JPS62139304A - Magnetic circuit with excellent uniformity of magnetic field - Google Patents
Magnetic circuit with excellent uniformity of magnetic fieldInfo
- Publication number
- JPS62139304A JPS62139304A JP60280278A JP28027885A JPS62139304A JP S62139304 A JPS62139304 A JP S62139304A JP 60280278 A JP60280278 A JP 60280278A JP 28027885 A JP28027885 A JP 28027885A JP S62139304 A JPS62139304 A JP S62139304A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- magnet
- pole
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はNMR−CT (核磁気共鳴コンピュータ・ト
ポグラフィ)に用いられるような均一度のよい磁界分布
をもった磁気回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic circuit having a highly uniform magnetic field distribution, such as used in NMR-CT (Nuclear Magnetic Resonance Computer Topography).
(従来の技術)
NMR装置に用いられる磁気回路においてはよく知られ
ているように、非常に大きな磁界強度と均一性のよい磁
界分布が要求される。必要とする磁界強度はプロトンな
どの核磁気共鳴の周波数によって決まるが1 、000
〜20,000ガウスで通常使われる。磁界の均一性が
悪いとこの共鳴する周波数領域も広くなって、いわゆる
共鳴の半値幅が広くなるので、測定精度が悪くなる。そ
こで、磁界の均−性は使用される場所で最終的には1o
−6〜10−8の値が要求される。(Prior Art) As is well known, a magnetic circuit used in an NMR apparatus requires a very large magnetic field strength and a highly uniform magnetic field distribution. The required magnetic field strength is determined by the frequency of nuclear magnetic resonance such as protons, but it is 1,000
Usually used at ~20,000 Gauss. If the uniformity of the magnetic field is poor, the frequency range in which this resonance occurs will also become wider, and the so-called half-width of resonance will become wider, resulting in poor measurement accuracy. Therefore, the uniformity of the magnetic field is ultimately 1o at the place where it is used.
A value between -6 and 10-8 is required.
永久磁石や電磁石で作った磁気回路がこのNMR装置に
用いられる。そのポールピースの形状を種々工夫されて
来たが、磁気回路だけでは、必要とする磁気空隙内の磁
界の均一性は、この空隙を小さくした場合でも、すなわ
ち、分析用NMR装置のように空隙長が20mm以内の
場合でも1o−5〜10−6程度であり、この磁界の不
均一さを較正するために較正コイルをポールピース上に
装置して必要とする磁界の均一度を得ている。A magnetic circuit made of permanent magnets or electromagnets is used in this NMR device. Various improvements have been made to the shape of the pole piece, but with only a magnetic circuit, the required uniformity of the magnetic field within the magnetic gap cannot be achieved even when the gap is made small. Even if the length is within 20 mm, it is about 1o-5 to 10-6, and in order to calibrate this non-uniformity of the magnetic field, a calibration coil is installed on the pole piece to obtain the required uniformity of the magnetic field. .
ところが、NMR−CT装置のように被検体の大きさが
300〜400■となるようなものにおいてモ、磁気空
隙内のこれだけの大きさの部分で70一本程度の磁界の
均一度が要求されている。このように大きな空隙中に良
好な磁界の均一性を得るには、まず永久磁石の磁気回路
だけで10−2程度にして、次にポールピースの形状を
工夫して10−4〜10−5にする。更にコイルを使用
して均一度を向上するのが一般的に考えられる。However, in an NMR-CT device where the object to be examined has a size of 300 to 400 mm, a uniformity of the magnetic field of about 70 mm is required in a portion of this size within the magnetic gap. ing. In order to obtain good magnetic field uniformity in such a large air gap, first, the magnetic circuit of the permanent magnet alone should be set to about 10-2, and then the shape of the pole piece should be devised to make it 10-4 to 10-5. Make it. Furthermore, it is generally considered to use a coil to improve uniformity.
永久磁石回路でこのような磁界の均一度を得るために、
この空隙の周辺を同じ方面に磁化された永久磁石で覆う
試みがなされている(特表昭59−6501995号公
報)。すなわち、ブロック状の永久磁石を磁気空隙を残
して積み上げて作ったものである。この場合比較的均一
な磁界を得ることができるが、必要とする磁界強度を得
るためには、極めて多着の磁石を必要となるので、磁気
回路の重量が大となり、全体の設備費が実大なものとな
っていた。In order to obtain such uniformity of the magnetic field in a permanent magnet circuit,
Attempts have been made to cover the periphery of this gap with permanent magnets magnetized in the same direction (Japanese Patent Application Publication No. 59-6501995). That is, it is made by stacking block-shaped permanent magnets with magnetic gaps left. In this case, a relatively uniform magnetic field can be obtained, but in order to obtain the required magnetic field strength, an extremely large number of magnets are required, which increases the weight of the magnetic circuit and reduces the overall equipment cost. It had become something big.
(本発明が解決しようとする問題点)
本発明は、磁気空隙が比較的大きな場合においても、均
一性のよい磁界を有し、永久磁石量が比較的少量でよい
磁気回路を提供することを目的とする。(Problems to be Solved by the Invention) The present invention aims to provide a magnetic circuit that has a highly uniform magnetic field even when the magnetic gap is relatively large, and requires only a relatively small amount of permanent magnets. purpose.
(問題点を解決するための手段)
本発明の磁気回路は、軟磁性体ヨーク内に、磁気空隙を
介して2個の磁気発生手段が配置されており、この各々
の磁気発生手段は主磁石とその一方の磁極上に設けられ
た平行なポールピースからなり、これらポールピースは
上記磁気空隙を介して対向するように配置されていると
ともに、上記主磁石は磁気空隙内に一方向の磁界を発生
するように磁化されているものにおいて、上記空隙内で
前記ヨークに近接する端部に、この磁気空隙内の磁界の
方向と反対方向に磁化された補助磁石を配置したことを
特徴とするものである。(Means for Solving the Problems) In the magnetic circuit of the present invention, two magnetism generating means are arranged in a soft magnetic yoke with a magnetic gap in between, and each of the magnetism generating means is connected to a main magnet. and a parallel pole piece provided on one of the magnetic poles, these pole pieces are arranged to face each other across the magnetic gap, and the main magnet applies a unidirectional magnetic field within the magnetic gap. an auxiliary magnet magnetized in a direction opposite to the direction of the magnetic field in the magnetic gap is arranged at an end of the gap close to the yoke; It is.
本発明の実施にあたって、補助磁石は2個のポールピー
スと対接するように配置するのが望ましい。In carrying out the present invention, it is desirable that the auxiliary magnet be arranged so as to be in contact with the two pole pieces.
主磁石としては、フェライト磁石あるいはNd−Fe−
8基磁石のような希土類−鉄磁石、またSm−Coのよ
うな希土類コバルト磁石が用いられる。フェライト磁石
、希土類−鉄磁石、希土類コバルト磁石のいずれの磁石
もブロック形状のものを積み上げて用いることが出来る
。The main magnet is a ferrite magnet or Nd-Fe-
Rare earth-iron magnets such as 8-base magnets and rare earth cobalt magnets such as Sm-Co are used. Block-shaped magnets such as ferrite magnets, rare earth iron magnets, and rare earth cobalt magnets can be used by stacking them.
また、ヨークに近接して配置される補助磁石としては大
気の比透磁率μが1に近いもの・が望ましい。このよう
な永久磁石としては、希土類・鉄、希土類・コバルト磁
石やフェライト磁石がある。Further, it is desirable that the auxiliary magnet placed close to the yoke be one in which the relative magnetic permeability μ of the atmosphere is close to 1. Such permanent magnets include rare earth/iron, rare earth/cobalt magnets, and ferrite magnets.
この補助磁石はポールピース間の外周部で磁界が外部に
拡がったり、磁力線がヨークに吸引されて均一度が悪く
なることを防ぐ働きをすればよいので、フェライト磁石
が望ましい。This auxiliary magnet is desirably a ferrite magnet, since it only has to function to prevent the magnetic field from spreading outside at the outer periphery between the pole pieces, and preventing the lines of magnetic force from being attracted to the yoke and causing poor uniformity.
(実施例)
以下、本発明を実施例の図面にもとづいて詳細に説明す
る。(Example) Hereinafter, the present invention will be described in detail based on drawings of examples.
第1図は本発明の実施例の磁気回路の正面図を示してい
る。ここで、11.13は端部ヨーク、12は側ヨーク
であり、端部ヨーク11、側ヨーク12)端部ヨーク1
3、側ヨーク12で全体として箱形のヨークが形成され
ている。これらのヨークはいずれら軟磁性体、例えば軟
鉄又は3341材などで作られている。端部ヨーク11
の内側には主磁石21が、主磁石21の空隙奇りにはポ
ールピース31が配置されている。また、端部ヨーク1
3の内側には主磁石22が、主磁石22の空隙寄りには
ポールピース32が配置されている。これらの主磁石は
矢印Mの方向に磁化されており、ポールピース31はN
?fi、ポールピース32はS極となっている。この
ような配置によって、磁力線は主磁石22から端部ヨー
ク13.2個の側ヨーク12)端部ヨーク11を通り主
磁石21を経由してポールピース31がら空隙を通りポ
ールピース32)主磁石22と戻っている。ポールピー
ス31とポールピース32の間でほぼ平行な磁力線とな
るが、ポールピース直径が1000mmと大きなもので
あっても、ポールピースの間隔が500〜700mmと
大きくなると、この間の磁力線が乱れる。ポールピース
の中央部では垂直な磁力線であっても端部に近くなると
左右にふくらみ、磁界強度が低くなる。FIG. 1 shows a front view of a magnetic circuit according to an embodiment of the present invention. Here, 11.13 is an end yoke, 12 is a side yoke, end yoke 11, side yoke 12) end yoke 1
3. The side yokes 12 form a box-shaped yoke as a whole. Each of these yokes is made of a soft magnetic material, such as soft iron or 3341 material. End yoke 11
A main magnet 21 is arranged inside the main magnet 21, and a pole piece 31 is arranged in the gap between the main magnet 21. In addition, the end yoke 1
A main magnet 22 is arranged inside the main magnet 3, and a pole piece 32 is arranged near the air gap of the main magnet 22. These main magnets are magnetized in the direction of arrow M, and the pole piece 31 is magnetized in the direction of arrow M.
? fi, the pole piece 32 has an S pole. With this arrangement, the lines of magnetic force pass from the main magnet 22 to the end yokes 13, 12) through the end yokes 11, through the main magnet 21, through the pole piece 31, through the air gap, and into the pole piece 32) the main magnet. 22 and back. The lines of magnetic force are almost parallel between the pole piece 31 and the pole piece 32, but even if the pole piece diameter is as large as 1000 mm, when the distance between the pole pieces becomes as large as 500 to 700 mm, the lines of magnetic force therebetween become disordered. Even if the magnetic lines of force are perpendicular in the center of the pole piece, they bulge to the left and right as they approach the ends, and the magnetic field strength decreases.
とくに、磁気空隙の左右に側ヨーク12が配置されてい
る場合には、磁気空隙の磁力線が側ヨークに吸引される
傾向が強くなるので、ポールピース端部での磁界強度が
低下する傾向が大となる。In particular, when the side yokes 12 are arranged on the left and right sides of the magnetic gap, there is a strong tendency for the lines of magnetic force in the magnetic gap to be attracted to the side yokes, so there is a strong tendency for the magnetic field strength at the end of the pole piece to decrease. becomes.
本発明では、ポールピース31と32の端部に補助磁石
41を配置し、この補助磁石は空隙の磁力線の方向と逆
方向に磁化しつる。このようにすることによって、空隙
内では磁力線が広い範囲にわたって均一とすることが出
来た。In the present invention, auxiliary magnets 41 are arranged at the ends of the pole pieces 31 and 32, and the auxiliary magnets are magnetized in a direction opposite to the direction of the magnetic lines of force in the air gap. By doing this, it was possible to make the lines of magnetic force uniform over a wide range within the air gap.
ここで主磁石としてフェライト磁石(残留磁束密度3r
:3980ガウス、保磁力Hc : 3100エルステ
ツド、1)1c:3160エルステツド、最大エネルギ
ー槓(BH)maX : 3.7X106カウスーエ
/L、ステッド)を直径1500mm、長さ350mm
になるように作った。また補助磁石も同じ特性をもった
フェライト磁石を用いた。このとき、空隙Wmmの中心
の磁界強度は4Rガウスとなった。第2図のaに補助磁
石のない場合の空隙中心での分布、bに補助磁石を付け
た場合の空隙中心での磁界強度分布を示す。グラフbで
は空隙中心での磁界強度分布は中央から左右に400m
a+までの間でほぼ1/ 100以内に収まっており、
磁界の均一度が極めて改善されていることがわかる。Here, the main magnet is a ferrite magnet (residual magnetic flux density 3r
: 3980 Gauss, Coercive force Hc: 3100 Oersted, 1) 1c: 3160 Oersted, Maximum energy (BH) ma
I made it to be. A ferrite magnet with the same characteristics was also used as an auxiliary magnet. At this time, the magnetic field strength at the center of the air gap Wmm was 4R Gauss. In FIG. 2, a shows the distribution of magnetic field strength at the center of the air gap without an auxiliary magnet, and b shows the distribution of magnetic field strength at the center of the air gap when an auxiliary magnet is attached. In graph b, the magnetic field strength distribution at the center of the gap is 400 m from the center to the left and right.
It is almost within 1/100 up to a+,
It can be seen that the uniformity of the magnetic field is significantly improved.
以上は主磁石としてフェライト磁石を用いた場合である
が、主磁石としてNd −Fe −B (Br :11
.3にガウス、Hc :10.8にエルステッド)を、
補助磁石としてフェライト磁石を用いた場合には空隙磁
束は中心部で4536ガウスとなった。The above is a case where a ferrite magnet is used as the main magnet, but the main magnet is Nd-Fe-B (Br:11
.. Gauss to 3, Oersted to Hc:10.8,
When a ferrite magnet was used as an auxiliary magnet, the air gap magnetic flux was 4536 Gauss at the center.
(発明の効果)
以上述べたように本発明によって大きなな磁気空隙を持
った場合でも永久磁石量が比較的少量で均一度のよい磁
界分布が得られるので、NMR−〇Tなどに適した磁気
回路となる。(Effects of the Invention) As described above, even when the present invention has a large magnetic gap, the amount of permanent magnets is relatively small and a highly uniform magnetic field distribution can be obtained. It becomes a circuit.
第1図は本発明の実施例の磁気回路の正面図で、第2図
は磁気空隙内の磁界分布を示す図である。
11、13:端部ヨーク、12:側ヨーク、21.22
:主磁石、31.32ポールピース、41:補助磁石
第 2 図
貝11気乱イ立、五L(mすFIG. 1 is a front view of a magnetic circuit according to an embodiment of the present invention, and FIG. 2 is a diagram showing the magnetic field distribution within the magnetic gap. 11, 13: End yoke, 12: Side yoke, 21.22
: Main magnet, 31.32 pole piece, 41: Auxiliary magnet 2nd Figure shell 11 air disturbance, 5L (m)
Claims (4)
気発生手段が配置されており、この各々の磁気発生手段
は主磁石とその一方の磁極上に設けられたポールピース
からなり、これらポールピースは上記磁気空隙を介して
対向するように配置されるとともに、上記主磁石は磁気
空隙内に一方向の磁界を発生するように磁化されている
ものにおいて、上記磁気空隙内の前記ヨークに近接する
端部に、この磁気空隙内の磁界の方向と反対方向に磁化
された補助磁石を配置したことを特徴とする磁界均一性
のよい磁気回路。(1) Two magnetism generating means are arranged within the soft magnetic yoke with a magnetic gap in between, and each magnetism generating means consists of a main magnet and a pole piece provided on one of the magnetic poles. , these pole pieces are arranged to face each other across the magnetic gap, and the main magnet is magnetized to generate a unidirectional magnetic field within the magnetic gap, A magnetic circuit with good magnetic field uniformity, characterized in that an auxiliary magnet magnetized in a direction opposite to the direction of the magnetic field in the magnetic gap is arranged at an end close to the yoke.
両ポールピースと対接するように配置されていることを
特徴とする磁界均一性のよい磁気回路。(2) A magnetic circuit with good magnetic field uniformity according to claim 1, wherein the auxiliary magnet is arranged so as to be in contact with both pole pieces.
比透磁率μがほぼ1であることを特徴とする磁界均一性
のよい磁気回路。(3) A magnetic circuit with good magnetic field uniformity according to claim 2, wherein the auxiliary magnet has a relative magnetic permeability μ of approximately 1.
フェライト磁石であることを特徴とする磁界均一性のよ
い磁気回路。(4) A magnetic circuit with good magnetic field uniformity according to claim 3, wherein the auxiliary magnet is a ferrite magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280278A JPS62139304A (en) | 1985-12-13 | 1985-12-13 | Magnetic circuit with excellent uniformity of magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280278A JPS62139304A (en) | 1985-12-13 | 1985-12-13 | Magnetic circuit with excellent uniformity of magnetic field |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62139304A true JPS62139304A (en) | 1987-06-23 |
Family
ID=17622757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60280278A Pending JPS62139304A (en) | 1985-12-13 | 1985-12-13 | Magnetic circuit with excellent uniformity of magnetic field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62139304A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4998976A (en) * | 1987-10-07 | 1991-03-12 | Uri Rapoport | Permanent magnet arrangement |
US5063934A (en) * | 1987-10-07 | 1991-11-12 | Advanced Techtronics, Inc. | Permanent magnet arrangement |
US5459362A (en) * | 1994-05-19 | 1995-10-17 | Seagate Technology, Inc. | Small form factor actuator for improved functionality and linearity |
US5659215A (en) * | 1994-05-19 | 1997-08-19 | Seagate Technology, Inc. | Small form factor actuator for improved functionality and linearity |
JP2005103266A (en) * | 2003-09-29 | 2005-04-21 | General Electric Co <Ge> | Permanent magnet assembly with movable permanent body for adjusting main magnetic field |
CN109804261A (en) * | 2016-08-08 | 2019-05-24 | 阿斯派克影像有限公司 | The devices, systems, and methods of magnetic measurement are obtained with permanent magnet |
US11287497B2 (en) | 2016-08-08 | 2022-03-29 | Aspect Imaging Ltd. | Device, system and method for obtaining a magnetic measurement with permanent magnets |
-
1985
- 1985-12-13 JP JP60280278A patent/JPS62139304A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4998976A (en) * | 1987-10-07 | 1991-03-12 | Uri Rapoport | Permanent magnet arrangement |
US5063934A (en) * | 1987-10-07 | 1991-11-12 | Advanced Techtronics, Inc. | Permanent magnet arrangement |
US5459362A (en) * | 1994-05-19 | 1995-10-17 | Seagate Technology, Inc. | Small form factor actuator for improved functionality and linearity |
US5659215A (en) * | 1994-05-19 | 1997-08-19 | Seagate Technology, Inc. | Small form factor actuator for improved functionality and linearity |
JP2005103266A (en) * | 2003-09-29 | 2005-04-21 | General Electric Co <Ge> | Permanent magnet assembly with movable permanent body for adjusting main magnetic field |
CN109804261A (en) * | 2016-08-08 | 2019-05-24 | 阿斯派克影像有限公司 | The devices, systems, and methods of magnetic measurement are obtained with permanent magnet |
JP2019526789A (en) * | 2016-08-08 | 2019-09-19 | アスペクト イメージング リミテッド | Device, system and method for obtaining magnetic measurement results using a permanent magnet |
EP3497458A4 (en) * | 2016-08-08 | 2020-04-22 | Aspect Imaging Ltd. | Device, system and method for obtaining a magnetic measurement with permanent magnets |
US11287497B2 (en) | 2016-08-08 | 2022-03-29 | Aspect Imaging Ltd. | Device, system and method for obtaining a magnetic measurement with permanent magnets |
JP2022095630A (en) * | 2016-08-08 | 2022-06-28 | アスペクト イメージング リミテッド | Device, system, and method for obtaining magnetic measurements with permanent magnets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3768054A (en) | Low flux leakage magnet construction | |
US5283544A (en) | Magnetic field generating device used for MRI | |
JPS63241905A (en) | Magnetic field generating equipment | |
US5252924A (en) | Magnetic field generating apparatus for MRI | |
GB1110172A (en) | Improvements in or relating to magnet structures | |
JPS62139304A (en) | Magnetic circuit with excellent uniformity of magnetic field | |
EP0941019B1 (en) | Hybrid wiggler | |
JPH05182821A (en) | Magnetic field generator for mri | |
JP3113513B2 (en) | Magnetic field generator for MRI | |
JP2764458B2 (en) | Magnetic field generator for MRI | |
JPS63190311A (en) | Permanent magnet type magnetic field generating device | |
EP0541872B1 (en) | Magnetic field generating apparatus for MRI | |
JP2649436B2 (en) | Magnetic field generator for MRI | |
JPH0975324A (en) | Magnetic resonance imaging device | |
JPH0387365A (en) | Sputtering device equipped with electromagnet for impressing parallel magnetic field | |
JP4139767B2 (en) | Permanent magnet facing magnetic circuit | |
USRE35565E (en) | Magnetic field generating apparatus for MRI | |
WO1994018682A1 (en) | Permanent magnet | |
JP3056883B2 (en) | Magnetic field generator for MRI | |
JP3073933B2 (en) | Magnetic field generator for MRI | |
JP3059596B2 (en) | Magnetic field generator for MRI | |
US6937018B2 (en) | Systems and methods for fabricating pole pieces for magnetic resonance imaging systems | |
JP2726857B2 (en) | Magnetic field generator for MRI | |
JPH02208903A (en) | Magnetic field generator using permanent magnet | |
JP3445303B2 (en) | Magnetic field generator for MRI |