JP2015099053A - Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method - Google Patents

Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method Download PDF

Info

Publication number
JP2015099053A
JP2015099053A JP2013238154A JP2013238154A JP2015099053A JP 2015099053 A JP2015099053 A JP 2015099053A JP 2013238154 A JP2013238154 A JP 2013238154A JP 2013238154 A JP2013238154 A JP 2013238154A JP 2015099053 A JP2015099053 A JP 2015099053A
Authority
JP
Japan
Prior art keywords
magnetic
magnet material
magnet
magnetization
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013238154A
Other languages
Japanese (ja)
Inventor
田中 秀明
Hideaki Tanaka
秀明 田中
舘村 誠
Makoto Tatemura
誠 舘村
憲一 相馬
Kenichi Soma
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2013238154A priority Critical patent/JP2015099053A/en
Publication of JP2015099053A publication Critical patent/JP2015099053A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide means capable of selecting and ranking a magnetic material by inexpensively and simply evaluating the magnetization state of the magnetic material by a small scale facility, even a magnetic material, such as an Nd type having a large coercive force, and to provide a high-quality permanent magnet motor configured by a selected magnet.SOLUTION: The present invention includes a plurality of means for solving the problem, and one is a selection method of magnet material including the steps of: making a magnetization surface of an unmagnetized magnet material close to a magnetic field generation device, measuring the densities of magnetic fluxes having transmitted through the magnet material from the magnetic field generation device, and predicting and selecting magnetic characteristics of a magnetized magnet of the magnet material from a distribution of the densities of the magnetic fluxes. Thus, magnet quality can be predicted before mounting a magnet material on a permanent magnet motor so that a defective article can be excluded.

Description

本発明は、永久磁石用モータに用いられる強磁性材料の品質管理方法に関する。   The present invention relates to a quality control method for a ferromagnetic material used in a permanent magnet motor.

自動車などに使用される高出力モータでは、Nd-Fe-B系などの保磁力の大きい強磁性体(永久磁石)を用いてモータの出力増加を図ることが一般的になってきている。強磁性体をモータに用いる場合、強磁性体に15kガウス以上の大きな磁界を印加して着磁して使う必要がある。着磁は、強磁性体をモータに組み込む前に行っても、組み込んだ後に行っても構わないが、前述のように、Nd-Fe-B系の強磁性体の着磁には大きな印加磁界が必要であるので、着磁に必要な磁界が確保できない場合は、強磁性体の着磁が不完全となり、モータの出力が低下してしまう現象が生じる。また、磁石の着磁特性は、磁石の成分や製造方法の影響を受けやすい。   In high-power motors used in automobiles and the like, it has become common to increase the motor output using a ferromagnetic material (permanent magnet) having a large coercive force such as an Nd—Fe—B system. When using a ferromagnetic material for a motor, it is necessary to apply a large magnetic field of 15 k gauss or more to the ferromagnetic material and magnetize it. Magnetization may be performed before or after the ferromagnetic material is incorporated into the motor. However, as described above, a large applied magnetic field is used to magnetize the Nd—Fe—B based ferromagnetic material. Therefore, if the magnetic field necessary for magnetization cannot be secured, the phenomenon that the magnetization of the ferromagnetic material becomes incomplete and the output of the motor is reduced occurs. Further, the magnetizing characteristics of the magnet are easily affected by the magnet components and the manufacturing method.

従来、磁石素材は日本製が主流であったが、近年、ハイブリッド自動車、電気自動車及び風力発電等のエネルギー設備で使用するモータに高効率なNd-Fe-B系磁石モータが使用されるようになり、供給重要が増加している。供給量の増加に伴い、磁石素材は海外製が主流になってきている。しかし、海外製磁石素材は、磁石の品質ばらつきが大きいという問題がある。また、希土類元素の供給不足からジスプロシウムを低減させた磁石の開発が進んでいるが、このような磁石の特性は品質が不安定になりやすい。このため、磁石素材の特性ばらつきが懸念され、強磁性体の着磁状態を管理することが、きわめて重要になる。   Traditionally, magnet materials made in Japan have been the mainstream, but in recent years, high-efficiency Nd-Fe-B magnet motors have been used for motors used in energy equipment such as hybrid vehicles, electric vehicles, and wind power generation. As a result, supply importance is increasing. Along with the increase in supply, overseas magnet materials are becoming mainstream. However, overseas magnet materials have a problem that the quality of magnets varies greatly. In addition, although development of magnets with reduced dysprosium is in progress due to insufficient supply of rare earth elements, the quality of such magnets tends to be unstable. For this reason, there is concern about variations in the characteristics of the magnet material, and it is extremely important to manage the magnetization state of the ferromagnetic material.

強磁性体の磁気特性評価に関する技術分野の背景技術として、特開平6−2891127号公報(特許文献1)がある。前提として、永久磁石等の強磁性材料の被測定物の磁気特性測定を、コイル803に電流を流して発生させた磁束を被測定物に注入し、BコイルとHコイルにより、被測定物に生じるB−H特性を測定することが一般的である。この場合、電磁石の磁極と被測定物の間に空隙があると、被測定物の界面に発生した磁極の反磁界により、測定に誤差を生じる。特許文献1には、この空隙を極力小さくするため、被測定物と磁極との接する面上に厚さの薄い圧力センサのひずみゲージを設置し、ひずみゲージの出力をひずみ測定器と変換器を介し検出した検出信号を駆動用モータにフィードバックして被測定物に加わる圧力を自動的に制御した磁気特性測定装置が記載されている。   JP-A-6-2891127 (Patent Document 1) is known as a background art in the technical field related to the evaluation of magnetic properties of ferromagnetic materials. As a premise, magnetic property measurement of an object to be measured of a ferromagnetic material such as a permanent magnet is performed. A magnetic flux generated by passing a current through a coil 803 is injected into the object to be measured, and the object to be measured is measured by a B coil and an H coil. It is common to measure the resulting BH characteristics. In this case, if there is a gap between the magnetic pole of the electromagnet and the object to be measured, an error occurs in the measurement due to the demagnetizing field of the magnetic pole generated at the interface of the object to be measured. In Patent Document 1, in order to make this gap as small as possible, a strain gauge of a thin pressure sensor is installed on the surface where the object to be measured and the magnetic pole are in contact, and the output of the strain gauge is connected to a strain gauge and a transducer. A magnetic characteristic measuring device is described in which a detection signal detected via a feedback is fed back to a driving motor to automatically control the pressure applied to the object to be measured.

磁石の着磁前磁石の着磁状態を定量化するため、着磁前磁石素材と着磁した磁石素材の吸引力を測定し着磁前磁石素材の磁気特性を予測する方法として、特開平5−119138号公報(特許文献2)に開示されている。特許文献2では、着磁前の磁石素材と吸引力発生用磁石とを近接させて近接時における磁石素材の被吸引力の大きさを測定することにより、磁石素材の被吸引力の大小と着磁後の磁石の磁気特性の良否とが反対の関係にあることを利用して前記磁石素材を着磁した後の磁石の磁気特性を磁石素材の段階で予測することを特徴としている。   In order to quantify the magnetization state of the magnet before magnetizing, as a method for predicting the magnetic characteristics of the magnet material before magnetization by measuring the attractive force between the magnet material before magnetization and the magnetized magnet material, -119138 (patent document 2). In Patent Document 2, the magnitude of the attracting force of the magnet material is measured by measuring the magnitude of the attracting force of the magnet material when the magnet material before magnetizing and the attracting force generating magnet are close to each other. The magnetic characteristic of the magnet after magnetizing the magnet material is predicted at the stage of the magnet material by utilizing the fact that the magnetic properties of the magnet after magnetization are opposite to each other.

特開平6−289112号公報JP-A-6-289112 特開平5−119138号公報JP-A-5-119138

特許文献1の、B−H特性による磁石の磁気特性測定方法では、保磁力の大きなNd系などの磁性材料を測定する場合には、大きな磁界を発生する電磁石が必要になるため、大掛かりな設備が必要になる。また、測定前の調整に時間が掛かるので、低コストで簡易な測定には不向きである。   In the method of measuring the magnetic properties of a magnet based on the BH characteristics of Patent Document 1, when measuring a magnetic material such as an Nd-based material having a large coercive force, an electromagnet that generates a large magnetic field is required. Is required. In addition, since adjustment before measurement takes time, it is not suitable for low-cost and simple measurement.

また、特許文献2では、未着磁磁石と吸引力発生用磁石の相対する面に生じる吸引力は、吸引力の定義から、吸引用磁石の磁化と相対面の面積の積に比例する値であるので、平均値しかわからず着磁前素材の部分箇所による磁気特性変化は吸引力に反映しづらく、磁石素材の面内での磁気特性分布が不明で、磁気特性の良否判断がしにくいという欠点があった。磁石素材の面内での磁気特性分布ばらつきが大きいと、それを用いたモータの脈動が大きくなってしまう等の問題がある。   In Patent Document 2, the attractive force generated on the opposing surfaces of the non-magnetized magnet and the attractive force generating magnet is a value proportional to the product of the magnetization of the attractive magnet and the area of the relative surface from the definition of the attractive force. Because there is only an average value, it is difficult to reflect the change in magnetic properties due to the part of the pre-magnetization material in the attractive force, the magnetic property distribution in the surface of the magnet material is unknown, and it is difficult to judge whether the magnetic properties are good or bad There were drawbacks. When there is a large variation in the distribution of magnetic characteristics in the plane of the magnet material, there is a problem that the pulsation of a motor using the magnetic material increases.

よって、本発明が解決しようとする課題は、磁石素材を着磁する前に磁気特性を予測するに際して、磁石素材の面内での磁気特性分布を予測することにより、磁石素材の選別やランク分けできる手段を提供する事にある。また、選別された磁石で構成された高品質な永久磁石モータを提供することにある。   Therefore, the problem to be solved by the present invention is that when predicting the magnetic properties before magnetizing the magnet material, it is possible to select and rank the magnet materials by predicting the magnetic property distribution in the plane of the magnet material. It is to provide a means to do. Another object of the present invention is to provide a high-quality permanent magnet motor composed of selected magnets.

本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、着磁前の磁石素材の着磁面を磁場発生装置に近接させ、該磁場発生装置から該磁石素材を透過した磁束密度を測定し、該磁束密度の分布から前記磁石素材の着磁後の磁石の磁気特性を予測し選別することで達成される。   The present invention includes a plurality of means for solving the above problems. To give an example, the magnetized surface of the magnet material before magnetization is brought close to the magnetic field generator, and the magnet material is removed from the magnetic field generator. This is achieved by measuring the transmitted magnetic flux density and predicting and selecting the magnetic properties of the magnet after magnetizing the magnet material from the distribution of the magnetic flux density.

永久磁石モータに磁石素材を搭載する前に磁石品質を予測し不良品を排除することができる。   The magnet quality can be predicted and defective products can be eliminated before the magnet material is mounted on the permanent magnet motor.

実施例1の磁気測定装置の構成図である。1 is a configuration diagram of a magnetic measurement apparatus of Example 1. FIG. 実施例1のホール素子アレイと鉄芯の位置関係を示した図である。It is the figure which showed the positional relationship of the Hall element array of Example 1, and an iron core. 実施例1に係る磁気測定結果の一例を示す図である。It is a figure which shows an example of the magnetic measurement result which concerns on Example 1. FIG. 実施例1の磁気測定装置のプロセスフローを示した図である。It is the figure which showed the process flow of the magnetic measurement apparatus of Example 1. FIG. 実施例1の応用事例を示す図である。6 is a diagram illustrating an application example of Example 1. FIG. 実施例2に係る永久磁石モータの断面構造を示した図である。It is the figure which showed the cross-section of the permanent magnet motor which concerns on Example 2. FIG. 実施例2の磁気測定装置の構成図である。It is a block diagram of the magnetic measurement apparatus of Example 2. 実施例3の磁気測定装置の構成図である。It is a block diagram of the magnetic measuring apparatus of Example 3. 実施例3のホール素子アレイと鉄芯の位置関係を示した図である。It is the figure which showed the positional relationship of the Hall element array of Example 3, and an iron core. 実施例4の磁気測定装置の構成図である。It is a block diagram of the magnetic measurement apparatus of Example 4. 実施例4の磁気測定装置のプロセスフローを示した図である。It is the figure which showed the process flow of the magnetic measurement apparatus of Example 4. FIG. 実施例5に係る磁石素材の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution of the magnet raw material which concerns on Example 5. FIG. 強磁性材料断面の模式図である。It is a schematic diagram of a ferromagnetic material cross section.

以下、実施例を、図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

まず、磁気特性の品質向上の必要性について説明する。図13に、Nd-Fe-B系磁石素材の着磁後の断面構造の一例を示す。Nd-Fe-B系強磁性体の完全着磁は難しく、磁石素材の材料あるいは着磁状態が悪いと、図13に示すような、着磁されていない多磁区状態の部位(粒子)が存在する。このような局所的な多磁区部位を有する強磁性体は加熱により温度が上昇すると、多磁区部位を起点に多磁区部位が伝播し磁束密度が低減するため磁化特性が劣化する。このため、このような着磁後に多磁区部位の多い磁石を製品から取り除くことが、製品の磁気特性の品質を向上させるための重要な因子となる。   First, the necessity for improving the quality of magnetic characteristics will be described. FIG. 13 shows an example of a cross-sectional structure after magnetization of an Nd—Fe—B based magnet material. It is difficult to completely magnetize the Nd-Fe-B ferromagnet, and if the material of the magnet material or the magnetized state is bad, there are non-magnetized parts (particles) in a multi-domain state as shown in FIG. To do. When the temperature of such a ferromagnetic material having a multi-domain region is increased by heating, the multi-domain region propagates from the multi-domain region and the magnetic flux density is reduced, so that the magnetization characteristics deteriorate. For this reason, it is an important factor for improving the quality of the magnetic characteristics of the product to remove from the product a magnet having many multi-domain regions after such magnetization.

本実施例では、磁気センサとしてのホール素子を複数配列してなるホール素子アレイを用いて着磁前磁石の磁気特性を予測する場合の、着磁前磁石素材の磁束密度分布を測定する装置及び測定方法の一例を示す。   In this embodiment, an apparatus for measuring the magnetic flux density distribution of a pre-magnetization magnet material when predicting the magnetic characteristics of the pre-magnetization magnet using a hall element array in which a plurality of hall elements as magnetic sensors are arranged, and An example of a measurement method is shown.

図1に、本実施例の着磁前磁石の磁束密度分布を簡易に測定する磁気測定装置の構成図を示す。101はホール素子アレイ、102は磁石素材ホルダ、103は未着磁の磁石素材、104は磁石素材ホルダ駆動制御機構、105はコイル、106は鉄芯(コア)、107は筺体である。また、ホール素子アレイ101で測定したデータと磁石素材ホルダ駆動制御信号は同期する構造でも、しない構造でもどちらでも構わない。   FIG. 1 shows a configuration diagram of a magnetic measurement apparatus that simply measures the magnetic flux density distribution of the pre-magnetization magnet of this embodiment. 101 is a Hall element array, 102 is a magnet material holder, 103 is an unmagnetized magnet material, 104 is a magnet material holder drive control mechanism, 105 is a coil, 106 is an iron core, and 107 is a housing. The data measured by the Hall element array 101 and the magnet material holder drive control signal may be either synchronized with each other or not.

本実施例では、ホール素子アレイ101と鉄芯106の相対位置関係を維持したまま、ホール素子アレイ101と鉄芯106の間の空間に磁石素材103を移動させる移動機構を有する装置を用いて磁石素材面内の磁束密度分布を測定する方法を示す。磁場発生装置として、コイル105に電流を流すことにより鉄芯106から磁石素材103に向けた磁場が発生する。発生した磁場は磁石素材103を通過し、相対する、磁化測定部であるホール素子アレイ101で測定される。   In the present embodiment, a magnet using an apparatus having a moving mechanism for moving the magnet material 103 to the space between the Hall element array 101 and the iron core 106 while maintaining the relative positional relationship between the Hall element array 101 and the iron core 106 is used. A method for measuring the magnetic flux density distribution in the material surface will be described. As a magnetic field generator, a magnetic field from the iron core 106 toward the magnet material 103 is generated by passing a current through the coil 105. The generated magnetic field passes through the magnet material 103 and is measured by the opposing Hall element array 101 which is a magnetization measuring unit.

図2は、ホール素子アレイ101と鉄芯106の位置関係を示した図である。図2(a)は、図1の紙面に平行な方向からみた、ホール素子アレイ101と鉄芯106の構成図である。図2(a)の上部は、ホール素子アレイ101の構造の一例を示しておりホール素子201は基板203の端部に一列に配列して設置され、基板203に内蔵されたアンプ202を介して測定信号を取得できる。   FIG. 2 is a diagram showing the positional relationship between the Hall element array 101 and the iron core 106. FIG. 2A is a configuration diagram of the Hall element array 101 and the iron core 106 viewed from a direction parallel to the paper surface of FIG. The upper part of FIG. 2A shows an example of the structure of the Hall element array 101. The Hall elements 201 are arranged in a line at the end of the substrate 203 and are connected via an amplifier 202 built in the substrate 203. A measurement signal can be acquired.

また、図2(a)の下部は、鉄芯106の形状の一例を示しており、鉄芯106はホール素子201と略同一の幅を有し、ホール素子アレイ101と略同一の長さを有する構造になっている。図2(b)は、図1の紙面に垂直な方向からみた、ホール素子アレイ101と鉄芯106との関係を示した図である。図2(b)に示すように、コイル105(図1参照)に電流を流して発生した磁場205は、鉄芯106の端面から磁石素材103(図示せず)に印加され、磁石素材103を通過して相対するホール素子アレイ101にて測定される。このため、同一電流で発生する同一磁場が磁石素材103を透過した後の磁化をホール素子アレイ101で測定できる。磁石素材103を透過した後の磁化は磁石素材内部の磁壁移動や磁化反転など磁石素材の磁化挙動で変化するので、本測定により磁石素材103の磁束密度分布を測定することで着磁前の磁石素材の特性を予測できる。   The lower part of FIG. 2A shows an example of the shape of the iron core 106. The iron core 106 has substantially the same width as the hall element 201 and has almost the same length as the hall element array 101. It has a structure. FIG. 2B is a diagram showing the relationship between the Hall element array 101 and the iron core 106 as viewed from the direction perpendicular to the paper surface of FIG. As shown in FIG. 2B, a magnetic field 205 generated by passing a current through the coil 105 (see FIG. 1) is applied to the magnet material 103 (not shown) from the end face of the iron core 106, and the magnet material 103 is moved. It is measured by the Hall element array 101 that passes through and opposes. Therefore, the Hall element array 101 can measure the magnetization after the same magnetic field generated with the same current passes through the magnet material 103. Since the magnetization after passing through the magnet material 103 changes depending on the magnetization behavior of the magnet material such as domain wall motion and magnetization reversal inside the magnet material, the magnet before magnetization is measured by measuring the magnetic flux density distribution of the magnet material 103 by this measurement. Predict material properties.

また、ホール素子アレイ101は、図1の紙面に対して垂直方向にホール素子が配列して配置されているので、それと直交する方向(図1の紙面上の左右方向)に磁石素材103を直線移動しながら磁化測定をすることにより磁石素材の面内の磁束密度分布を測定することができる。この場合、ホール素子の測定タイミングと磁石素材の移動量を同期させることにより高精度な磁束密度分布を得ることができる。しかし、同期しない場合でも相対的に磁石素材の磁束密度分布を評価することができる。   In the Hall element array 101, Hall elements are arranged in a direction perpendicular to the paper surface of FIG. 1, so that the magnet material 103 is linearly aligned in a direction perpendicular to that (the left-right direction on the paper surface of FIG. 1). By measuring the magnetization while moving, the magnetic flux density distribution in the plane of the magnet material can be measured. In this case, a highly accurate magnetic flux density distribution can be obtained by synchronizing the measurement timing of the Hall element and the movement amount of the magnet material. However, the magnetic flux density distribution of the magnet material can be relatively evaluated even when not synchronized.

本装置に使用したホール素子アレイでのサンプリング時間は、1ミリ秒以下で、磁石素材の移動速度を1ミリ/秒とした。この場合φ20ミリの円形磁石であれば20秒程度の短時間でデータを得ることができる。   The sampling time in the Hall element array used in this device was 1 millisecond or less, and the moving speed of the magnet material was 1 millisecond / second. In this case, if the circular magnet has a diameter of 20 mm, data can be obtained in a short time of about 20 seconds.

ここでは、図2のように、ホール素子を一列に並べたタイプのホール素子アレイを示したが、ホール素子単体としても、あるいは複数列に並べマトリックス状に配列した他の構成のホール素子アレイとしても良い。なお、複数列に並べた場合は、駆動機構による磁石素材の移動量を小さくできるので、測定時間短縮の効果がある。   Here, as shown in FIG. 2, the Hall element array of the type in which the Hall elements are arranged in a line is shown. However, as a Hall element array as a single element, or as another Hall element array arranged in a matrix in a plurality of columns. Also good. In addition, when arranged in a plurality of rows, the moving amount of the magnet material by the drive mechanism can be reduced, which has the effect of shortening the measurement time.

さらには、ホール素子の代わりに他の磁気センサ、例えばMR素子(磁気抵抗素子)等、を用いて磁気センサアレイを用いても良い。また、移動機構は、磁石素材を移動させるように説明したが、ホール素子アレイと鉄芯の間を磁石素材が相対的に移動すればよいので、例えば、磁石素材を固定して、ホール素子アレイと鉄芯を移動するような、他の駆動方法を使って磁石素材の磁束密度分布を測定しても構わない。   Furthermore, a magnetic sensor array may be used using another magnetic sensor, for example, an MR element (magnetoresistance element) instead of the Hall element. Further, the movement mechanism has been described as moving the magnet material. However, since the magnet material only needs to move relatively between the Hall element array and the iron core, for example, the magnet material is fixed and the Hall element array is fixed. The magnetic flux density distribution of the magnet material may be measured using other driving methods such as moving the iron core.

図3は、同一メーカの同一型式の磁石素材に対し、本ホール素子アレイで測定した印加磁界と磁石素材を通過した後の透過磁束密度の関係を示す。磁石素材(a)及び磁石素材(b)共に印加磁界の増加に伴い、透過磁束密度も増加する。しかし、透過磁束密度の低い磁石素材(b)においては、どの印加磁界においても磁石素材(a)の透過磁束密度より低くなる。このため、任意の印加磁界に対する透過磁束密度を測定することにより、着磁前磁石の磁気特性の予測が可能になる。また、他の予測方法として、複数種類の磁界を磁石素材に印加し、磁石素材の磁束密度分布を測定して、磁石素材の特性を予測しても構わない。   FIG. 3 shows the relationship between the applied magnetic field measured by the Hall element array and the transmitted magnetic flux density after passing through the magnet material for the same type of magnet material of the same manufacturer. As the applied magnetic field increases in both the magnet material (a) and the magnet material (b), the transmitted magnetic flux density also increases. However, in the magnet material (b) having a low transmitted magnetic flux density, any applied magnetic field is lower than the transmitted magnetic flux density of the magnet material (a). For this reason, it is possible to predict the magnetic characteristics of the pre-magnetization magnet by measuring the transmission magnetic flux density with respect to an arbitrary applied magnetic field. As another prediction method, a plurality of types of magnetic fields may be applied to the magnet material, and the magnetic flux density distribution of the magnet material may be measured to predict the characteristics of the magnet material.

図4は、図1に示した磁気測定装置で磁石素材の磁束密度分布を測るプロセスフローである。図4において、まずステップ01(以降ステップをSと省略する)で鉄芯に電流を流して磁界を発生させる。この状態で、磁石素材を移動させ(S02)、鉄芯及ホール素子アレイ間を通過することにより磁束密度を測定する。磁束密度分布を測定する場合は、予め印加磁界を設定し、所定の移動回数Nまで測定を繰り返す(S03)ことで実現できる。   FIG. 4 is a process flow for measuring the magnetic flux density distribution of the magnet material with the magnetometer shown in FIG. In FIG. 4, first, in step 01 (hereinafter step is abbreviated as S), a current is passed through the iron core to generate a magnetic field. In this state, the magnet material is moved (S02), and the magnetic flux density is measured by passing between the iron core and the Hall element array. The measurement of the magnetic flux density distribution can be realized by setting an applied magnetic field in advance and repeating the measurement up to a predetermined number of movements N (S03).

図5に、永久磁石モータの応用例であるハイブリッド自動車の駆動装置の概略を示す。タンク504から供給されるガソリンにより駆動するエンジン501と、バッテリー503の電気により駆動されるモータ502を効率良く組み合わせて使うことによって低燃費を実現する。このような高効率なモータには永久磁石モータを使うことが多い。   FIG. 5 shows an outline of a drive device for a hybrid vehicle, which is an application example of a permanent magnet motor. By using an engine 501 driven by gasoline supplied from the tank 504 and a motor 502 driven by electricity of the battery 503 efficiently, low fuel consumption is realized. A permanent magnet motor is often used for such a highly efficient motor.

以上のように、本実施例は、着磁前の磁石素材の着磁面に磁場を印加する磁場発生装置と、前記磁石素材を透過した磁束密度を測定する磁化測定部と、前記磁場発生装置と前記磁化測定部とが一定の間隔を有して固定された構造体と、前記磁場発生装置と前記磁化測定部の間を前記磁石素材が相対的に移動する移動機構と、からなる磁気測定装置によって、前記着磁前の磁石素材の磁束密度分布を測定し、該磁束密度分布から前記磁石素材の着磁後の磁石の磁気特性を予測し選別することが出来る。言い換えれば、着磁前の磁石素材の着磁面を磁場発生装置に近接させ、該磁場発生装置から該磁石素材を透過した磁束密度を測定し、該磁束密度の分布から前記磁石素材の着磁後の磁石の磁気特性を予測し選別することが出来る。   As described above, in this embodiment, the magnetic field generator that applies a magnetic field to the magnetized surface of the magnet material before magnetization, the magnetization measuring unit that measures the magnetic flux density that has passed through the magnet material, and the magnetic field generator And the magnetization measurement unit fixed at a certain interval, and a magnetic mechanism comprising a moving mechanism for moving the magnet material relatively between the magnetic field generator and the magnetization measurement unit The apparatus can measure the magnetic flux density distribution of the magnet material before magnetization and predict and select the magnetic characteristics of the magnet after magnetization of the magnet material from the magnetic flux density distribution. In other words, the magnetized surface of the magnet material before magnetization is brought close to the magnetic field generator, the magnetic flux density transmitted through the magnet material from the magnetic field generator is measured, and the magnet material is magnetized from the distribution of the magnetic flux density. The magnetic properties of the later magnets can be predicted and selected.

よって、小規模な設備により低コストで且つ簡便に磁性材料の着磁状態を評価できる。また、選別された磁石で構成された高品質な永久磁石モータを提供することが出来る。   Therefore, the magnetization state of the magnetic material can be easily evaluated at low cost with a small-scale facility. Further, it is possible to provide a high-quality permanent magnet motor composed of selected magnets.

また、永久磁石モータに磁石素材を搭載する前に磁石品質を予測し不良品を排除することができるので、磁石素材起因の不良品発生率を大幅に低減することができる。また、不良磁石素材の排除あるいは磁石素材のクラス分けを行うことができるので、永久磁石モータの要求仕様に合わせて資源の有効活用に貢献できる。   Moreover, since the magnet quality can be predicted and defective products can be eliminated before the magnet material is mounted on the permanent magnet motor, the occurrence rate of defective products due to the magnet material can be greatly reduced. In addition, since it is possible to eliminate defective magnet materials or classify magnet materials, it is possible to contribute to effective utilization of resources according to the required specifications of permanent magnet motors.

図6に、典型的な永久磁石モータの断面図を示す。モータ内部の回転子に磁石601が埋め込まれており、図示したように長方形断面形状の磁石(a)、(b)か、曲面断面形状の磁石(c)、(d)に大別される。   FIG. 6 shows a cross-sectional view of a typical permanent magnet motor. A magnet 601 is embedded in a rotor inside the motor, and is roughly divided into magnets (a) and (b) having a rectangular cross-sectional shape or magnets (c) and (d) having a curved cross-sectional shape as illustrated.

そこで、本実施例では、磁石素材が曲面断面形状を有する場合の磁気測定装置について図7を用いて説明する。   Therefore, in this embodiment, a magnetic measuring device in the case where the magnet material has a curved cross-sectional shape will be described with reference to FIG.

図7(a)において、ホール素子アレイ101と鉄芯106の間の間隔を一定に保ち、磁石素材701を相対的にホール素子アレイ101及び鉄芯103間で移動させることで磁石素材701の磁束密度分布を測定する。この場合は、磁石素材701の曲面断面の曲率半径に沿って磁石素材を回転移動できる移動機構として駆動装置702を付加することにより測定が可能になる。図7(b)に、図7(a)の磁石素材701および駆動装置702を上面から見た場合の図を示す。実施例1と同様に、ホール素子アレイ101と直交する方向に磁石素材701を駆動モータ703により回転しながら磁化測定をすることにより、磁石素材面内の磁束密度分布を測定することができる。   In FIG. 7A, the magnetic flux of the magnet material 701 is maintained by keeping the distance between the Hall element array 101 and the iron core 106 constant and moving the magnet material 701 between the Hall element array 101 and the iron core 103 relatively. Measure the density distribution. In this case, measurement can be performed by adding a driving device 702 as a moving mechanism capable of rotating the magnet material along the radius of curvature of the curved cross section of the magnet material 701. FIG. 7B shows a view of the magnet material 701 and the driving device 702 shown in FIG. As in the first embodiment, by measuring the magnetization while rotating the magnet material 701 by the drive motor 703 in the direction orthogonal to the Hall element array 101, the magnetic flux density distribution in the surface of the magnet material can be measured.

ホール素子の測定タイミングと磁石素材の移動量を同期させることにより高精度な磁束密度分布を得ることができるが、同期しない場合でも相対的に磁石素材の透磁率分布を評価することができる。また、ここでは、図2のように、ホール素子を一列に並べたタイプのホール素子アレイを示したが、ホール素子単体としても、あるいは複数列に並べマトリックス状に配列した他の構成のホール素子アレイとしても良い。なお、複数列に並べた場合は、駆動装置による磁石素材の移動量を小さくできるので、測定時間短縮の効果がある。   By synchronizing the measurement timing of the Hall element and the amount of movement of the magnet material, a highly accurate magnetic flux density distribution can be obtained, but the magnetic permeability distribution of the magnet material can be relatively evaluated even when not synchronized. Further, here, as shown in FIG. 2, the Hall element array of the type in which the Hall elements are arranged in a line is shown. However, the Hall elements may be arranged as a single Hall element or arranged in a matrix in a plurality of columns. It may be an array. In addition, when arranged in a plurality of rows, the moving amount of the magnet material by the driving device can be reduced, which has the effect of shortening the measurement time.

さらには、ホール素子の代わりに他の磁気センサ、例えばMR素子(磁気抵抗素子)等、を用いて磁気センサアレイを用いても良い。また、移動機構は、磁石素材を移動させるように説明したが、ホール素子アレイと鉄芯の間を磁石素材が相対的に移動すればよいので、例えば、磁石素材を固定して、ホール素子アレイと鉄芯を移動するような、他の駆動方法を使って磁石素材の磁束密度分布を測定しても構わない。   Furthermore, a magnetic sensor array may be used using another magnetic sensor, for example, an MR element (magnetoresistance element) instead of the Hall element. Further, the movement mechanism has been described as moving the magnet material. However, since the magnet material only needs to move relatively between the Hall element array and the iron core, for example, the magnet material is fixed and the Hall element array is fixed. The magnetic flux density distribution of the magnet material may be measured using other driving methods such as moving the iron core.

磁石素材が曲面断面形状を有する場合の他の構成の磁気測定装置を図8に示す。図8において、ホール素子アレイ801、未着磁の磁石素材701、鉄心206が図1と異なり、他は図1と同様である。本実施例では、図1と同様に、ホール素子アレイ801と鉄芯206の相対位置関係を維持したまま、ホール素子アレイ801と鉄芯206の間の空間に磁石素材701を移動させる移動機構を有する装置を用いて磁石素材面内の磁束密度分布を測定する。   FIG. 8 shows a magnetic measuring device having another configuration in the case where the magnet material has a curved cross-sectional shape. 8, the hall element array 801, the unmagnetized magnet material 701, and the iron core 206 are different from those in FIG. In the present embodiment, as in FIG. 1, a moving mechanism for moving the magnet material 701 to the space between the Hall element array 801 and the iron core 206 while maintaining the relative positional relationship between the Hall element array 801 and the iron core 206 is provided. The magnetic flux density distribution in the surface of the magnet material is measured using an apparatus having the same.

図9は、ホール素子アレイ801と鉄芯206の位置関係を示した図であり、図9(a)は、図8の紙面に平行な方向からみた、ホール素子アレイ801と鉄芯206の構成図である。図9(a)の上部は、ホール素子アレイ801の構造の一例を示しており、ホール素子アレイ801は磁石素材701の曲率半径に合わせて曲げた構造となっている。すなわち、基板204が、磁石素材701の曲率半径に合わせて曲げた構成となっており。ホール素子201は基板204の端部に沿って1列に配列して設置され、基板204に内蔵されたアンプ(図示せず)を介して測定信号を取得できる構造となっている。   9 is a diagram showing the positional relationship between the Hall element array 801 and the iron core 206. FIG. 9A shows the configuration of the Hall element array 801 and the iron core 206 as viewed from the direction parallel to the paper surface of FIG. FIG. The upper part of FIG. 9A shows an example of the structure of the Hall element array 801, and the Hall element array 801 has a structure bent according to the radius of curvature of the magnet material 701. That is, the substrate 204 is bent according to the curvature radius of the magnet material 701. The Hall elements 201 are arranged in a line along the edge of the substrate 204 and have a structure in which a measurement signal can be obtained via an amplifier (not shown) built in the substrate 204.

また、図9(a)の下部は、鉄芯206の形状の一例を示しており、鉄芯206の先端は、ホール素子201と略同一の幅を有し、ホール素子アレイ801と同様に、磁石素材701の曲率半径に合わせて曲げた形状となっている。   9A shows an example of the shape of the iron core 206. The tip of the iron core 206 has substantially the same width as the Hall element 201, and like the Hall element array 801, The magnet material 701 is bent according to the curvature radius.

図9(b)は、図8の紙面に垂直な方向からみた、ホール素子アレイ801と鉄芯206との関係を示した断面図である。図9(b)に示すように、コイル105(図8参照)に電流を流して発生した磁場は、鉄芯206の端面から磁石素材701に印加され、磁石素材701を通過して相対するホール素子アレイ801にて測定される構造になっている。このため、同一電流で発生する同一磁場が磁石素材701を透過した後の磁化をホール素子アレイ801で測定できる。なお、駆動装置104により磁石素材ホルダ102を紙面と並行な方向に駆動させ、磁石素材701を紙面に対して左右方向に直線移動させることにより、曲面断面形状を有する磁石素材701の磁束密度分布を測定することで着磁前の磁石素材の特性を予測できる。   FIG. 9B is a cross-sectional view showing the relationship between the Hall element array 801 and the iron core 206 as seen from the direction perpendicular to the paper surface of FIG. As shown in FIG. 9B, a magnetic field generated by passing a current through the coil 105 (see FIG. 8) is applied to the magnet material 701 from the end face of the iron core 206, passes through the magnet material 701, and is opposed to the hole. The structure is measured by the element array 801. Therefore, the Hall element array 801 can measure the magnetization after the same magnetic field generated with the same current passes through the magnet material 701. The magnetic material holder 102 is driven in a direction parallel to the paper surface by the driving device 104, and the magnet material 701 is linearly moved in the left-right direction with respect to the paper surface, whereby the magnetic flux density distribution of the magnet material 701 having a curved cross-sectional shape is obtained. By measuring, the characteristics of the magnet material before magnetization can be predicted.

すなわち、磁石素材701の曲率半径に合わせて曲げたホール素子アレイ801が、紙面に際して垂直方向に配置されており、そのホール素子アレイと直交するように、駆動装置104により磁石素材ホルダ102を紙面と並行の方向に駆動させ、鉄芯206より磁界を印加しながら磁石素材701の磁束密度分布を測定することが可能になる。なお、鉄芯206の先端は磁石素材701の曲率半径に合わせて曲げた形状としたので、磁石素材701への印加磁界が均一になるという効果がある。   That is, the Hall element array 801 bent in accordance with the radius of curvature of the magnet material 701 is arranged in the vertical direction on the paper surface, and the magnet material holder 102 is placed on the paper surface by the driving device 104 so as to be orthogonal to the Hall element array. It is possible to measure the magnetic flux density distribution of the magnet material 701 while driving in parallel directions and applying a magnetic field from the iron core 206. Since the tip of the iron core 206 is bent according to the radius of curvature of the magnet material 701, there is an effect that the magnetic field applied to the magnet material 701 becomes uniform.

なお、鉄芯206の形状を、直方体としてもよく、その場合は、鉄芯の構造を簡単にできるという効果がある。   The shape of the iron core 206 may be a rectangular parallelepiped, and in that case, there is an effect that the structure of the iron core can be simplified.

また、図9(a)のように、ホール素子を磁石素材の曲率半径に合わせて1列に曲線上に並べたタイプのホール素子アレイを示したが、ホール素子単体としても、あるいは複数列に並べマトリックス状に配列した他の構成のホール素子アレイとしても良い。なお、複数列に並べた場合は、駆動装置による磁石素材の移動量を小さくできるので、測定時間短縮の効果がある。   Further, as shown in FIG. 9A, a Hall element array in which Hall elements are arranged in a line on a curve in accordance with the radius of curvature of the magnet material is shown. Hall element arrays having other configurations arranged in a matrix are also possible. In addition, when arranged in a plurality of rows, the moving amount of the magnet material by the driving device can be reduced, which has the effect of shortening the measurement time.

さらには、ホール素子の代わりに他の磁気センサ、例えばMR素子(磁気抵抗素子)等、を用いて磁気センサアレイを用いても良い。また、移動機構は、磁石素材を移動させるように説明したが、ホール素子アレイと鉄芯の間を磁石素材が相対的に移動すればよいので、例えば、磁石素材を固定して、ホール素子アレイと鉄芯を移動するような、他の駆動方法を使って磁石素材の磁束密度分布を測定しても構わない。   Furthermore, a magnetic sensor array may be used using another magnetic sensor, for example, an MR element (magnetoresistance element) instead of the Hall element. Further, the movement mechanism has been described as moving the magnet material. However, since the magnet material only needs to move relatively between the Hall element array and the iron core, for example, the magnet material is fixed and the Hall element array is fixed. The magnetic flux density distribution of the magnet material may be measured using other driving methods such as moving the iron core.

図10に、本発明の他の実施例を示す。磁石素材103の種類や成分によっては、微小印加磁界に対する磁束密度の変化では、磁石素材品質を判断しにくい場合が想定される。その場合は、より大きな磁界を磁石素材に印加して、磁石素材の品質を判断する必要がある。一方、大きな磁界を発生するには大掛かりな磁界発生装置が必要になってしまう。このため、磁石素材を磁界が透過しやすい、すなわち、磁壁移動や磁化反転し易い状態にしておいて測定することが有効と考えられる。   FIG. 10 shows another embodiment of the present invention. Depending on the type and components of the magnet material 103, it may be difficult to determine the quality of the magnet material by a change in the magnetic flux density with respect to the minute applied magnetic field. In that case, it is necessary to apply a larger magnetic field to the magnet material to determine the quality of the magnet material. On the other hand, a large magnetic field generator is required to generate a large magnetic field. For this reason, it is considered effective to perform measurement in a state in which the magnetic material easily transmits a magnetic field, that is, in a state in which domain wall movement and magnetization reversal are easy.

図10に示した磁束密度測定装置においては、磁石加熱するためのヒータ901を具備した構造の簡易型磁束密度測定装置の一例を示している。本実施例では、ヒータ901により、磁石素材を加熱した状態で磁石の磁束密度分布を測定する。ヒータ901をホール素子アレイと隣接させ、磁石素材を加熱した後、磁束密度分布測定を行う。ヒータ901は、ホール素子アレイの測定が熱による影響を受けないよう断熱材で囲い込み磁石素材のみを加熱する構造になっている。また、磁石素材の熱に影響されない範囲でホール素子アレイと磁石素材の間隔を決めている。ヒータ901は、カートリッジヒータや高周波加熱コイルなど前記断熱ができれば使用可能である。   The magnetic flux density measuring apparatus shown in FIG. 10 shows an example of a simple magnetic flux density measuring apparatus having a structure including a heater 901 for heating a magnet. In this embodiment, the magnetic flux density distribution of the magnet is measured with the heater 901 while the magnet material is heated. After the heater 901 is adjacent to the Hall element array and the magnet material is heated, the magnetic flux density distribution is measured. The heater 901 has a structure in which only the magnet material is enclosed by a heat insulating material so that the measurement of the Hall element array is not affected by heat. Further, the interval between the Hall element array and the magnet material is determined within a range not affected by the heat of the magnet material. The heater 901 can be used if the heat insulation such as a cartridge heater or a high frequency heating coil can be performed.

図11に、図10に示した測定装置で磁石素材の磁束密度分布を測るプロセスフローを示す。図11において、まず、ヒータ901を所定の温度に加熱する(S04)。次に、鉄芯に電流を流して磁界を発生させる(S05)。この状態で、磁石素材をヒータ側から移動させ(S06)、磁石素材がヒータ上を通過した後、鉄芯及ホール素子アレイ間を通過することにより磁束密度分布を測定する。そして、所定回数N、磁束密度分布を測定(S07)後、冷却機構(冷却ファンなど)により冷却を行う(S08)。ヒータにより加熱する温度は、磁石素材の種類や形状によってことなるので一義的には決まらないが、50℃程度の加熱でも有効であり、その場合、測定後自然冷却でも構わない。   FIG. 11 shows a process flow for measuring the magnetic flux density distribution of the magnet material with the measuring apparatus shown in FIG. In FIG. 11, first, the heater 901 is heated to a predetermined temperature (S04). Next, a current is passed through the iron core to generate a magnetic field (S05). In this state, the magnet material is moved from the heater side (S06), and after the magnet material passes over the heater, the magnetic flux density distribution is measured by passing between the iron core and the hall element array. Then, after measuring the magnetic flux density distribution for a predetermined number N (S07), cooling is performed by a cooling mechanism (such as a cooling fan) (S08). The temperature to be heated by the heater is not uniquely determined because it varies depending on the type and shape of the magnet material, but heating at about 50 ° C. is also effective, and in that case, natural cooling after measurement may be used.

以上説明した実施例では、ホール素子アレイの配列している方向と直交する方向に磁石素材を相対移動しながら磁場発生装置からの磁石素材を透過した磁化を測定することにより、磁石素材の面内の磁束密度分布を測定するようにした。   In the embodiment described above, the in-plane of the magnet material is measured by measuring the magnetization that has passed through the magnet material from the magnetic field generator while moving the magnet material in a direction orthogonal to the direction in which the Hall element array is arranged. The magnetic flux density distribution was measured.

ここで、磁石素材の面内の磁束密度分布は、一般的に、図12に示すように、その磁石素材の4隅(角)が大きい特性となる。そして、その磁石素材の磁気特性は、その4隅の値で決まる傾向がある。よって、本実施例では、少なくとも、磁石素材の4隅(角)の磁束密度を測定することで、磁石素材の着磁後の磁石の磁気特性を予測し、磁石素材の選別を行う。これにより、測定時間の短縮、測定装置の簡略化が可能となる。   Here, the in-plane magnetic flux density distribution of the magnet material generally has a characteristic that the four corners (corners) of the magnet material are large, as shown in FIG. The magnetic properties of the magnet material tend to be determined by the values at the four corners. Therefore, in this embodiment, the magnetic properties of the magnet after magnetizing the magnet material are predicted and the magnet material is selected by measuring the magnetic flux density at least at the four corners (corners) of the magnet material. As a result, the measurement time can be shortened and the measurement apparatus can be simplified.

また、図12に示すように、面内の磁束密度分布のうち、磁石素材の4辺の値が他の部分に対して比較的大きいので、4隅(角)のみの場合より精度を上げるために、磁石素材の4辺の磁束密度分布を測定するようにしてもよい。   Also, as shown in FIG. 12, in the in-plane magnetic flux density distribution, the values of the four sides of the magnet material are relatively large with respect to the other parts, so that the accuracy is improved compared with the case of only four corners (corners). In addition, the magnetic flux density distribution on the four sides of the magnet material may be measured.

以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

101,801…ホール素子アレイ、102…磁石素材ホルダ、
103,701…未着磁の磁石素材、104…磁石素材ホルダ駆動制御機構、
105…コイル、106,206…鉄芯(コア)、107…筺体、201…ホール素子、
202…アンプ、203,204…基板、205…磁場、601…磁石、901…ヒータ
101, 801 ... Hall element array, 102 ... Magnet material holder,
103, 701 ... Unmagnetized magnet material, 104 ... Magnet material holder drive control mechanism,
105 ... Coil, 106, 206 ... Iron core (core), 107 ... Housing, 201 ... Hall element,
202 ... Amplifier, 203, 204 ... Substrate, 205 ... Magnetic field, 601 ... Magnet, 901 ... Heater

Claims (11)

着磁前の磁石素材の着磁面を磁場発生装置に近接させ、該磁場発生装置から該磁石素材を透過した磁束密度を測定し、該磁束密度の分布から前記磁石素材の着磁後の磁石の磁気特性を予測し選別することを特徴とする磁石素材の選別方法。   The magnetized surface of the magnet material before magnetization is brought close to the magnetic field generator, the magnetic flux density transmitted through the magnet material from the magnetic field generator is measured, and the magnet after magnetization of the magnet material is measured from the distribution of the magnetic flux density Magnetic material selection method characterized by predicting and selecting the magnetic properties of magnets. 請求項1に記載の磁石素材の選別方法であって、
前記磁束密度の分布として、前記着磁前の磁石素材の4隅の磁束密度を測定して前記磁石素材の着磁後の磁石の磁気特性を予測し選別することを特徴とする磁石素材の選別方法。
A method of selecting a magnet material according to claim 1,
Magnetic material selection characterized in that magnetic flux density at four corners of the magnet material before magnetization is measured as magnetic flux density distribution to predict and select magnetic properties of the magnet material after magnetization of the magnet material Method.
請求項1または2の何れか1項に記載の磁石素材の選別方法を用いて選別した磁石を組み込んで構成されたことを特徴とする永久磁石モータ。 A permanent magnet motor comprising a magnet sorted using the magnet material sorting method according to claim 1. 着磁前の磁石素材の着磁面に磁場を印加する磁場発生装置と、
前記磁石素材を透過した磁束密度を測定する磁化測定部と、
前記磁場発生装置と前記磁化測定部とが一定の間隔を有して固定された構造体と、
前記磁場発生装置と前記磁化測定部の間を前記磁石素材が相対的に移動する移動機構とからなり、
前記着磁前の磁石素材の磁束密度分布を測定することを特徴とする磁気測定装置。
A magnetic field generator for applying a magnetic field to the magnetized surface of the magnet material before magnetization;
A magnetization measuring unit for measuring a magnetic flux density transmitted through the magnet material;
A structure in which the magnetic field generator and the magnetization measuring unit are fixed at a certain interval;
A moving mechanism in which the magnet material relatively moves between the magnetic field generator and the magnetization measuring unit;
A magnetic measurement apparatus for measuring a magnetic flux density distribution of a magnet material before magnetization.
請求項4に記載の磁気測定装置であって、
前記磁化測定部は、磁気センサを複数配列した磁気センサアレイで構成されていることを特徴とする磁気測定装置。
The magnetic measurement apparatus according to claim 4,
The magnetization measuring unit is configured by a magnetic sensor array in which a plurality of magnetic sensors are arranged.
請求項5に記載の磁気測定装置であって、
前記磁気センサはホール素子であることを特徴とする磁気測定装置。
The magnetic measurement apparatus according to claim 5,
The magnetic measurement apparatus, wherein the magnetic sensor is a Hall element.
請求項4から6の何れか1項に記載の磁気測定装置であって、
前記磁石素材は長方形断面形状であり、前記移動機構により、前記磁石素材が前記磁場発生装置と前記磁化測定部の間を相対的に直線移動することを特徴とする磁気測定装置。
The magnetic measurement apparatus according to any one of claims 4 to 6,
The magnet material has a rectangular cross-sectional shape, and the moving mechanism causes the magnet material to relatively linearly move between the magnetic field generator and the magnetization measuring unit.
請求項4から6の何れか1項に記載の磁気測定装置であって、
前記磁石素材は曲面断面形状であり、前記移動機構により、前記磁石素材が前記磁場発生装置と前記磁化測定部の間を前記磁石素材の曲面断面の曲率半径に沿って相対的に回転移動することを特徴とする磁気測定装置。
The magnetic measurement apparatus according to any one of claims 4 to 6,
The magnet material has a curved cross-sectional shape, and the moving mechanism causes the magnet material to relatively rotate and move between the magnetic field generator and the magnetization measuring unit along the curvature radius of the curved cross-section of the magnet material. Magnetic measuring device characterized by.
請求項4から6の何れか1項に記載の磁気測定装置であって、
前記磁石素材は曲面断面形状であり、
前記磁場発生装置と前記磁化測定部は前記磁石素材の曲面断面の曲率半径に沿った曲面形状を有し、
前記移動機構により、前記磁石素材が前記磁場発生装置と前記磁化測定部の間を相対的に直線移動することを特徴とする磁気測定装置。
The magnetic measurement apparatus according to any one of claims 4 to 6,
The magnet material has a curved cross-sectional shape,
The magnetic field generator and the magnetization measuring unit have a curved shape along the curvature radius of the curved cross section of the magnet material,
The magnetic measuring apparatus according to claim 1, wherein the moving material causes the magnet material to relatively linearly move between the magnetic field generator and the magnetization measuring unit.
請求項4から9の何れか1項に記載の磁気測定装置であって、
さらにヒータを有し、
該ヒータにより前記磁石素材を加熱した状態で前記磁石素材を透過した磁束密度を測定することを特徴とする磁気測定装置。
The magnetic measurement apparatus according to any one of claims 4 to 9,
It also has a heater
A magnetic measurement apparatus for measuring a magnetic flux density transmitted through the magnet material while the magnet material is heated by the heater.
請求項4から10の何れか1項に記載の磁気測定装置であって、
前記着磁前の磁石素材の4隅の磁束密度を測定することを特徴とする磁気測定装置。
The magnetic measurement apparatus according to any one of claims 4 to 10,
A magnetic measuring apparatus for measuring magnetic flux densities at four corners of the magnet material before magnetization.
JP2013238154A 2013-11-18 2013-11-18 Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method Pending JP2015099053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238154A JP2015099053A (en) 2013-11-18 2013-11-18 Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238154A JP2015099053A (en) 2013-11-18 2013-11-18 Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method

Publications (1)

Publication Number Publication Date
JP2015099053A true JP2015099053A (en) 2015-05-28

Family

ID=53375755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238154A Pending JP2015099053A (en) 2013-11-18 2013-11-18 Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method

Country Status (1)

Country Link
JP (1) JP2015099053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208196A (en) * 2014-04-23 2015-11-19 株式会社日立産機システム Permanent magnet motor and method for manufacturing the same, and selection method, selection device and magnetic characteristic prediction method for magnetic material of permanent magnet used in the permanent magnet motor
CN109238617A (en) * 2018-09-29 2019-01-18 安徽新芜精密装备制造产业技术研究院有限公司 A kind of aging method of radial direction Periodic magnetic focusing system
JP2021124425A (en) * 2020-02-06 2021-08-30 Tdk株式会社 Orientation detection device of unmagnetized magnet and orientation detection method thereof
CN116165583A (en) * 2023-04-20 2023-05-26 常州市华星机械有限公司 Magnetic control wheel detection device of magnetic resistor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248077A (en) * 1988-03-29 1989-10-03 Mitsubishi Metal Corp Method and apparatus for measuring magnetic characteristic of magnetic body
JPH05119138A (en) * 1991-08-19 1993-05-18 Daido Steel Co Ltd Method and apparatus for estimating magnetic characteristics after magnetization of raw material
JPH06201808A (en) * 1992-12-26 1994-07-22 Daido Steel Co Ltd Detecting apparatus for magnetic force of raw material of magnet
JPH11295403A (en) * 1998-04-06 1999-10-29 Matsushita Electric Ind Co Ltd Apparatus for evaluating permanent magnet
WO2008053921A1 (en) * 2006-10-31 2008-05-08 Hitachi Metals, Ltd. Magnetization analysis method, magnetization analysis device, and computer program
JP2008519268A (en) * 2004-11-09 2008-06-05 メティス・インストルメンツ・アンド・エクィップメント・ナムローゼ・フエンノートシャップ Sensor for measuring magnetic flux
WO2008142136A2 (en) * 2007-05-22 2008-11-27 Metis Instruments & Equipment Nv Discriminating magnetic material properties
JP2013245958A (en) * 2012-05-23 2013-12-09 Hitachi Industrial Equipment Systems Co Ltd Magnetic flux density distribution measurement apparatus and magnetic flux density measurement method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248077A (en) * 1988-03-29 1989-10-03 Mitsubishi Metal Corp Method and apparatus for measuring magnetic characteristic of magnetic body
JPH05119138A (en) * 1991-08-19 1993-05-18 Daido Steel Co Ltd Method and apparatus for estimating magnetic characteristics after magnetization of raw material
JPH06201808A (en) * 1992-12-26 1994-07-22 Daido Steel Co Ltd Detecting apparatus for magnetic force of raw material of magnet
JPH11295403A (en) * 1998-04-06 1999-10-29 Matsushita Electric Ind Co Ltd Apparatus for evaluating permanent magnet
JP2008519268A (en) * 2004-11-09 2008-06-05 メティス・インストルメンツ・アンド・エクィップメント・ナムローゼ・フエンノートシャップ Sensor for measuring magnetic flux
WO2008053921A1 (en) * 2006-10-31 2008-05-08 Hitachi Metals, Ltd. Magnetization analysis method, magnetization analysis device, and computer program
WO2008142136A2 (en) * 2007-05-22 2008-11-27 Metis Instruments & Equipment Nv Discriminating magnetic material properties
JP2013245958A (en) * 2012-05-23 2013-12-09 Hitachi Industrial Equipment Systems Co Ltd Magnetic flux density distribution measurement apparatus and magnetic flux density measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208196A (en) * 2014-04-23 2015-11-19 株式会社日立産機システム Permanent magnet motor and method for manufacturing the same, and selection method, selection device and magnetic characteristic prediction method for magnetic material of permanent magnet used in the permanent magnet motor
CN109238617A (en) * 2018-09-29 2019-01-18 安徽新芜精密装备制造产业技术研究院有限公司 A kind of aging method of radial direction Periodic magnetic focusing system
JP2021124425A (en) * 2020-02-06 2021-08-30 Tdk株式会社 Orientation detection device of unmagnetized magnet and orientation detection method thereof
CN116165583A (en) * 2023-04-20 2023-05-26 常州市华星机械有限公司 Magnetic control wheel detection device of magnetic resistor
CN116165583B (en) * 2023-04-20 2023-08-04 常州市华星机械有限公司 Magnetic control wheel detection device of magnetic resistor

Similar Documents

Publication Publication Date Title
Ren et al. Enhancement of EMAT’s efficiency by using silicon steel laminations back-plate
JP2015099053A (en) Selection method of magnet material, magnetic measuring device used in the same, and permanent magnet motor configured by using the selection method
JP5644032B2 (en) Method and apparatus for measuring magnetic properties of ferromagnetic materials
WO2013111468A1 (en) Magnetic measurement device
CN103605089A (en) Rapid nondestructive testing method for permanent magnet material-based sub-quality product with poor room-temperature and high-temperature performances
JP2013245958A (en) Magnetic flux density distribution measurement apparatus and magnetic flux density measurement method
CN103901367A (en) Device for measuring magnetic property of magnetic material based on embedded measuring coils
CN103197263A (en) Small-sized alternating magnetoelectricity sensor with adjustable bias magnetic circuit
Egorov et al. Linear recoil curve demagnetization models for ferrite magnets in rotating machinery
Peng et al. Time-dependent demagnetization of NdFeB magnets under DC and pulsed magnetic fields
JP2008039736A (en) Method for evaluating magnetic characteristics of permanent magnet
CN103308872B (en) Combined magnetic field sensor and weak magnetic fields measurement device
JP2013089734A (en) Permanent magnet demagnetization apparatus
CN203259636U (en) Apparatus for measuring weak magnetic field
CN111208457B (en) Novel magnetostriction measurement method and device
JP2010190691A (en) Method and apparatus for simulation measurement of eddy current loss at ground coil conductor in superconducting magnetic levitation railroad
JP2007218656A (en) Device and method for testing magnetic head
Novak et al. Detailed measurement and simulation of FeNdB permanent magnet used for magnetic spring
CN104215921A (en) Fixed-gradient NMR (nuclear magnetic resonance) magnet
CN111948587A (en) High-temperature stable magnetic resonance sensor magnet structure and measuring device
Tu et al. Study on the effect of temperature on magnetization of permanent magnet
JP6313644B2 (en) PERMANENT MAGNET MOTOR AND METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR SELECTING MAGNET MATERIAL FOR PERMANENT MAGNET USED FOR THE SAME
Călin et al. Temperature influence and measurement uncertainty on NdFeB magnetic characteristics
Allcock et al. Magnetic Measuring Techniques for Both Magnets and Assemblies
JP5678831B2 (en) Coercive force identification method of coercive force distribution magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306