JPH062930B2 - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet

Info

Publication number
JPH062930B2
JPH062930B2 JP59095970A JP9597084A JPH062930B2 JP H062930 B2 JPH062930 B2 JP H062930B2 JP 59095970 A JP59095970 A JP 59095970A JP 9597084 A JP9597084 A JP 9597084A JP H062930 B2 JPH062930 B2 JP H062930B2
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
magnet
earth permanent
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59095970A
Other languages
Japanese (ja)
Other versions
JPS60238447A (en
Inventor
隆一 尾崎
達也 下田
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59095970A priority Critical patent/JPH062930B2/en
Publication of JPS60238447A publication Critical patent/JPS60238447A/en
Publication of JPH062930B2 publication Critical patent/JPH062930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は希土類金属、遷移金属そして半金属もしくは半
導体元素からなる合金より製造される希土類永久磁石に
関する。
Description: TECHNICAL FIELD The present invention relates to a rare earth permanent magnet made of an alloy of a rare earth metal, a transition metal and a semimetal or a semiconductor element.

〔従来技術〕[Prior art]

現在工業化されている希土類磁石は、SmCo5,Sm(TM)17
(但し、TMは遷移金属を表わす)、そしてNd−Fe
−B系等である。これらの磁石に使われている希土類金
属は、モナザイト,バストネサイト等の鉱石からイオン
交換法や溶媒抽出法を用いて得られる分離希土であるた
め、コストが高くなり、さらに多量に使用される分離希
土では供給量に不安を生じる等の問題がでてきた。この
ため一部では低コストの混合希土金属(ミツシュメタ
ル、以下MMと略す)を用いて低コスト希土類磁石を開
発することが試みられている。このような希土類成分に
MMを使用した磁石の磁気性能は、MMcoで焼結磁
石の場合、残留磁束密度(以下、Brと略す)8100
(G),固有の保磁力(以下iHcと略す)9000
(oe),最大エネルギー積(以下(BH)maxと略
す)14.5((MGOe)(H.Nagel,H.P.KleinAIP Conf.
Proc 24 695(1974))等の報告がなされている。しか
し、一般に混合希土を用いた永久磁石は、磁気性能が低
いという欠点があった。また、比較的高い磁気性能を有
しているNd−Fe−B系の磁石はキュリー点(Tc)
が350(℃)と低いため、実際の使用においてはかな
りの制限をうけている。
Currently used industrial rare earth magnets are SmCo 5 , Sm (TM) 17
(However, TM represents a transition metal), and Nd-Fe
-B system etc. The rare earth metal used in these magnets is a separated rare earth obtained from ores such as monazite and bastnasite by ion exchange method or solvent extraction method. With separated rare earth, there are problems such as anxiety about the supply amount. For this reason, it has been attempted to develop a low-cost rare earth magnet by using a low-cost mixed rare earth metal (miss metal, hereinafter abbreviated as MM). The magnetic performance of the magnet using MM as the rare earth component is such that the residual magnetic flux density (hereinafter, abbreviated as Br) 8100 in the case of a sintered magnet of MMco 5.
(G), intrinsic coercive force (hereinafter abbreviated as iHc) 9000
(Oe), maximum energy product (hereinafter abbreviated as (BH) max) 14.5 ((MGOe) (H.Nagel, HPKleinAIP Conf.
Proc 24 695 (1974)) etc. have been reported. However, in general, permanent magnets using mixed rare earths have the drawback of low magnetic performance. Further, the Curie point (Tc) of the Nd-Fe-B system magnet, which has a relatively high magnetic performance,
Since it is as low as 350 (° C), it is considerably limited in actual use.

〔目的〕〔Purpose〕

本発明はこの様な問題点を解決するもので、その目的と
するところは、低コストかつ高性能な永久磁石を開発す
るところにある。
The present invention solves such a problem, and an object thereof is to develop a low-cost and high-performance permanent magnet.

〔概要〕〔Overview〕

本発明の永久磁石はCe−Di(ジジム:Nd−Pr合
金)−Fe−Co−B系合金のよび該合金中のBの1部
をAl,Ga,In,Sn,Pd,Bi,C,Ge,
P,Sの元素群の中の1種または2種以上の元素で置換
した合金を使用して、焼結法あるいは樹脂結合法で製造
することを特徴とする。混合希土類金属Ce−Diは分
離希土を抽出する過程で得られるものであり、コスト的
には分離希土にくらべて非常に安くなり、またCe−D
i−Fe−Co−B系の組成を規定することにより高い
磁気性能が得られ、さらにCoを添加したことによりT
cの向上が見られた。
The permanent magnet of the present invention is a Ce-Di (didymium: Nd-Pr alloy) -Fe-Co-B system alloy, and a part of B in the alloy is Al, Ga, In, Sn, Pd, Bi, C, Ge,
It is characterized in that it is manufactured by a sintering method or a resin bonding method using an alloy substituted with one or more elements of the P and S element groups. The mixed rare earth metal Ce-Di is obtained in the process of extracting the separated rare earth, and is much cheaper than the separated rare earth in terms of cost.
High magnetic performance can be obtained by defining the composition of the i-Fe-Co-B system, and by adding Co, T
The improvement of c was seen.

〔実施例〕〔Example〕

以下本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

<実施例1> 第1表に示す組成の合金を低周波溶融炉を用いてArガ
ス中で溶解する。
Example 1 An alloy having the composition shown in Table 1 is melted in Ar gas using a low frequency melting furnace.

該合金に1070℃×10時間溶体化処理、800℃×
4時間時効処理を行ない、その後ボールミルで粉砕が粒
径が2μm〜80μmの微粉末とする。この磁性粉末に
エポキシ樹脂を2.0重量%加え混練し、この混合物を磁
場中で圧縮成形する。この成形体を150℃×1時間加
熱して永久磁石を得る。得られた永久磁石の磁気性能を
第2表に示す。第2表により本発明磁石は混合希土を使
用した磁石としては非常に高い磁気性能を有しているこ
とが判る。
Solution treatment of the alloy at 1070 ° C. for 10 hours, 800 ° C.
After aging treatment for 4 hours, it is pulverized by a ball mill to obtain fine powder having a particle size of 2 μm to 80 μm. 2.0% by weight of epoxy resin is added to the magnetic powder and kneaded, and the mixture is compression molded in a magnetic field. This molded body is heated at 150 ° C. for 1 hour to obtain a permanent magnet. The magnetic performance of the obtained permanent magnet is shown in Table 2. It can be seen from Table 2 that the magnet of the present invention has very high magnetic performance as a magnet using mixed rare earth.

<実施例2> 組成式がCe0.4Pr0.1Nd0.5(Fe0.59-nCo0.41
n5.6と表される系においてnの値を変化させ、実施
例1と同じ方法を用いて永久磁石を製造する。得られた
永久磁石の磁気性能を第1図に示す。第1図よりnの値
は0.02≦n≦0.2の範囲が望ましいことが判る。
Example 2 The composition formula is Ce 0.4 Pr 0.1 Nd 0.5 (Fe 0.59-n Co 0.41
The value of n is changed in the system represented by B n ) 5.6, and a permanent magnet is manufactured using the same method as in Example 1. The magnetic performance of the obtained permanent magnet is shown in FIG. It can be seen from FIG. 1 that the value of n is preferably in the range of 0.02 ≦ n ≦ 0.2.

<実施例3> 組成式がCe0.4Pr0.1Nd0.5(Fe0.50Co0.41
0.09zと表される系においてzの値を変化させ、実施
例1と同じ方法を用いて永久磁石を製造する。得られた
永久磁石の磁気性能を第2図に示す。第2図よりzの値
は4.0≦z≦8.0の範囲が望ましいことが判る。
<Example 3> composition formula Ce 0.4 Pr 0.1 Nd 0.5 (Fe 0.50 Co 0.41 B
The value of z is changed in the system represented by 0.09 ) z, and a permanent magnet is manufactured using the same method as in Example 1. The magnetic performance of the obtained permanent magnet is shown in FIG. It can be seen from FIG. 2 that the value of z is preferably in the range of 4.0 ≦ z ≦ 8.0.

<実施例4> 組成式がCe0.4Pr0.1Nd0.5(Fe0.91-mCom
0.095.6と表される系においてmの値を変化させた合
金のTcを第3図に示す。Coを添加することによりT
cは向上しているが、0.8<mではコスト的な面で不
利となるので、mの値は、0.1≦m≦8の範囲が望ま
しい。
<Example 4> composition formula Ce 0.4 Pr 0.1 Nd 0.5 (Fe 0.91-m Co m B
Fig. 3 shows Tc of alloys in which the value of m is changed in the system represented by 0.09 ) 5.6 . T by adding Co
Although c is improved, it is disadvantageous in cost when 0.8 <m. Therefore, the value of m is preferably in the range of 0.1 ≦ m ≦ 8.

<実施例5> 第3表に示す組成の合金を実施例1と同じ方法を用いて
永久磁石を製造する。この永久磁石の磁気性能を第4表
に示す。
Example 5 An alloy having the composition shown in Table 3 is manufactured in the same manner as in Example 1 to manufacture a permanent magnet. The magnetic performance of this permanent magnet is shown in Table 4.

第4表よりBの1部をAl,Ga,In,Sn,Pb,
Bi,Si,C,Ge,P,Sの各元素で置換しても良
好な磁気性能を得ることが判る。
From Table 4, a part of B is Al, Ga, In, Sn, Pb,
It can be seen that good magnetic performance can be obtained even if the elements are replaced with Bi, Si, C, Ge, P and S.

<実施例6> 実施例1および5の中の試料NO.1および7の組成の合
金について低周波溶解炉を用いてArガス中で溶解す
る。該合金をボールミルで粒径2μm〜5μm微粉末に
する。この粉末を磁場中で圧縮成形し、その成形体を1
100℃×1時間焼結後、1070℃×2時間溶体化処
理を行ない急冷し、さらに800℃×4時間時効処理し
て永久磁石を得る。この永久磁石の磁気性能を第5表に
示す。
<Example 6> The alloys having the compositions of sample Nos. 1 and 7 in Examples 1 and 5 are melted in Ar gas using a low frequency melting furnace. The alloy is made into a fine powder having a particle size of 2 μm to 5 μm by a ball mill. This powder is compacted in a magnetic field and the compact is
After sintering at 100 ° C. for 1 hour, solution treatment is performed at 1070 ° C. for 2 hours, rapid cooling, and further aging treatment at 800 ° C. for 4 hours to obtain a permanent magnet. The magnetic performance of this permanent magnet is shown in Table 5.

本発明磁石は焼結法で製造した場合、SmCo5の焼結磁石
に匹敵する磁気性能を有している。
When the magnet of the present invention is manufactured by the sintering method, it has magnetic performance comparable to that of the SmCo 5 sintered magnet.

<実施例7> 試料NO.1,7の組成の合金についての実施例1と同じ
方法で粒径2μm〜80μmの粉末をつくる。この粉末
を樹脂と混練して、押出成形機および射出成形機でによ
り磁場中で成形する。第6表に成形条件、第7表に得ら
れた永久磁石の磁気性能を示す。
<Example 7> Powders having a particle size of 2 to 80 µm are prepared in the same manner as in Example 1 for the alloys having the compositions of sample Nos. 1 and 7. This powder is kneaded with a resin and molded in a magnetic field by an extruder and an injection molding machine. Table 6 shows the molding conditions, and Table 7 shows the magnetic performance of the permanent magnets obtained.

〔効果〕 以上述べてきたように本発明によれば、高性能希土類永
久磁石を廉価で供給することが可能となるため、産業界
に及ぼす効果は大きいと言える。
[Effects] As described above, according to the present invention, it is possible to supply high-performance rare earth permanent magnets at low cost, and it can be said that the effects on the industry are great.

【図面の簡単な説明】[Brief description of drawings]

第1図はnの値と磁石の磁気性能の関係を表すグラフ。 第2図はzの値と磁石の磁気性能の関係を表すグラフ。 第3図はmの値とTcの増加量の関係を表すグラフ。 FIG. 1 is a graph showing the relationship between the value of n and the magnetic performance of the magnet. FIG. 2 is a graph showing the relationship between the value of z and the magnetic performance of the magnet. FIG. 3 is a graph showing the relationship between the value of m and the increase amount of Tc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原子比で、 Ce1-x-yPrxNdy(Fe1-m-nComnz で表される組成の合金からなることを特徴とする希土類
永久磁石。 但し、x,y,z,m,nは、 0.1≦x≦0.5 0.1≦y≦0.85 4.0≦z≦8.0 0.1≦m≦0.8 0.02≦n≦0.2 0<1−x−y≦0.8 の値の範囲とする。
1. A atomic ratio, Ce 1-xy Pr x Nd y (Fe 1-mn Co m B n) rare earth permanent magnet, characterized in that an alloy composition represented by z. However, x, y, z, m, and n are as follows: 0.1 ≦ x ≦ 0.5 0.1 ≦ y ≦ 0.85 4.0 ≦ z ≦ 8.0 0.1 ≦ m ≦ 0.8 0 .02 ≦ n ≦ 0.2 0 <1-x−y ≦ 0.8.
【請求項2】原子比で、 Ce1-x-yPrxNdy{(Fe1-ss1-m-nComn
z で表される組成の合金からなることを特徴とする希土類
永久磁石。 但し、TはAl,Ga,In,Sm,Pd,Bi,S
i,C,Ge,P,Sの各元素のうち1種または2種以
上の元素からなり、 x,y,z,s,m,nは、 0.1≦x≦0.5 0.1≦y≦0.85 4.0≦z≦8.0 01≦S≦0.1 0.1≦m≦0.8 0.02≦n≦0.2 0<1−x−y≦0.8 の値の範囲とする。
In wherein the atomic ratio, Ce 1-xy Pr x Nd y {(Fe 1-s T s) 1-mn Co m B n}
A rare earth permanent magnet comprising an alloy having a composition represented by z . However, T is Al, Ga, In, Sm, Pd, Bi, S
i, C, Ge, P, S consisting of one or more elements of each element, x, y, z, s, m, n: 0.1 ≦ x ≦ 0.5 0.1 ≦ y ≦ 0.85 4.0 ≦ z ≦ 8.0 01 ≦ S ≦ 0.1 0.1 ≦ m ≦ 0.8 0.02 ≦ n ≦ 0.2 0 <1-x−y ≦ 0. The value range is 8.
JP59095970A 1984-05-14 1984-05-14 Rare earth permanent magnet Expired - Lifetime JPH062930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095970A JPH062930B2 (en) 1984-05-14 1984-05-14 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095970A JPH062930B2 (en) 1984-05-14 1984-05-14 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPS60238447A JPS60238447A (en) 1985-11-27
JPH062930B2 true JPH062930B2 (en) 1994-01-12

Family

ID=14152040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095970A Expired - Lifetime JPH062930B2 (en) 1984-05-14 1984-05-14 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH062930B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070500B2 (en) 2013-04-25 2015-06-30 Tdk Corporation R-T-B based permanent magnet
US9082537B2 (en) 2013-04-25 2015-07-14 Tdk Corporation R-T-B based permanent magnet
US9111674B2 (en) 2013-04-25 2015-08-18 Tdk Corporation R-T-B based permanent magnet
US9396852B2 (en) 2013-04-25 2016-07-19 Tdk Corporation R-T-B based permanent magnet
US9607743B2 (en) 2013-04-22 2017-03-28 Tdk Corporation R-T-B based sintered magnet

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954186A (en) * 1986-05-30 1990-09-04 Union Oil Company Of California Rear earth-iron-boron permanent magnets containing aluminum
KR880000992A (en) * 1986-06-12 1988-03-30 와다리 스기이찌로오 Permanent magnet
EP0421488B1 (en) * 1986-07-23 1994-10-12 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
US5223047A (en) * 1986-07-23 1993-06-29 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
US5230751A (en) * 1986-07-23 1993-07-27 Hitachi Metals, Ltd. Permanent magnet with good thermal stability
JP2731150B2 (en) * 1986-10-14 1998-03-25 日立金属株式会社 Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
KR900006533B1 (en) * 1987-01-06 1990-09-07 히다찌 긴조꾸 가부시끼가이샤 Anisotropic magnetic materials and magnets made with it and making method for it
US4983232A (en) * 1987-01-06 1991-01-08 Hitachi Metals, Ltd. Anisotropic magnetic powder and magnet thereof and method of producing same
JPS6472502A (en) * 1987-09-11 1989-03-17 Hitachi Metals Ltd Permanent magnet for accelerating particle beam
JP2868062B2 (en) * 1993-11-08 1999-03-10 株式会社東芝 Manufacturing method of permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9607743B2 (en) 2013-04-22 2017-03-28 Tdk Corporation R-T-B based sintered magnet
US9070500B2 (en) 2013-04-25 2015-06-30 Tdk Corporation R-T-B based permanent magnet
US9082537B2 (en) 2013-04-25 2015-07-14 Tdk Corporation R-T-B based permanent magnet
US9111674B2 (en) 2013-04-25 2015-08-18 Tdk Corporation R-T-B based permanent magnet
US9396852B2 (en) 2013-04-25 2016-07-19 Tdk Corporation R-T-B based permanent magnet

Also Published As

Publication number Publication date
JPS60238447A (en) 1985-11-27

Similar Documents

Publication Publication Date Title
EP0134305B2 (en) Permanent magnet
CA1106648A (en) Permanent-magnet alloy
EP0134304A1 (en) Permanent magnets
JPH06942B2 (en) Rare earth permanent magnet
Okada et al. Didymium‐Fe‐B sintered permanent magnets
JPH062930B2 (en) Rare earth permanent magnet
JPH066776B2 (en) Rare earth permanent magnet
JPH0232761B2 (en)
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
JPH066775B2 (en) Rare earth permanent magnet
JPS609104A (en) Permanent magnet
US4878958A (en) Method for preparing rare earth-iron-boron permanent magnets
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH068488B2 (en) Permanent magnet alloy
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPH0644526B2 (en) Rare earth magnet manufacturing method
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS6365742B2 (en)
JPH0536494B2 (en)
JPS601808A (en) Permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2611221B2 (en) Manufacturing method of permanent magnet
KR970009409B1 (en) Permanent magnet material processing method
JP3032385B2 (en) Fe-BR bonded magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term