JPS61281505A - Magnetizing method of rare earth magnet - Google Patents

Magnetizing method of rare earth magnet

Info

Publication number
JPS61281505A
JPS61281505A JP12339185A JP12339185A JPS61281505A JP S61281505 A JPS61281505 A JP S61281505A JP 12339185 A JP12339185 A JP 12339185A JP 12339185 A JP12339185 A JP 12339185A JP S61281505 A JPS61281505 A JP S61281505A
Authority
JP
Japan
Prior art keywords
rare earth
magnetization
magnetizing
magnetic field
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12339185A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Tatsuya Shimoda
達也 下田
Ryuichi Ozaki
隆一 尾崎
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12339185A priority Critical patent/JPS61281505A/en
Publication of JPS61281505A publication Critical patent/JPS61281505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To realize saturated magnetization even under the magnetic field of low magnetization, by heating and magnetizing a rare earth magnet which comprises rear earth metal, iron, and boron. CONSTITUTION:A rare earth magnet comprising R-Fe-B as basic composition is heated at the temperature of 50-200 deg.C for magnetization. When R-Fe-B magnet is magnetized by high-temperature heating, with coersive force being low, saturated magnetization can be realized under the magnetic field of low magnetization. Replacing a part of Fe by Co enables both a curie temperature and temperature coefficient of Br to be improved, and besides magnetic performance, corrosion-proof property, and the like can be also improved with replacement by other group of transition metals. Thus, with the magnetization being low, the magnetizing device is miniaturized and simplified, to improve mass- productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成がR−F e −Bからなる希土類
磁石の着磁方法に関する。ただし、Rは希土類金属であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of magnetizing a rare earth magnet whose basic composition is R-Fe-B. However, R is a rare earth metal.

〔発明の概要〕[Summary of the invention]

本発明は、基本組成がR−1! e −Bからなる希土
類磁石の着磁方法において、50〜200℃に加熱して
着磁することにより、低い着磁磁場でも飽和着磁を可能
としたものである。
The basic composition of the present invention is R-1! In a method of magnetizing a rare earth magnet made of e-B, saturation magnetization is made possible even with a low magnetizing magnetic field by heating the rare earth magnet to 50 to 200° C. for magnetization.

〔従来の技術〕[Conventional technology]

従来、基本組成がR−Fθ−Bからなる希土類磁石は、
保磁力(iHc)の温度係数が大きいという欠点を有す
るために、本来1Hcが大きいのに加えて少量の重希土
類金属の添加によりiH。
Conventionally, rare earth magnets whose basic composition is R-Fθ-B are
Since the temperature coefficient of coercive force (iHc) is large, 1Hc is originally large, but by adding a small amount of heavy rare earth metal, iH.

の値をさらに大きくすることによって改善しているので
、この大きなiHcの磁石を着磁するためには高い着磁
磁場を必要としていた。
This is improved by further increasing the value of iHc, so a high magnetizing magnetic field is required to magnetize this large iHc magnet.

〔発明が解決しようとする問題点及び目的〕しかしなが
ら、このようにiHaが大きな希土類磁石は、着磁の際
1Hcの2〜3倍の着磁磁場が必要となるために、低い
着磁磁場では飽和着磁することができないので十分な磁
気性能が得られず、飽和着磁するためには高い着磁磁場
が必要となるので、着磁工程が困難となり、着磁装置が
大型・複雑化し、コストが高くなり、かつ品質の安定性
が得られないといった問題を有している。
[Problems and objectives to be solved by the invention] However, rare earth magnets with such a large iHa require a magnetizing magnetic field two to three times as strong as 1Hc when magnetizing, and therefore cannot be used with a low magnetizing magnetic field. Since saturation magnetization is not possible, sufficient magnetic performance cannot be obtained, and a high magnetizing magnetic field is required for saturation magnetization, making the magnetization process difficult and the magnetization device becoming larger and more complex. There are problems in that the cost is high and the quality is not stable.

本発明はi上の問題点を解決するものでζその目的とす
るところは、低い着磁磁場でも飽和着磁を可能としたも
のである。
The present invention solves the problem mentioned above, and its purpose is to enable saturation magnetization even with a low magnetizing magnetic field.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の希土類磁石の着磁方法は、基本組成がR−Tl
 e −Bからなる希土類磁石を50〜200℃に加熱
して着磁することを特徴とする。
The method for magnetizing a rare earth magnet of the present invention has a basic composition of R-Tl.
It is characterized by magnetizing a rare earth magnet made of e-B by heating it to 50 to 200°C.

R−? e −B磁石はiHoの温度係数が大きく、こ
の性能は普通マイナスと考えられるが、着磁に関しては
逆に利用できる。即ち、R−IFe−B磁石を高温に加
熱することによりiHcを低い状態にして着磁を行なえ
ば、低着磁磁場で飽和着磁ができるのである。
R-? The e-B magnet has a large iHo temperature coefficient, and although this performance is normally considered to be negative, it can be used in reverse for magnetization. That is, if the R-IFe-B magnet is heated to a high temperature to lower iHc and magnetized, saturation magnetization can be achieved with a low magnetizing magnetic field.

なお、基本組成がR,FeおよびBからなる希土類磁石
としてはIJ(1−IFe−B磁石が知られているがR
としては、Y、La、Os、Pr、Nd、Pm、Sm、
Eu、Gd、Tb、Dy、Ho。
In addition, rare earth magnets whose basic composition is R, Fe, and B include IJ (1-IFe-B magnets are known, but R
As, Y, La, Os, Pr, Nd, Pm, Sm,
Eu, Gd, Tb, Dy, Ho.

Ffr、Tm、YbおよびLuの希土類金属のうちの一
種または2種以上であれば良いが、ジジム(Pr、−N
(1)やセリウム・ジジム(Os−Pr −4a)’で
も十分な磁気性能が得られ、供給面・価格面から有利で
ある。さらに、DyやTb等の重希土類金属の少量添加
によりIHCを増大させることができ、温度特性の実質
的な改善が達成される。
One or more of the rare earth metals Ffr, Tm, Yb and Lu may be used, but didymium (Pr, -N
(1) and cerium didymium (Os-Pr-4a)' can also provide sufficient magnetic performance and are advantageous in terms of supply and price. Furthermore, IHC can be increased by adding a small amount of heavy rare earth metals such as Dy and Tb, and a substantial improvement in temperature characteristics can be achieved.

また、Feσ3一部をOOで置換することによりキエー
リ一温度の向上が計られ、Brの温度係数も改善され、
他の遷移金属群で置換しても磁気性能や耐食性等が改善
される。
In addition, by replacing a portion of Feσ3 with OO, the Chieri temperature was improved, and the temperature coefficient of Br was also improved.
Substitution with other transition metal groups also improves magnetic performance, corrosion resistance, etc.

〔実施例〕〔Example〕

以下に本発明について実施例に基づいて詳細に説明する
The present invention will be described in detail below based on examples.

(Oao、ll Pro、2 N(lo、6 D70.
1 ) 1m 78670010 B8の組成となるよ
うに、高周波溶解炉を用いアルゴンガス雰囲気下で溶解
・鋳造を行ない、得られた合金をスタンプミル・ボール
ミルを用いて磁性粉末とし、15KOeの磁場中で配向
させ151j/−の成形圧で圧縮成形させ、1000〜
1200℃℃の最適温度で焼結、400〜1000℃の
最適温度で時効を施した。得られた磁石の主な磁気性能
を第1表に示す。
(Oao, ll Pro, 2 N(lo, 6 D70.
1) Melt and cast the alloy in an argon gas atmosphere using a high frequency melting furnace to obtain a composition of 1m 78670010 B8.The resulting alloy was made into magnetic powder using a stamp mill/ball mill, and oriented in a magnetic field of 15 KOe. Compression molded at a molding pressure of 151j/-, 1000~
Sintering was performed at an optimum temperature of 1200°C, and aging was performed at an optimum temperature of 400 to 1000°C. Table 1 shows the main magnetic properties of the obtained magnet.

第  1  表 この焼結希土類磁石から、φ2×L5%の形状寸法にサ
ンプルを切り出し、これを室、温(比較例)および12
0℃・に加熱させた状態c本発明)で、13.KOaの
着磁磁場で着磁した後、VSMを用い室温で測定して得
られた減磁曲線を第1図に示す。
Table 1 A sample with dimensions of φ2 x L5% was cut from this sintered rare earth magnet, and was heated at room temperature (comparative example) and at 12
13. In a state heated to 0° C. (according to the present invention). FIG. 1 shows a demagnetization curve obtained by measuring at room temperature using a VSM after being magnetized with a magnetizing magnetic field of KOa.

第1図から明らかなように、比較例が十分に着磁されて
いないのに比べ、本発明ではほぼ飽和着磁されているこ
とが分かる。
As is clear from FIG. 1, it can be seen that the comparative example is not sufficiently magnetized, whereas the present invention is almost saturated magnetized.

次に、着磁磁場を3〜30KOeと変えて、室温(比較
例)および120℃に加熱させた状態(本発明)で着磁
させ、VSM・を用い室温で測定して得られた減磁曲線
から(B H) maxを算出し、着磁磁場との関係と
して第2図に示した。
Next, by changing the magnetizing magnetic field to 3 to 30 KOe, magnetization was carried out at room temperature (comparative example) and in a state heated to 120°C (invention), and the demagnetization obtained by measuring at room temperature using VSM. (B H) max was calculated from the curve and shown in FIG. 2 as a relationship with the magnetizing magnetic field.

第2図から明らかなように、10KO8以下の低い着磁
磁場では、本発明は比較例に比べ高い磁気性能を示して
いる。また、高い着磁磁場で飽和着磁させた状態では、
比較例の方が本発明よりもわずかに高い磁気性能を示し
ているが、飽和着磁させるための高い着磁磁場のことを
考えると比較例は実用的でなく、本発明でも十分実用と
なる磁気性能を示している。
As is clear from FIG. 2, at a low magnetizing magnetic field of 10KO8 or less, the present invention exhibits higher magnetic performance than the comparative example. In addition, in the state of saturation magnetization with a high magnetizing magnetic field,
Although the comparative example shows slightly higher magnetic performance than the present invention, the comparative example is not practical considering the high magnetizing magnetic field required for saturation magnetization, and the present invention is also sufficiently practical. Demonstrates magnetic performance.

これは、この希土類磁石の1)Icの温度係数が大きい
ので、IHOが高温で小さく(120℃で4、5 K 
Oe )なったために、低着磁磁場での飽和着磁が可能
となったのである。
This is because 1) the Ic temperature coefficient of this rare earth magnet is large, so the IHO is small at high temperatures (4.5 K at 120°C).
Oe), making it possible to achieve saturation magnetization with a low magnetizing magnetic field.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、iHQの大きな希
土類磁石を50〜200℃に加熱して着磁したので、従
来に比べて飽和着磁に必要となる着磁磁場が低くくてす
むようになり、着磁装置も小型化・単純化し、量産性の
向上、コストダウン、品質の安定性などに多大の効果を
有すると共に、ラジアル多極着磁のように低い着磁磁場
でしか行なうことができずにやむえず低い性能で使用し
ていたものにも応用できるので、ステッピングモータ等
の小型化・高性能化が実現するなど、多大の効果を有す
るものである。
As described above, according to the present invention, a large iHQ rare earth magnet is magnetized by heating it to 50 to 200 degrees Celsius, so the magnetizing field required for saturation magnetization is lower than that of conventional methods. As a result, magnetizing equipment has become smaller and simpler, which has great effects on improving mass productivity, reducing costs, and stabilizing quality.In addition, magnetization can only be performed with a low magnetizing field like radial multipole magnetization. It can be applied to devices that have been used with low performance due to unavoidable high performance, so it has great effects such as miniaturization and high performance of stepping motors and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

〆 第矛図は、本発明と比較例の着磁磁場とその着磁磁場で
着磁された磁石(B H) maxとの相関関係図。 以上 訪涌[ゆC〕 う霧んL叫紀htn7”ラフ 第1図
The last figure is a correlation diagram between the magnetizing magnetic field of the present invention and the comparative example and the magnet (B H) max magnetized by the magnetizing magnetic field. That's all for visiting [YuC] Ugirin L Shouki htn7” Rough Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)基本組成が希土類金属(R)、鉄(Fe)および
ボロン(B)からなる希土類磁石を50〜200℃に加
熱して着磁することを特徴とする希土類磁石の着磁方法
(1) A method for magnetizing a rare earth magnet, which comprises heating a rare earth magnet whose basic composition is rare earth metal (R), iron (Fe), and boron (B) to 50 to 200°C to magnetize it.
(2)前記Feの一部をコバルト(Co)等Fe以外の
少なくとも一種の遷移金属群で置換した特許請求の範囲
第1項記載の希土類磁石の着磁方法。
(2) The method of magnetizing a rare earth magnet according to claim 1, wherein a part of the Fe is replaced with at least one transition metal group other than Fe, such as cobalt (Co).
JP12339185A 1985-06-06 1985-06-06 Magnetizing method of rare earth magnet Pending JPS61281505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12339185A JPS61281505A (en) 1985-06-06 1985-06-06 Magnetizing method of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12339185A JPS61281505A (en) 1985-06-06 1985-06-06 Magnetizing method of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS61281505A true JPS61281505A (en) 1986-12-11

Family

ID=14859406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12339185A Pending JPS61281505A (en) 1985-06-06 1985-06-06 Magnetizing method of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61281505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289313A (en) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd Method of magnetization for permanent magnet
JPH0372606A (en) * 1989-08-11 1991-03-27 Yamaha Corp Magnetization of magnetic material
JP2008135766A (en) * 2002-02-15 2008-06-12 Hitachi Metals Ltd Magnetic field generator, and method for manufacturing same
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076110A (en) * 1983-10-03 1985-04-30 Sumitomo Special Metals Co Ltd Assembling and magnetizing method for magnetic circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076110A (en) * 1983-10-03 1985-04-30 Sumitomo Special Metals Co Ltd Assembling and magnetizing method for magnetic circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289313A (en) * 1985-10-16 1987-04-23 Matsushita Electric Ind Co Ltd Method of magnetization for permanent magnet
JPH0372606A (en) * 1989-08-11 1991-03-27 Yamaha Corp Magnetization of magnetic material
JP2008135766A (en) * 2002-02-15 2008-06-12 Hitachi Metals Ltd Magnetic field generator, and method for manufacturing same
JP4586850B2 (en) * 2002-02-15 2010-11-24 日立金属株式会社 Method for manufacturing magnetic field generator
US8322024B2 (en) 2002-02-15 2012-12-04 Hitachi Metals, Ltd. Magnetic field generator manufacturing method

Similar Documents

Publication Publication Date Title
JPH06942B2 (en) Rare earth permanent magnet
JPH03236202A (en) Sintered permanent magnet
JPH062930B2 (en) Rare earth permanent magnet
Li et al. Rare-earth-transition-metal-boron permanent magnets with smaller temperature coefficients
JPH066776B2 (en) Rare earth permanent magnet
JPS61281505A (en) Magnetizing method of rare earth magnet
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
US4952252A (en) Rare earth-iron-boron-permanent magnets
CN105070445A (en) Neodymium-iron-boron magnetic material and preparation method
JPH066775B2 (en) Rare earth permanent magnet
JPS60144908A (en) Permanent magnet material
US4878958A (en) Method for preparing rare earth-iron-boron permanent magnets
JPS62241304A (en) Rare earth permanent magnet
JPS609104A (en) Permanent magnet
Yoshizawa et al. Injection molded Sm/sub 2/Fe/sub 17/N/sub 3/anisotropic magnet using reduction and diffusion method
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
US4933009A (en) Composition for preparing rare earth-iron-boron-permanent magnets
JPS62116756A (en) Permanent magnet alloy
JPH0142338B2 (en)
KR100213333B1 (en) Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith
JPS62252111A (en) Multipolarly magnetizing method for rare earth magnet
JPH03148803A (en) Permanent magnet
JPS62257703A (en) Resin-bonded magnetic material
JPS62170455A (en) Permanent magnet alloy
KR970009409B1 (en) Permanent magnet material processing method