curie point in the heating part, then quickly moved to the magnetized part and lowered to a temperature below the Curie point, while magnetizing The operation of continuously applying the magnetic field can be easily performed by a series of operations, and the workability of magnetization is improved. As a result, even in a ring-shaped permanent magnet with a narrow magnetization pitch, such as a very small diameter and multiple poles, insufficient magnetization does not occur, the magnetization quality can be improved, and powerful magnetization can be efficiently performed at low cost.

特に、着磁部としてキュリー点の高い永久磁石を用いる方式とすると、着磁ピッチの狭小化に対応し易いため、直径3mm以下の極小径、10極以上の多極のリング状永久磁石の着磁に有効であるし、装置の簡素化や長寿命化を図ることができ、通電不要などにより運転コストを低減化できる利点も生じる。   In particular, if a permanent magnet having a high Curie point is used as the magnetized portion, it is easy to cope with a narrowing of the magnetization pitch, so that a ring-shaped permanent magnet having a minimum diameter of 3 mm or less and a multipolar ring magnet having 10 or more poles can be attached. It is effective for magnetism, can simplify the device and extend its life, and has the advantage of reducing the operating cost due to the fact that energization is unnecessary.

図1は、本発明に係る着磁装置の一実施例を示す説明図である。この着磁装置は、筒型構造をなし内周面が加熱面となる加熱部10と、筒型構造をなし内周面が着磁面となる着磁部12を具備し、それらは別体であって、軸方向に(軸に沿った方向に)配設されている。この例は、加熱部10が下方に位置し、着磁部12が上方に位置するように縦に配列され、軸の方向が垂直となる竪配置形式である。加熱部10と着磁部12とは、相対的に接近・離間自在に支持されている。離間状態では、着磁部12の過剰な加熱を防ぐため、加熱部10と着磁部12の間には十分な空間をおくようにする。加熱部10の上面には薄い断熱部材14を設けるのがよい。着磁部12の外周側には、冷却部16が設けられている。他方、被着磁物(永久磁石)20を保持する棒状の保持部材22が、前記加熱部10及び着磁部12を貫通して軸方向に相対的に移動可能に設置される。ここでは、着磁部12が固定され、加熱部10が上下駆動機構24で上下方向に駆動されて前記着磁部12に対して接近・離間自在となっている。また、被着磁物20の保持部材22が上下駆動機構26で上下方向に駆動されて該被着磁物20が加熱部10及び着磁部12に対して移動するように構成されている。保持部材の方が軽量であるため、該保持部材を移動させる方が迅速化できるからである。勿論、保持部材を固定し、加熱部と着磁部を駆動機構で移動させるようにしてもよい。加熱部10の温度及び上下駆動機構24,26の動作など(位置や停止時間など)は、制御部28で制御される。   FIG. 1 is an explanatory view showing an embodiment of a magnetizing apparatus according to the present invention. This magnetizing apparatus includes a heating unit 10 having a cylindrical structure and an inner peripheral surface serving as a heating surface, and a magnetizing unit 12 having a cylindrical structure and an inner peripheral surface serving as a magnetized surface, which are separate from each other. And, it is arranged in the axial direction (in the direction along the axis). This example is a saddle arrangement format in which the heating unit 10 is positioned below and the magnetized unit 12 is positioned vertically so that the axis direction is vertical. The heating unit 10 and the magnetized unit 12 are supported so as to be relatively close to and away from each other. In the separated state, a sufficient space is provided between the heating unit 10 and the magnetized unit 12 in order to prevent excessive heating of the magnetized unit 12. A thin heat insulating member 14 is preferably provided on the upper surface of the heating unit 10. A cooling unit 16 is provided on the outer peripheral side of the magnetized unit 12. On the other hand, a rod-shaped holding member 22 that holds the magnetic object (permanent magnet) 20 is installed so as to be movable in the axial direction through the heating unit 10 and the magnetized unit 12. Here, the magnetized part 12 is fixed, and the heating part 10 is driven in the vertical direction by the vertical drive mechanism 24 so as to be able to approach and separate from the magnetized part 12. The holding member 22 for the magnetized object 20 is driven in the vertical direction by the vertical drive mechanism 26 so that the magnetized object 20 moves relative to the heating unit 10 and the magnetized unit 12. This is because the holding member is lighter, and therefore it is possible to speed up the movement of the holding member. Of course, the holding member may be fixed, and the heating unit and the magnetizing unit may be moved by a driving mechanism. The control unit 28 controls the temperature of the heating unit 10 and the operations of the vertical drive mechanisms 24 and 26 (position, stop time, etc.).

着磁部の内部構造の一例を図2に示す。この例は、永久磁石により生じる磁界を着磁磁界として被着磁物に印加する永久磁石方式である。なお図2は、図1のx−x位置での水平断面を示している。被着磁物20はリング状の永久磁石であり、それを10極着磁する例である。着磁部12は、非磁性ブロック(例えばステンレス鋼製ブロック)30の中央に、被着磁物20を挿入・抜出可能な円形の被着磁物収容穴32を設けると共に、該被着磁物収容穴32の内壁面から放射状に延びる10本の断面矩形の溝34を等角度で設け、各溝34に被着磁物よりもキュリー点が高い断面四角形の棒状の着磁用永久磁石36をそれぞれ埋設した構造である。従って、着磁部12の内周面が着磁面となる。   An example of the internal structure of the magnetized portion is shown in FIG. This example is a permanent magnet system in which a magnetic field generated by a permanent magnet is applied to an object to be magnetized as a magnetizing magnetic field. FIG. 2 shows a horizontal cross section at the position xx in FIG. The object to be magnetized 20 is a ring-shaped permanent magnet, and is an example of magnetizing it. The magnetized portion 12 is provided with a circular magnetized object accommodation hole 32 into which a magnetized object 20 can be inserted and extracted at the center of a nonmagnetic block (for example, a stainless steel block) 30 and the magnetized part. Ten grooves 34 having a rectangular cross section extending radially from the inner wall surface of the object accommodation hole 32 are provided at equal angles, and each groove 34 has a quadrangular rod-shaped permanent magnet 36 having a Curie point higher than that of the magnetized object. It is the structure which buried each. Therefore, the inner peripheral surface of the magnetized portion 12 becomes a magnetized surface.

加熱部10は、ここでは外周側の加熱部本体40と、その内周側に位置する伝熱部42からなり、加熱部本体40に多数の軸方向に延びる向きのシースヒータ(抵抗加熱器)を円周状に配列した構造である。加熱部本体40で発生した熱は、熱伝導性の良好な真鍮などからなる伝熱部42により内側へと伝わる。従って、伝熱部42の内周面が加熱面となる。この加熱部10は、被着磁物収容穴44内に位置する被着磁物を、そのキュリー点以上に加熱でき、所定の一定温度に維持できる能力を有するものである。   Here, the heating unit 10 includes a heating unit main body 40 on the outer peripheral side and a heat transfer unit 42 located on the inner peripheral side thereof, and a plurality of sheath heaters (resistance heaters) extending in the axial direction are provided on the heating unit main body 40. It is a structure arranged in a circle. The heat generated in the heating unit main body 40 is transmitted to the inside by the heat transfer unit 42 made of brass having good thermal conductivity. Therefore, the inner peripheral surface of the heat transfer section 42 becomes a heating surface. The heating unit 10 has the capability of heating the magnetic object positioned in the magnetic object receiving hole 44 to a temperature above its Curie point and maintaining it at a predetermined constant temperature.

リング状の被着磁物20を保持する棒状の保持部材22は、下支え46と上押さえ48の組み合わせからなり、上下から被着磁物20を挾持する構造である。勿論、下支えのみでも保持は可能である。加熱部10は周囲の空気も加熱し、加熱された空気は上昇して着磁部12を加熱しようとする。断熱部材14は、加熱部10の上部に位置する着磁部12が自然対流などにより加熱されるのを防ぐものであり、耐熱性能及び断熱性能を有するものであれば、任意の材料であってよい。冷却部16は、着磁部12を冷却し、着磁部12の温度をほぼ一定に維持する機能を果たすものである。加熱部10が一定温度で制御されることで、冷却部16の自然放冷により着磁部10はほぼ一定に保たれる。勿論、冷却部16も温度制御を行ってもよい。   The rod-shaped holding member 22 that holds the ring-shaped magnetic object 20 is a combination of a lower support 46 and an upper presser 48 and has a structure that holds the magnetic object 20 from above and below. Of course, the holding can be performed only by the support. The heating unit 10 also heats the surrounding air, and the heated air rises and tries to heat the magnetized unit 12. The heat insulating member 14 prevents the magnetized portion 12 positioned at the top of the heating unit 10 from being heated by natural convection or the like, and may be any material as long as it has heat resistance performance and heat insulation performance. Good. The cooling unit 16 serves to cool the magnetized unit 12 and maintain the temperature of the magnetized unit 12 substantially constant. By controlling the heating unit 10 at a constant temperature, the magnetized unit 10 is kept substantially constant by natural cooling of the cooling unit 16. Of course, the cooling unit 16 may also perform temperature control.

本発明では、高温下で着磁用永久磁石36が被着磁物20に対して着磁できる磁界を発生できるように、着磁用永久磁石のキュリー点を被着磁物である永久磁石のキュリー点よりも高く設定する。そして、被着磁物の着磁のために必要な磁界を最小限にするために、加熱温度を被着磁物である永久磁石のキュリー点よりも高く設定し、更に着磁用永久磁石が被着磁物に着磁できる磁界を残存させ着磁能力をもたせるために、前記の加熱温度を着磁用永久磁石のキュリー点より低く設定する。   In the present invention, the Curie point of the magnetizing permanent magnet is set so that the magnetizing permanent magnet 36 can generate a magnetic field that can magnetize the magnetized object 20 at a high temperature. Set higher than the Curie point. In order to minimize the magnetic field required for magnetization of the magnetized object, the heating temperature is set higher than the Curie point of the permanent magnet that is the magnetized object, and the magnetizing permanent magnet is The heating temperature is set to be lower than the Curie point of the permanent magnet for magnetization in order to leave a magnetic field that can be magnetized on the object to be magnetized and to have a magnetizing ability.

被着磁物20がNdFeB等方性磁石(キュリー点:材質などによって350〜390℃程度)の場合を例にとると、着磁用永久磁石36としてはSmCo焼結磁石(キュリー点:約850℃)が好適である。加熱部10としては、被着磁物のキュリー点Tc以上に加熱できる性能が必要である(実験結果によれば、Tc+30℃程度以上まで加熱できることが望ましい)。   Taking the case where the object to be magnetized 20 is an NdFeB isotropic magnet (Curie point: about 350 to 390 ° C. depending on the material) as an example, the permanent magnet 36 for magnetization is an SmCo sintered magnet (Curie point: about 850). ° C) is preferred. The heating unit 10 needs to be capable of being heated to a Curie point Tc or higher of the adherend (it is desirable that it can be heated to about Tc + 30 ° C. or higher according to experimental results).

図3は、この着磁装置の動作を示す説明図である。
A:被着磁物の装着
Aは被着磁物20を保持部材22に装着した状態を示している。被着磁物20は、下支え46と上押さえ48とで挾持される。
B:被着磁物の加熱
保持部材22を降下させて、被着磁物20を加熱部10内に位置させ、被着磁物のキュリー点以上の所定の温度で加熱する。例えば、被着磁物がNdFeB等方性磁石(キュリー点:約350℃)の場合、加熱部10で被着磁物20を380℃程度まで加熱する。
C:加熱部移動
保持部材22はそのまま動かさず(被着磁物20の位置は変わらず)、加熱部10を上昇させて、加熱部10の上面(図示するのを省略しているが、上面には図1に符号14で示す断熱部材が位置している)を着磁部12の下面に密着させる。
D:着磁
保持部材22を上昇させて被着磁物20を着磁部12内に送り込み、着磁用永久磁石により所定の着磁磁界を印加する。
E:冷却
被着磁物20を着磁部12内に送り込んだなら直ちに加熱部10を降下させる。これによって着磁部12は冷却部16で冷却される。その間、被着磁物20には着磁部12内で着磁磁界が印加され続ける。このようにして、被着磁物20は、前記着磁部12内に設置されたままキュリー点未満の温度まで冷却される(実験結果によれば、Tc−50℃以下まで冷却するのが好ましい)。これにより、被着磁物への最大限の着磁が可能となり、被着磁物への着磁がなされるため、被着磁物のキュリー点を下回る温度まで冷却されたときに、十分な磁力が発生する。
F:被着磁物の取り出し
着磁完了後、保持部材22を更に上昇させて、被着磁物20を着磁部12の外に出し、取り出す。これで1回の着磁サイクルが完了する。被着磁物20の大きさにもよるが、極小径で熱容量が小さい場合には、数秒程度のサイクルで着磁を行うことができる。
FIG. 3 is an explanatory view showing the operation of this magnetizing apparatus.
A: Mounting of magnetic object A indicates a state in which the magnetic object 20 is mounted on the holding member 22. The adherend magnet 20 is held between the lower support 46 and the upper presser 48.
B: Heating of the magnetic object to be magnetized The holding member 22 is lowered to place the magnetic material to be magnetized 20 in the heating unit 10 and heated at a predetermined temperature above the Curie point of the magnetic object to be magnetized. For example, when the adherend is an NdFeB isotropic magnet (Curie point: about 350 ° C.), the adherend 20 is heated to about 380 ° C. by the heating unit 10.
C: Heating unit movement The holding member 22 is not moved as it is (the position of the magnetized object 20 is not changed), the heating unit 10 is raised, and the upper surface of the heating unit 10 (not shown, but the upper surface is omitted). 1 is closely attached to the lower surface of the magnetized portion 12.
D: Magnetization The holding member 22 is raised to feed the object to be magnetized 20 into the magnetized portion 12, and a predetermined magnetizing magnetic field is applied by the magnetizing permanent magnet.
E: Cooling If the magnetized object 20 is sent into the magnetized part 12, the heating part 10 is immediately lowered. Thereby, the magnetized portion 12 is cooled by the cooling portion 16. Meanwhile, the magnetized magnetic field is continuously applied to the magnetized object 20 in the magnetized portion 12. In this way, the magnetized object 20 is cooled to a temperature below the Curie point while being installed in the magnetized portion 12 (according to the experimental results, it is preferable to cool to Tc-50 ° C. or lower. ). As a result, the maximum magnetization can be applied to the object to be magnetized, and the object to be magnetized is magnetized. Therefore, when the object is cooled to a temperature below the Curie point of the object to be magnetized, sufficient Magnetic force is generated.
F: Taking out the object to be magnetized After the completion of magnetization, the holding member 22 is further raised, and the object to be magnetized 20 is taken out of the magnetized portion 12 and taken out. This completes one magnetization cycle. Although depending on the size of the object to be magnetized 20, when the heat capacity is small with a very small diameter, magnetization can be performed in a cycle of about several seconds.

一般に、加熱部から着磁部への被着磁物移動時、被着磁物は急速降温するため、着磁部までの移動距離及び移動時間は短いほど好ましい。本発明では、加熱部と着磁部を相対的に移動できる構造とし、且つ加熱部と着磁部とが密着可能としている。そして、密着時に被着磁物を加熱部から着磁部へ移送する。加熱部と着磁部との密着によって、移送時における被着磁物の過剰な降温を抑制でき、また被着磁物の移動距離が短くなることから移動時間も短縮され、高速動作が可能になり、生産性も向上する。また、通常状態では、加熱部と着磁部は離間しているため、着磁部が過度に加熱されることもない。   In general, when moving the magnetized object from the heating unit to the magnetized part, the object to be magnetized cools down rapidly. In the present invention, the heating part and the magnetized part can be moved relative to each other, and the heating part and the magnetized part can be in close contact with each other. And a to-be-magnetized object is transferred to a magnetizing part from a heating part at the time of contact | adherence. The close contact between the heating part and the magnetized part can suppress the excessive temperature drop of the magnetized object during transfer, and the moving distance of the magnetized object is shortened, so the moving time is shortened and high speed operation is possible. As a result, productivity is improved. Further, in the normal state, since the heating part and the magnetized part are separated from each other, the magnetized part is not excessively heated.

以上の一連の操作によって、被着磁物であるリング状の永久磁石の外周面には、着磁磁極に対応した磁極が現れ、室温では十分に着磁された永久磁石を得ることができる。図4に、製品50であるリング状永久磁石に施されている多極着磁の状況を示す。   Through the series of operations described above, a magnetic pole corresponding to the magnetized magnetic pole appears on the outer peripheral surface of the ring-shaped permanent magnet, which is an object to be magnetized, and a permanent magnet that is sufficiently magnetized at room temperature can be obtained. FIG. 4 shows the situation of multipolar magnetization applied to the ring-shaped permanent magnet that is the product 50.

図5は、本発明に係る着磁装置の他の実施例を示す縦断面図である。この着磁装置も、筒型構造をなし内周面が加熱面となる加熱部10と、筒型構造をなし内周面が着磁面となる着磁部12を具備し、それらが別体であって、軸方向に配設されている。この例は、加熱部10と着磁部12が横に並べられ、軸の方向が水平となっている横配置形式である。加熱部10と着磁部12とは、相対的に接近・離間自在に支持されている。着磁部12の外周側には、冷却部16が設けられている。他方、被着磁物20を保持する棒状の保持部材22が、前記加熱部10及び着磁部12を貫通して軸方向に相対的に移動可能に設置される。この構成では、着磁部12と加熱部10が横並びとなっているので、大きな離間距離を設けずとも、自然対流などによって着磁部が加熱されることはない。被着磁物20は加熱部10で加熱され、次いで加熱部10と着磁部12とが密着し、加熱された被着磁物20が水平左手方向に移動して着磁部12で着磁される。なお、被着磁物の水平方向の駆動機構や制御部などは、図示するのを省略している。   FIG. 5 is a longitudinal sectional view showing another embodiment of the magnetizing apparatus according to the present invention. This magnetizing apparatus also includes a heating unit 10 having a cylindrical structure and an inner peripheral surface serving as a heating surface, and a magnetizing unit 12 having a cylindrical structure and an inner peripheral surface serving as a magnetized surface, which are separately provided. And, it is arranged in the axial direction. In this example, the heating unit 10 and the magnetized unit 12 are arranged side by side, and the direction of the axis is horizontal. The heating unit 10 and the magnetized unit 12 are supported so as to be relatively close to and away from each other. A cooling unit 16 is provided on the outer peripheral side of the magnetized unit 12. On the other hand, a rod-shaped holding member 22 that holds the magnetized object 20 is installed so as to be movable in the axial direction through the heating unit 10 and the magnetized unit 12. In this configuration, since the magnetized portion 12 and the heating portion 10 are arranged side by side, the magnetized portion is not heated by natural convection or the like without providing a large separation distance. The object to be magnetized 20 is heated by the heating unit 10, and then the heating unit 10 and the magnetized part 12 are in close contact with each other, and the heated object to be magnetized 20 moves in the horizontal left hand direction and is magnetized by the magnetized part 12. Is done. In addition, illustration of the horizontal drive mechanism and control unit of the object to be magnetized is omitted.

図6は、本発明に係る着磁装置の更に他の実施例を示す縦断面図である。この着磁装置も、筒型構造をなし内周面が加熱面となる加熱部10と、筒型構造をなし内周面が着磁面となる着磁部12を具備し、それらが別体であって軸方向に配設されている。この例は、着磁部12が下方に位置し、加熱部10が上方に位置するように縦に配列され、軸の方向が垂直となる竪配置形式である。加熱部10と着磁部12とは、相対的に接近・離間自在に支持されている。着磁部12の外周側には、冷却部16が設けられている。他方、被着磁物20を保持する棒状の保持部材22が、前記加熱部及び着磁部を貫通して軸方向に相対的に移動可能に設置される。この構成では、着磁部が加熱部の下方に位置しているので、自然対流などにより着磁部が加熱されることはない。そのため、この構成の場合も、大きな離間距離を設ける必要はなく、着磁部と加熱部とを接近して配置できるので、装置の小型化が可能となる。
被着磁物20は加熱部10で加熱され、次いで加熱部10と着磁部12とが密着し、加熱された被着磁物20が降下して着磁部12で着磁される。
FIG. 6 is a longitudinal sectional view showing still another embodiment of the magnetizing apparatus according to the present invention. This magnetizing apparatus also includes a heating unit 10 having a cylindrical structure and an inner peripheral surface serving as a heating surface, and a magnetizing unit 12 having a cylindrical structure and an inner peripheral surface serving as a magnetized surface, which are separately provided. And arranged in the axial direction. This example is a saddle arrangement type in which the magnetized portion 12 is positioned below and the heating portion 10 is positioned vertically so that the axis direction is vertical. The heating unit 10 and the magnetized unit 12 are supported so as to be relatively close to and away from each other. A cooling unit 16 is provided on the outer peripheral side of the magnetized unit 12. On the other hand, a rod-like holding member 22 that holds the magnetized object 20 is installed so as to be movable in the axial direction through the heating part and the magnetized part. In this configuration, since the magnetized part is located below the heating part, the magnetized part is not heated by natural convection or the like. Therefore, even in this configuration, it is not necessary to provide a large separation distance, and the magnetized portion and the heating portion can be arranged close to each other, so that the apparatus can be downsized.
The object to be magnetized 20 is heated by the heating unit 10, and then the heating unit 10 and the magnetized part 12 are in close contact with each other, and the heated object to be magnetized 20 is lowered and magnetized by the magnetized part 12.

なお、加熱には、実施例に示すような抵抗加熱の他、例えば高周波加熱、レーザ加熱、高温ガスフロー加熱、高温液中加熱など任意の手段を用いてよい。冷却は、自然放冷でもよいし、水冷、空冷などの強制放冷で行ってもよい。不活性雰囲気中での作業が必要な場合には、不活性ガスフローを行うこともできる。また、着磁部における着磁方式や具体的構造などについては、被着磁物である永久磁石の径寸法や材質、着磁極数などに応じて適宜変更してよい。   In addition to resistance heating as shown in the embodiments, any means such as high-frequency heating, laser heating, high-temperature gas flow heating, or high-temperature liquid heating may be used for heating. The cooling may be natural cooling or forced cooling such as water cooling or air cooling. If work in an inert atmosphere is required, an inert gas flow can also be performed. Further, the magnetizing method and the specific structure in the magnetized portion may be appropriately changed according to the diameter and material of the permanent magnet that is the magnetized object, the number of magnetized poles, and the like.

本発明に係る着磁装置の一実施例を示す説明図。Explanatory drawing which shows one Example of the magnetizing apparatus which concerns on this invention. 着磁部の内部構造の一例を示す水平断面図。The horizontal sectional view which shows an example of the internal structure of a magnetization part. この着磁装置の動作説明図。Operation | movement explanatory drawing of this magnetization apparatus. リング状永久磁石への多極着磁状態を示す説明図。Explanatory drawing which shows the multipolar magnetization state to a ring-shaped permanent magnet. 本発明に係る着磁装置の他の実施例を示す縦断面図。The longitudinal cross-sectional view which shows the other Example of the magnetizing apparatus which concerns on this invention. 本発明に係る着磁装置の更に他の実施例を示す縦断面図。The longitudinal cross-sectional view which shows further another Example of the magnetizing apparatus which concerns on this invention.

符号の説明Explanation of symbols

10 加熱部
12 着磁部
14 断熱部材
16 冷却部
20 被着磁物
22 保持部材
24,26 上下駆動機構
28 制御部
DESCRIPTION OF SYMBOLS 10 Heating part 12 Magnetization part 14 Heat insulation member 16 Cooling part 20 Magnetized object 22 Holding member 24,26 Vertical drive mechanism 28 Control part

Claims (4)

筒型構造をなし内周面が加熱面となってリング状の被着磁物を加熱する加熱部と筒型構造をなし内周面が着磁面となって前記被着磁物に着磁磁界を印加し外周面に多極着磁を行う着磁部とを、別体構造として軸方向に配設すると共に前記加熱部と前記着磁部とを相対的に接近・離間自在に支持し、且つリング状の被着磁物を保持する棒状の保持部材が前記加熱部及び前記着磁部を貫通して軸方向に相対的に移動可能に設置されており前記着磁部と離間している状態の前記加熱部前記被着磁物が加熱され、該被着磁物が加熱されたままの状態で前記着磁部と前記加熱部を接近させ、次いで前記加熱部内の被着磁物が前記着磁部に移され、前記着磁部と前記加熱部が離間し、前記着磁部で着磁させるようにしたことを特徴とする多極のリング状永久磁石の着磁装置。 The inner peripheral surface a tubular structure and a heating unit you heat the ring-shaped deposition磁物I Do and the heating surface, I Do a magnetized surface without the peripheral surface wears tubular structure to be magnetized and a magnetized portion for performing multiple poles on the outer peripheral surface to apply a magnetizing magnetic field to the object, as well as axially disposed separately structure, relatively close-and the magnetized portion and the heating portion spaced freely supported, it is installed axially moveable relative to and is rod-shaped holding member for holding the ring-shaped deposition磁物through said heating unit and the magnetized portion, the adhesive wherein within said heating portion in a state that is separated from the magnet portion deposited磁物is heated to approximate the magnetized portion and the heating portion in a state where該被adhesive磁物is heated, then the deposition磁物in the heating unit is transferred into the magnetized portion, the magnetized portion and the heating portion is separated, characterized in that so as to magnetized in the magnetized portion multipolar Magnetizing apparatus of the ring-shaped permanent magnet. 前記着磁磁界を発生する手段は永久磁石であって、前記着磁部は、非磁性ブロックの中央に被着磁物を挿入・抜出可能な円形の被着磁物収容穴を設けると共に、該被着磁物収容穴の内壁面から放射状に延びる多数本の溝を等角度で設け、各溝に被着磁物よりもキュリー点が高い着磁用永久磁石をそれぞれ埋設した構造である請求項記載の多極のリング状永久磁石の着磁装置。 The means for generating the magnetizing magnetic field is a permanent magnet, and the magnetized portion is provided with a circular magnetized object receiving hole in which a magnetized object can be inserted / extracted at the center of the non-magnetic block, A structure in which a plurality of grooves extending radially from the inner wall surface of the magnetized object receiving hole are provided at equal angles, and a permanent magnet for magnetization having a Curie point higher than that of the object to be magnetized is embedded in each groove. Item 2. A magnetizing device for a multipolar ring-shaped permanent magnet according to Item 1 . 前記着磁部と前記加熱部が縦に配列され、軸の方向が垂直となる竪配置形式である請求項又は記載の多極のリング状永久磁石の着磁装置。 It said magnetized portion and the heating portion is arranged vertically, magnetizing apparatus of the multipolar ring-shaped permanent magnet according to claim 1 or 2, wherein the direction of the axis is vertical arrangement format is vertical. 前記加熱部と前記着磁部が横に並べられ、軸の方向が水平となる横配置形式である請求項又は記載の多極のリング状永久磁石の着磁装置。 Wherein the heating portion magnetized are side by side, the magnetizing apparatus of the multipolar ring-shaped permanent magnet according to claim 1 or 2, wherein the direction of the axis is transverse arrangement form a horizontal.
JP2005078187A 2005-03-17 2005-03-17 Multipolar ring permanent magnet magnetizer Active JP4674799B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005078187A JP4674799B2 (en) 2005-03-17 2005-03-17 Multipolar ring permanent magnet magnetizer
EP06729271A EP1860670B1 (en) 2005-03-17 2006-03-16 Permanent magnet magnetization device and permanent magnet magnetization method
CN2006800126179A CN101160634B (en) 2005-03-17 2006-03-16 Permanent magnet magnetization device
PCT/JP2006/305278 WO2006098410A1 (en) 2005-03-17 2006-03-16 Permanent magnet magnetization device and permanent magnet magnetization method
US11/886,081 US7821365B2 (en) 2005-03-17 2006-03-16 Permanent magnet magnetizing apparatus and permanent magnet magnetizing method
AT06729271T ATE527670T1 (en) 2005-03-17 2006-03-16 DEVICE AND METHOD FOR PERMANENT MAGNET MAGNETIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078187A JP4674799B2 (en) 2005-03-17 2005-03-17 Multipolar ring permanent magnet magnetizer

Publications (2)

Publication Number Publication Date
JP2006261460A JP2006261460A (en) 2006-09-28
JP4674799B2 true JP4674799B2 (en) 2011-04-20

Family

ID=37100347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078187A Active JP4674799B2 (en) 2005-03-17 2005-03-17 Multipolar ring permanent magnet magnetizer

Country Status (2)

Country Link
JP (1) JP4674799B2 (en)
CN (1) CN101160634B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789875B (en) * 2012-09-11 2014-01-22 成都图南电子有限公司 Radiation magnetizing device applicable to magnet with great height
CN104616855B (en) * 2013-11-04 2018-05-08 三环瓦克华(北京)磁性器件有限公司 The magnetization method and device of Sintered NdFeB magnet or magnet assembly
US20170032876A1 (en) * 2014-04-16 2017-02-02 Namiki Seimitsu Houseki Kabushiki Kaisha SmCo-BASED RARE EARTH SINTERED MAGNET
KR200478737Y1 (en) 2014-12-16 2015-11-11 주식회사엑소 magneter
CN104916388A (en) * 2015-06-30 2015-09-16 瓮安县创新电子厂 Magnetizing rod for speaker component
CN112331442B (en) * 2020-09-28 2023-02-28 中国科学院宁波材料技术与工程研究所 Magnetizing device, magnetizing apparatus, magnetizing method, and permanent magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121405A (en) * 1984-11-19 1986-06-09 Matsushita Electric Ind Co Ltd Magnetizing method of permanent magnet
JPS6289313A (en) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd Method of magnetization for permanent magnet
JPH0372606A (en) * 1989-08-11 1991-03-27 Yamaha Corp Magnetization of magnetic material
JPH03233910A (en) * 1990-02-08 1991-10-17 Matsushita Electric Ind Co Ltd Method for magnetization of permanent magnet
JPH07220924A (en) * 1994-01-27 1995-08-18 Seiko Epson Corp Method of magnetizing large magnet
JP2004071853A (en) * 2002-08-07 2004-03-04 Hitachi Metals Ltd Heat treatment furnace in magnetic field, and heat treatment method using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1021607C (en) * 1990-09-22 1993-07-14 北京坤奇稀土新材料联合公司 Producing method and apparatus of anisotropic micro rare earth permanent magnetic material
US5597527A (en) * 1995-06-01 1997-01-28 The United States Of America As Represented By The Secretary Of The Army Thermomagnetic apparatus for determining optimum heat treatment of alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121405A (en) * 1984-11-19 1986-06-09 Matsushita Electric Ind Co Ltd Magnetizing method of permanent magnet
JPS6289313A (en) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd Method of magnetization for permanent magnet
JPH0372606A (en) * 1989-08-11 1991-03-27 Yamaha Corp Magnetization of magnetic material
JPH03233910A (en) * 1990-02-08 1991-10-17 Matsushita Electric Ind Co Ltd Method for magnetization of permanent magnet
JPH07220924A (en) * 1994-01-27 1995-08-18 Seiko Epson Corp Method of magnetizing large magnet
JP2004071853A (en) * 2002-08-07 2004-03-04 Hitachi Metals Ltd Heat treatment furnace in magnetic field, and heat treatment method using it

Also Published As

Publication number Publication date
JP2006261460A (en) 2006-09-28
CN101160634B (en) 2012-01-18
CN101160634A (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP4678774B2 (en) Multipolar ring permanent magnet magnetizer
JP4697736B2 (en) Magnetization method of permanent magnet
JP4674799B2 (en) Multipolar ring permanent magnet magnetizer
WO2006098410A1 (en) Permanent magnet magnetization device and permanent magnet magnetization method
US7471018B2 (en) Linear motor and manufacturing method of linear motor
JP4671278B2 (en) Multi-pole magnetizing method and apparatus for ring-shaped permanent magnet
KR20100039355A (en) Induction heating method
KR101841936B1 (en) Solenoid actuator
JP6296745B2 (en) Magnetization method of rare earth magnet and rare earth magnet
JP2012147602A (en) Manufacturing method and manufacturing device of permanent magnet
JP4671277B2 (en) Ring permanent magnet magnetizer
JP4559176B2 (en) Method and apparatus for magnetizing a permanent magnet
US9941769B2 (en) Linear reluctance motor device and engine apparatus
WO2015159882A1 (en) SmCo-BASED RARE EARTH SINTERED MAGNET
JP2006261236A (en) Mold for molding anisotropy magnet, method of manufacturing anisotropy magnet, anisotropy magnet and motor using it
JP2006351627A (en) Multipole magnetizing device for permanent magnet
CN114069994A (en) Magnetic field heat treatment device of multi-pole motor rotor
JP6995649B2 (en) Magnet motor
JP4219761B2 (en) Magnetic field generator and driving method thereof
CN117461102A (en) Method for manufacturing permanent magnet
JP2007165807A (en) Magnet
JP2016220286A (en) Device and method of manufacturing embedded magnet type rotor
JP2021083289A (en) Manufacturing method and manufacturing device of permanent magnet rotor
JP2008258502A (en) Demagnetization apparatus and demagnetization method
JP2020038027A (en) Rotator for magnetic refrigeration device, magnetic refrigeration device, and method of manufacturing magnetic refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350