JPH05182821A - Magnetic field generator for mri - Google Patents

Magnetic field generator for mri

Info

Publication number
JPH05182821A
JPH05182821A JP3359168A JP35916891A JPH05182821A JP H05182821 A JPH05182821 A JP H05182821A JP 3359168 A JP3359168 A JP 3359168A JP 35916891 A JP35916891 A JP 35916891A JP H05182821 A JPH05182821 A JP H05182821A
Authority
JP
Japan
Prior art keywords
magnetic field
silicon steel
magnetic
pole piece
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3359168A
Other languages
Japanese (ja)
Other versions
JP2561591B2 (en
Inventor
Kimiharu Ota
公春 太田
Masaaki Aoki
雅昭 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3359168A priority Critical patent/JP2561591B2/en
Publication of JPH05182821A publication Critical patent/JPH05182821A/en
Application granted granted Critical
Publication of JP2561591B2 publication Critical patent/JP2561591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To provide a pole piece composed of constitution, in which the generation of eddy currents is lowered and a graded magnetic field can be increased to specified intensity in a short time without reducing magnetic field uniformity in the air gap of a magnetic field generator for an MRI and a retentivity phenomenon is diminished and a distinct image can be obtained with high sensitivity. CONSTITUTION:A pole piece 10 consists of a laminated silicon steel plate layer 11 formed by members for a plurality of block-shaped pole pieces laminated by using non-oriented silicon steel plates, a rectangular sectional soft-iron made magnetic material ring 12, which is provided around the peripheral section of the laminated silicon steel plate 11, and soft ferrite layers 13, in which members for a large number of block-shaped pole pieces constituted by compression-molding soft ferrite powder in a rectangular plate shape are combined in a discoidal shape with adhesives and laid on the top face of the laminated silicon steel plate 11. Accordingly, the magnetic field uniformity of an air gap is easily attained, eddy currents generated in a magnetic pole are lowered even when GC pulses are applied to a graded magnetic field coil, and a retentivity phenomenon is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、医療用磁気共鳴断層
撮影装置(以下MRIという)等に用いられる磁界発生
装置の改良に係り、空隙を形成して対向する一対の磁極
片を、複数枚のけい素鋼板を所要方向に積層して一体化
した複数個のブロック状磁極片用部材とその上に積層す
るソフトフェライトとの2層で構成し、空隙内の磁界均
一度を損なうことなく、傾斜磁界コイルによる磁極片内
の渦電流、残磁現象の低減を図ったMRI用磁界発生装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a magnetic field generator used in a magnetic resonance tomography apparatus for medical use (hereinafter referred to as MRI) and the like. It is composed of two layers of a plurality of block-shaped magnetic pole piece members, which are formed by laminating silicon steel sheets in a required direction and are integrated, and a soft ferrite layered thereon, without impairing the magnetic field uniformity in the air gap. The present invention relates to a magnetic field generator for MRI in which an eddy current in a pole piece and a residual magnetism phenomenon are reduced by a gradient magnetic field coil.

【0002】[0002]

【従来の技術】MRIは、強力な磁界を形成する磁界発
生装置の空隙内に、被検者の一部または全部を挿入し
て、対象物の断層イメージを得てその組織の性質まで描
き出すことができる装置である。
2. Description of the Related Art In MRI, a part or all of a subject is inserted into the space of a magnetic field generator that forms a strong magnetic field, and a tomographic image of the subject is obtained to delineate the nature of the tissue. It is a device that can

【0003】上記MRI用の磁界発生装置において、空
隙は被検者の一部または全部が挿入できるだけの広さが
必要であり、かつ鮮明な断層イメージを得るために、通
常、空隙内の撮像視野内には、0.02〜2.0Tでか
つ1×10-4以下の精度を有する安定した強力な均一磁
界を形成することが要求される。
In the above-mentioned magnetic field generator for MRI, the space needs to be large enough to allow a part or all of the subject to be inserted, and in order to obtain a clear tomographic image, the field of view of the imaging in the space is usually used. Inside, it is required to form a stable and strong uniform magnetic field having an accuracy of 0.02 to 2.0 T and 1 × 10 −4 or less.

【0004】MRIに用いる磁界発生装置として、図6
に示す如く、磁界発生源としてR−Fe−B系磁石を用
いた一対の永久磁石構成体1,の各々の一方端に磁極片
2,2を固着して対向させ、他方端を継鉄3にて連結
し、磁極片2,2間の空隙4内に、静磁界を発生させる
構成が知られている。
FIG. 6 shows a magnetic field generator used for MRI.
As shown in FIG. 3, magnetic pole pieces 2 and 2 are fixed to one end of each of a pair of permanent magnet constructing bodies 1 using an R-Fe-B system magnet as a magnetic field generation source so as to face each other, and a yoke 3 is provided at the other end. It is known that a static magnetic field is generated in the space 4 between the magnetic pole pieces 2 and 2 by connecting with each other.

【0005】磁極片2,2には、空隙4内における磁界
分布の均一度を向上させるために、周辺部に環状突起5
を設けてあり、通常、電磁軟鉄、純鉄等の磁性材料を削
り出した板状のバルク(一体物)から構成される(特開
昭60−88407号公報)。
In order to improve the homogeneity of the magnetic field distribution in the air gap 4, the magnetic pole pieces 2 and 2 have annular projections 5 on their peripheral portions.
Is usually provided and is constituted by a plate-shaped bulk (integral body) obtained by cutting out a magnetic material such as electromagnetic soft iron or pure iron (JP-A-60-88407).

【0006】各磁極片2,2の近傍に配置される傾斜磁
界コイル6は、空隙4内の位置情報を得るために、通常
X、Y、Zの3方向に対応する3組のコイル群からなる
が、図示においては簡略して記載している。この傾斜磁
界コイル6に、パルス電流を印加することによって台形
波状に時間変化する所望方向の傾斜磁界を発生すること
ができる。
The gradient magnetic field coil 6 arranged near each magnetic pole piece 2 and 2 is usually composed of three coil groups corresponding to three directions of X, Y and Z in order to obtain position information in the air gap 4. However, they are simply shown in the drawings. By applying a pulse current to the gradient magnetic field coil 6, it is possible to generate a gradient magnetic field in a desired direction that changes in a trapezoidal wave shape with time.

【0007】[0007]

【発明が解決しようとする課題】傾斜磁界コイル6にパ
ルス電流を流すと、磁極片2は前述した如く板状のバル
クから構成されるため、その電流の立上り、立下がり時
に磁界が急激に変化し磁極片2,2に渦電流が発生す
る。この渦電流は傾斜磁界コイル6にて形成される磁界
と反対方向の磁界を形成するため、傾斜磁界が所定の強
度に達するのに多くの時間を要する。
When a pulse current is passed through the gradient magnetic field coil 6, the magnetic pole piece 2 is made of a plate-like bulk as described above, so that the magnetic field changes rapidly when the current rises and falls. Then, an eddy current is generated in the magnetic pole pieces 2 and 2. Since this eddy current forms a magnetic field in the direction opposite to the magnetic field formed by the gradient magnetic field coil 6, it takes a long time for the gradient magnetic field to reach a predetermined strength.

【0008】上述の問題を解決する手段として、磁極片
としてパーマロイ鋼板やアモルファス鋼板等の軟質磁性
薄膜を積層面が磁極面に対して垂直になるように積層し
た平板状の積層体を、その積層方向が互いに略90度異
なるよう二層に配置一体化した構成のものを用いた磁界
発生装置(特開昭61−203605号)、比抵抗の高
い磁性粉を用いた磁界発生装置(特開昭63−2590
7)が提案されている。
As means for solving the above-mentioned problems, a flat plate-like laminated body in which soft magnetic thin films such as a permalloy steel plate and an amorphous steel plate are laminated as a magnetic pole piece so that the laminated surface is perpendicular to the magnetic pole surface is formed. A magnetic field generator using a structure in which two layers are arranged and integrated so that the directions are different from each other by about 90 degrees (Japanese Patent Laid-Open No. 61-203605), a magnetic field generator using magnetic powder having a high specific resistance (Japanese Patent Laid-Open No. Sho 61-203605). 63-2590
7) is proposed.

【0009】しかしながら、上述の渦電流低減を図った
構成においても、傾斜磁界コイル(GC)により形成さ
れる磁界により磁極片が磁化され、磁気ヒステリシス現
象(残磁現象)によりGCパルスを停止した後も残磁現
象にて、空隙内の磁界均一度が乱れる問題がある。ま
た、出願人はソフトフェライトを軟鉄の表面に配置して
残磁現象を低減する磁界発生装置(特願平2−1295
03号)を提案した。しかし、当該装置の高機能化に伴
いGCパルス強度が増加する傾向にあり、該強度の増大
により残磁が大幅に増加するのを抑制するには、ソフト
フェライト部を厚くする必要があるが、ソフトフェライ
トは飽和磁化が小さいため漏洩磁束及び起磁力損が増加
することになり、装置が大型化する問題がある。
However, even in the above-described structure in which the eddy current is reduced, the magnetic pole piece is magnetized by the magnetic field formed by the gradient magnetic field coil (GC), and the GC pulse is stopped by the magnetic hysteresis phenomenon (residual magnetization phenomenon). However, there is a problem that the homogeneity of the magnetic field in the air gap is disturbed by the residual magnetism phenomenon. In addition, the applicant has arranged a magnetic field generating device (Japanese Patent Application No. 2-1295) to arrange soft ferrite on the surface of soft iron to reduce the residual magnetism phenomenon.
No. 03) was proposed. However, the GC pulse intensity tends to increase as the function of the device increases, and the soft ferrite portion needs to be thickened in order to suppress a significant increase in the residual magnetism due to the increase in the intensity. Since soft ferrite has a small saturation magnetization, leakage magnetic flux and magnetomotive force loss increase, and there is a problem that the device becomes large.

【0010】この発明は、MRI用磁界発生装置の磁極
片における上記現状に鑑み提案するもので、空隙内の磁
界均一度を低下させることなく、渦電流の発生を低減し
て短時間で傾斜磁界が所定の強度に上昇し得る構成から
なる磁極片の提供を目的とし、また残磁現象を低減して
高感度で鮮明な画像を得ることができる構成からなる磁
極片の提供を目的とし、さらに加工、製造が容易で、機
械的強度が高く組立て作業性にすぐれた構成からなる磁
極片の提供を目的としている。
The present invention is proposed in view of the above-mentioned current situation in the magnetic pole piece of the magnetic field generator for MRI. The gradient magnetic field is reduced in a short time by reducing the generation of eddy current without lowering the magnetic field homogeneity in the air gap. For the purpose of providing a magnetic pole piece having a structure capable of increasing to a predetermined strength, and for providing a magnetic pole piece having a structure capable of obtaining a highly sensitive and clear image by reducing a residual magnetism phenomenon, and It is an object of the present invention to provide a magnetic pole piece that is easy to process and manufacture, has high mechanical strength, and is excellent in assembling workability.

【0011】[0011]

【課題を解決するための手段】この発明は、MRI用磁
界発生装置において、上記目的を達成するために種々検
討した結果、空隙を形成して対向する一対の磁極片を、
それぞれ複数枚のけい素鋼板を所要方向に積層して一体
化した複数個のブロック状磁極片用部材で形成した積層
けい素鋼板層の上にソフトフェライトを積層した2層で
構成することによって、磁界強度および磁界均一度を低
下させることなく、傾斜磁界コイルによる渦電流、並び
に残磁現象を低減でき、さらに加工、製造が容易となる
ことを知見した。
SUMMARY OF THE INVENTION The present invention has variously studied to achieve the above-mentioned object in a magnetic field generator for MRI. As a result, a pair of magnetic pole pieces facing each other with a gap formed are
By forming two layers of soft ferrite laminated on a laminated silicon steel sheet layer formed by a plurality of block-shaped pole piece members that are formed by laminating a plurality of silicon steel sheets in a desired direction, respectively, It has been found that the eddy current due to the gradient magnetic field coil and the residual magnetism phenomenon can be reduced without lowering the magnetic field strength and the magnetic field homogeneity, and further, the processing and manufacturing are easy.

【0012】この発明は、空隙を形成して対向する一対
の磁極片を有し、該空隙に磁界を発生させるMRI用磁
界発生装置において、磁極片が空隙側からソフトフェラ
イト、積層けい素鋼板の2層からなることを特徴とする
MRI用磁界発生装置である。
According to the present invention, in a magnetic field generator for MRI, which has a pair of magnetic pole pieces facing each other with a gap formed therebetween, the magnetic pole piece is made of soft ferrite or laminated silicon steel plate from the gap side. It is a magnetic field generator for MRI characterized by comprising two layers.

【0013】また、この発明は、空隙を形成して対向す
る一対の磁極片を有し、該空隙に磁界を発生させるMR
I用磁界発生装置において、磁極片が空隙側からソフト
フェライト、積層けい素鋼板、磁性材ベースの3層から
なることを特徴とするMRI用磁界発生装置である。
Further, according to the present invention, there is provided an MR having a pair of magnetic pole pieces facing each other with a gap formed therebetween, and generating a magnetic field in the gap.
In the magnetic field generator for I, the magnetic pole piece is composed of three layers of a soft ferrite, a laminated silicon steel plate, and a magnetic material base from the air gap side, which is a magnetic field generator for MRI.

【0014】また、この発明は、上記構成において、磁
極片の空隙対向面側に直径方向のスリットを一箇所以上
設けた磁性材リングからなる環状突起を配置することに
より、さらに磁界均一度が向上する。
Further, according to the present invention, in the above-mentioned structure, the magnetic field homogeneity is further improved by disposing the annular protrusion made of a magnetic material ring provided with one or more diametrical slits on the side of the pole piece facing the air gap. To do.

【0015】この発明の対象とするMRI用磁界発生装
置は、空隙を形成して対向する一対の磁極片を有して該
空隙に磁界を発生させる構成であれば、後述する実施例
に限定されることなく、いかなる構成にも適用できる。
すなわち、磁界発生源となる磁石構成体も永久磁石に限
定されることなく電磁石等の採用も可能であり、また磁
石構成体に直接磁極片が配置される構成でなくともよ
い。さらに、これらの磁石構成体と一対の磁極片とを磁
気的に接続して空隙に磁界を発生する磁路形成用の継鉄
の形状寸法等も要求される空隙の大きさ、磁界強度、磁
界均一度等種々の諸特性に応じて適宜選定すれば良い。
The magnetic field generator for MRI which is the object of the present invention is limited to the embodiments described later as long as it has a pair of magnetic pole pieces facing each other and forms a magnetic field in the gap. Without any configuration.
That is, the magnet constructing body serving as a magnetic field generation source is not limited to the permanent magnet, and an electromagnet or the like can be adopted, and the magnetic pole pieces may not be arranged directly on the magnet constructing body. Furthermore, the shape of the yoke for forming a magnetic path that magnetically connects these magnet components and a pair of magnetic pole pieces to generate a magnetic field in the air gap, etc. are required. It may be appropriately selected according to various characteristics such as uniformity.

【0016】かかる磁気回路に用いる磁石構成体の永久
磁石は、フェライト磁石、アルニコ系磁石、希土類コバ
ルト系磁石が使用できるが、特に、RとしてNdやPr
を中心とする資源的に豊富な軽希土類を用い、B、Fe
を主成分として30MGOe以上の極めて高いエネルギ
ー積を示す、Fe−B−R系永久磁石を使用することに
より、著しく小型化することができる。
Ferrite magnets, alnico magnets, and rare earth cobalt magnets can be used as the permanent magnets of the magnet structure used in such a magnetic circuit. In particular, R is Nd or Pr.
Resource-rich light rare earths such as B, Fe
By using an Fe-B-R based permanent magnet that has an extremely high energy product of 30 MGOe or more containing as a main component, the size can be significantly reduced.

【0017】この発明において、積層けい素鋼板はその
積層方向が該磁極片の対向方向に積層された場合、ま
た、磁極片の対向方向と直交する方向に積層された場合
のいずれでもよく、さらに必要に応じて積層方向を変え
て複数層とした構成でもよく、あるいは種々の形状から
なる磁極片用部材となして、これを組み合せて所要形状
とすることができる。さらに、使用するけい素鋼板の磁
化容易軸方向の方向性は任意であるが、無方向性けい素
鋼板(JIS C2552等)にて構成した場合、残
磁現象低減に顕著な効果を示す。
In the present invention, the laminated silicon steel sheets may be laminated either in the direction in which the magnetic pole pieces face each other or in the direction orthogonal to the direction in which the magnetic pole pieces face each other. If necessary, the stacking direction may be changed to form a plurality of layers, or a pole piece member having various shapes may be formed and combined to obtain a desired shape. Further, the orientation of the easy-magnetization axis direction of the silicon steel sheet used is arbitrary, but when it is made of a non-oriented silicon steel sheet (JIS C2552 etc.), it shows a remarkable effect in reducing the residual magnetism phenomenon.

【0018】けい素鋼板の厚みは任意の厚みでよいが、
一般に入手し易いけい素鋼板は0.35mm程度と薄い
ため、従来例(特開昭61−203605号)に示すよ
うに磁極片を構成する平板状積層体全体が、上記けい素
鋼板を一方向に積層するだけの構成では積層一体化作業
が極めて煩雑となる。そこで本発明者は、積層、組立て
作業性が極めて良好となる構成として、いったん所定寸
法からなる複数枚の矩形状無方向性けい素鋼板を磁極片
の対向方向と直交する方向に所定枚数積層したブロック
状磁極片用部材を複数個作成し、これら複数個のブロッ
ク状磁極片用部材を直接磁石構成体上に固着するか、板
状の磁性材ベースを介して磁石構成体上に固着する等の
構成を提案する。
Although the silicon steel sheet may have any thickness,
Since a silicon steel plate which is generally easily available is as thin as about 0.35 mm, the entire flat plate-shaped laminate constituting the pole pieces as shown in the conventional example (Japanese Patent Laid-Open No. 61-203605) has the silicon steel plate in one direction. If the structure is simply laminated, the work of laminating and integrating becomes extremely complicated. Therefore, the present inventor has determined that stacking and assembling workability is extremely good by once stacking a predetermined number of rectangular non-oriented silicon steel plates having a predetermined size in a direction orthogonal to the facing direction of the pole pieces. A plurality of block-shaped magnetic pole piece members are prepared, and these plural block-shaped magnetic pole piece members are directly fixed to the magnet structure, or fixed to the magnet structure via a plate-shaped magnetic material base. Propose the configuration of.

【0019】また、積層けい素鋼板をブロック状の磁極
片用部材となした際、積層方向を上記の特定方向に積層
するほか、種々形状の小片を用いてアトランダムに積層
方向を選定して所定のブロック状に組み立てることもで
きる。詳述すると、円形状のけい素鋼板を厚み方向に積
層し円盤状となしたもの、これを縦横に8分割や16分
割したもの、あるいは直径方向に8分割や16分割した
もの、短冊上のけい素鋼板を磁極片の対向方向と直交す
る方向に積層して円盤状となしたもの、これを縦横にあ
るいは直径方向に分割したもの、さらに円盤を直径方向
に8分割や16分割したもので、各ブロックが種々形状
の小片を用いてアトランダムに積層方向を選定して組み
立てたものなど、種々のブロック状磁極片用部材を用い
ることができる
When a laminated silicon steel plate is used as a block-shaped member for magnetic pole pieces, the laminating direction is laminated in the above specific direction, and the laminating direction is selected at random by using small pieces of various shapes. It can also be assembled into a predetermined block shape. More specifically, circular silicon steel plates are laminated in the thickness direction to form a disk shape, which is divided into 8 or 16 parts in the vertical and horizontal directions, or 8 or 16 parts in the diametrical direction. It is made by stacking silicon steel plates in a direction orthogonal to the facing direction of the pole pieces to form a disk shape, dividing this vertically or horizontally or in the diameter direction, and further dividing the disk into 8 or 16 parts in the diameter direction. , Various block-shaped pole piece members can be used, such as each block assembled by randomly selecting the stacking direction using small pieces of various shapes.

【0020】この発明において、ソフトフェライトの材
質は、Mn−Znフェライト粉、Ni−Znフェライト
粉等の種々のソフトフェライト材からなり、ソフトフェ
ライト製の大ブロックを所要形状に加工したもの、ある
いは小ブロックを所要形状に接着剤で組立てたもの等が
利用でき、さらに、磁界の均一度向上を目的に、空隙側
周辺部に種々断面形状の環状突起を設けたり、中央部に
円形凸状部や断面台形状の突起部を設けたり、また、磁
極片の所要位置に、磁界の均一度調整を目的に、磁性材
または磁石からなる磁界調整片を着設してもよい。
In the present invention, the material of soft ferrite is made of various soft ferrite materials such as Mn-Zn ferrite powder and Ni-Zn ferrite powder, and a large block made of soft ferrite is processed into a required shape or a small size. It is possible to use a block assembled with an adhesive in the required shape, etc., and further, in order to improve the uniformity of the magnetic field, annular projections of various cross-sections are provided in the periphery of the gap side, circular convex parts or A protrusion having a trapezoidal cross section may be provided, or a magnetic field adjusting piece made of a magnetic material or a magnet may be attached to a required position of the magnetic pole piece for the purpose of adjusting the uniformity of the magnetic field.

【0021】上記ソフトフェライトの小ブロックを製造
するには、例えば、Mn−Znフェライト粉等を所要形
状に圧縮成形した後、焼結し、さらに密度の向上のた
め、HP、HIP(Hot Isostatic Pr
essing)法等の手段を併用するのもよく、得られ
た小ブロックを、エポキシ樹脂などの接着剤等を用いて
接着して、所要形状に組み立てるとよい。
In order to manufacture the above-mentioned small blocks of soft ferrite, for example, Mn-Zn ferrite powder or the like is compression-molded into a required shape and then sintered, and further HP and HIP (Hot Isostatic Pr) are used to improve the density.
It is also possible to use a means such as an essing) method together, and the obtained small blocks may be bonded with an adhesive such as an epoxy resin to assemble them into a required shape.

【0022】ソフトフェライト材のうち、例えば、Mn
−Zn系ソフトフェライトは、磁界の均等化手段として
要求される高透磁率および高い飽和磁束密度Bsを有
し、また渦電流対策として十分に高い比抵抗と、残磁現
象を防止し得る低保磁力(数A/m)の特性を持ってい
る。
Among the soft ferrite materials, for example, Mn
-Zn-based soft ferrite has a high magnetic permeability and a high saturation magnetic flux density Bs required as a magnetic field equalizing means, and has a sufficiently high specific resistance as a countermeasure against eddy currents and a low retention that can prevent a residual magnetism phenomenon. It has a characteristic of magnetic force (several A / m).

【0023】この発明において、ソフトフェライトは磁
石構成体から発生する磁束を効率よく空隙に作用させる
ためには、0.4T以上のBsを有するものが好まし
い。すなわち、ソフトフェライト内を通過する磁束量
は、そのBsにより決定され、その値が小さいと必然的
に飽和して磁界強度が低下してしまい、これを防ぐには
磁石を大きくする必要があり、装置の大型化を招くこと
となる。従って、Bsは0.4T以上が望ましく、好ま
しくは0.5T以上、さらに好ましくは0.55T以上
である。
In the present invention, it is preferable that the soft ferrite has Bs of 0.4 T or more in order to allow the magnetic flux generated from the magnet construct to efficiently act on the air gap. That is, the amount of magnetic flux passing through the soft ferrite is determined by its Bs, and if its value is small, it will inevitably saturate and the magnetic field strength will decrease. To prevent this, it is necessary to enlarge the magnet, This leads to an increase in the size of the device. Therefore, Bs is desirably 0.4 T or more, preferably 0.5 T or more, and more preferably 0.55 T or more.

【0024】また、ソフトフェライトのHcが大きすぎ
ると、残磁現象が生じるため、Hcは50A/m 以
下が望ましく、好ましくは20A/m以下、さらに好ま
しくは10A/m以下である。また、渦電流の低減に
は、比抵抗 ρが10-5Ω・m以上、さらに好ましくは
10-3Ω・m以上が望ましい。
When Hc of the soft ferrite is too large, a residual magnetism phenomenon occurs. Therefore, Hc is preferably 50 A / m or less, preferably 20 A / m or less, and more preferably 10 A / m or less. Further, in order to reduce the eddy current, it is desirable that the specific resistance ρ is 10 −5 Ω · m or more, and more preferably 10 −3 Ω · m or more.

【0025】この発明は、磁極片が空隙側からソフトフ
ェライト、積層けい素鋼板の2層あるいは磁石構成体側
に軟鉄材などの磁性材ベースを敷設した3層、あるいは
さらに周縁突起部に軟鉄バルク部を設ける構成を特徴と
し、磁極片厚みに占めるソフトフェライト層と積層けい
素鋼板層の厚み比、あるいは磁性材ベース厚みを含めた
厚み比を最適化することにより、磁極片に要求される磁
界強度の均等化と渦電流および残磁現象の防止効果が最
大限に発揮され、磁極片の機械的強度を適宜選定するこ
とができる。なお、ソフトフェライト層と積層けい素鋼
板層の厚み比の選定のみで、GCパルスによる悪影響を
低減できるのであれば、軟鉄材のベース厚みは薄いほど
よい。
According to the present invention, the magnetic pole pieces are two layers of soft ferrite and laminated silicon steel sheet from the air gap side, or three layers of a magnetic material base such as soft iron material laid on the magnet construction side, or a soft iron bulk portion on the peripheral protrusion. The magnetic field strength required for the pole piece is optimized by optimizing the thickness ratio of the soft ferrite layer and the laminated silicon steel sheet layer in the pole piece thickness, or the thickness ratio including the magnetic material base thickness. And the effect of preventing eddy currents and residual magnetism are maximized, and the mechanical strength of the pole pieces can be appropriately selected. Note that the thinner the base thickness of the soft iron material, the better if the adverse effect of the GC pulse can be reduced only by selecting the thickness ratio between the soft ferrite layer and the laminated silicon steel sheet layer.

【0026】あるいは、磁極片の空隙対向面の中央部の
みをソフトフェライトとし、周縁部に設ける環状突起を
磁性材リングとすることも可能で、材料には軟鉄、低炭
素鋼等から構成することができ、前記磁性材ベースやリ
ング状支持枠の周縁部に載置する他、直接ブロック状磁
極片用部材の上面に載置することができる。いずれの構
成においても渦電流の影響を軽減する目的で、環状突起
に1つ以上のスリットを設けて分割することが望まし
く、さらに、磁性材ベースまたはリング状支持枠と環状
突起間、磁性材ベースまたはリング状支持枠とブロック
状磁極片用部材間を電気的に絶縁することが望ましい。
Alternatively, it is possible that only the central portion of the air gap facing surface of the pole piece is made of soft ferrite and the annular projection provided at the peripheral portion is made of a magnetic material ring, which is made of soft iron, low carbon steel or the like. The magnetic material base or the ring-shaped support frame can be mounted on the periphery of the magnetic material base, or can be directly mounted on the upper surface of the block-shaped magnetic pole piece member. In any configuration, it is desirable to divide the annular projection by providing one or more slits for the purpose of reducing the influence of eddy current. Furthermore, the magnetic material base or between the ring-shaped support frame and the annular projection, and the magnetic material base. Alternatively, it is desirable to electrically insulate between the ring-shaped support frame and the block-shaped pole piece member.

【0027】図面に基づく開示 図1A,Bはこの発明による磁界発生装置の磁極片の一
実施例を示す横断面図と上面図である。図2A,Bはこ
の発明の磁極片を構成するブロック状磁極片用部材の一
実施例を示す斜視図である。図1に示す磁極片10は、
無方向性けい素鋼板を用いて積層した複数個のブロック
状磁極片用部材で形成した積層けい素鋼板層11と、積
層けい素鋼板11の周辺部に周設された断面矩形の軟鉄
製の磁性材リング12と、ソフトフェライト粉を矩形板
状に圧縮成形して構成した多数のブロック状磁極片用部
材を接着剤で円板状に組み合せて積層けい素鋼板11上
面に敷設したソフトフェライト層13とからなる。各ブ
ロック状磁極片用部材は通常合成エポキシ樹脂接着材に
て積層けい素鋼板層11に固着される。
Disclosure Based on the Drawings FIGS. 1A and 1B are a cross sectional view and a top view showing an embodiment of a magnetic pole piece of a magnetic field generator according to the present invention. 2A and 2B are perspective views showing an embodiment of a block-shaped magnetic pole piece member constituting the magnetic pole piece of the present invention. The pole piece 10 shown in FIG.
A laminated silicon steel sheet layer 11 formed by a plurality of block-shaped magnetic pole piece members laminated by using non-oriented silicon steel sheets, and a soft iron steel sheet having a rectangular cross section provided around the laminated silicon steel sheet 11 Magnetic material ring 12 and a large number of block-shaped magnetic pole piece members formed by compression molding soft ferrite powder into a rectangular plate shape are combined into a disk shape with an adhesive, and a soft ferrite layer laid on the upper surface of a laminated silicon steel plate 11. 13 and 13. Each block-shaped pole piece member is usually fixed to the laminated silicon steel sheet layer 11 with a synthetic epoxy resin adhesive.

【0028】ソフトフェライト層13は、前述の如く円
板状に組立ててあるが、中央部には所要直径の円形凸状
部14を形成するため、圧縮成形したソフトフェライト
のブロック状磁極片用部材厚みが異なるものを用いてお
り、当該円形凸状部で磁界均一度を向上させることがで
きる。また、ソフトフェライト層13の中心部に、軟鉄
製のコアー部15を設けているが、これは傾斜磁界コイ
ルを装着するための基台を構成している。
The soft ferrite layer 13 is assembled into a disk shape as described above. However, since the circular convex portion 14 having a required diameter is formed in the central portion, the compression molded soft ferrite block-shaped pole piece member is formed. Since those having different thicknesses are used, the circular convex portion can improve the magnetic field uniformity. Further, a soft iron core portion 15 is provided in the center of the soft ferrite layer 13, which constitutes a base for mounting the gradient magnetic field coil.

【0029】積層けい素鋼板層11の周辺部に周設され
た断面矩形の軟鉄製の磁性材リング12は、磁極片10
の外周部側の高さを他より高くして、磁束を所要空隙に
集中させかつ均一度を向上させる環状突起を形成するた
めのものであり、積層けい素鋼板層11との間に絶縁材
を介在させてボルト止めしてあり、さらに磁性材リング
12を周方向に分割図では8個に分割することで直径方
向のスリット16を設けて、渦電流の影響を低減する構
成である。
A magnetic material ring 12 made of soft iron and having a rectangular cross section is provided around the peripheral portion of the laminated silicon steel sheet layer 11 to form a magnetic pole piece 10.
Of the insulating material between the laminated silicon steel plate layer 11 and the outer peripheral portion side of the laminated silicon steel plate layer 11 to form a ring-shaped protrusion for concentrating the magnetic flux in a required gap and improving the uniformity. The magnetic material ring 12 is divided into eight in the circumferential direction in order to provide the slit 16 in the diametrical direction and reduce the influence of the eddy current.

【0030】図2Aに示すブロック状磁極片用部材11
Aは方向性けい素鋼板を用いた場合を示すもので、予め
同一方向に方向性を示す複数枚の方向性けい素鋼板を、
その厚さ方向に積層一体化した小ブロック11a11b
(図中矢印は磁化容易軸方向を示す)を作成し、その後
磁界均一度を向上させるため各磁化容易軸方向が互いに
90°異なるようにして積層した所定厚さのブロック状
磁極片用部材11Aを構成できる。
The block-shaped pole piece member 11 shown in FIG. 2A.
A shows the case where a grain-oriented silicon steel sheet is used, and a plurality of grain-oriented silicon steel sheets that are oriented in the same direction in advance are used.
Small blocks 11a11b laminated and integrated in the thickness direction
(The arrow in the figure indicates the easy magnetization axis direction), and thereafter, in order to improve the magnetic field homogeneity, the easy magnetization axis directions are different from each other by 90 ° and laminated so as to have a predetermined thickness. Can be configured.

【0031】図2Bに示すブロック状磁極片用部材11
Bは無方向性けい素鋼板を用いた場合を示すもので、無
方向性のため複数枚のけい素鋼板を単にその厚さ方向に
積層して一体化するだけで所定厚さからなるブロック状
磁極片用部材11Bを構成できる。
The block-shaped pole piece member 11 shown in FIG. 2B.
B shows the case where a non-oriented silicon steel plate is used. Due to the non-directionality, a plurality of silicon steel plates are simply laminated in the thickness direction and integrated to form a block having a predetermined thickness. The pole piece member 11B can be configured.

【0032】[0032]

【作用】この発明による上記構成からなる磁極片をMR
I用磁界発生装置に用いると、けい素鋼板は飽和磁束密
度Bsが高く、空隙の磁界均一化が達成しやすく、また
保磁力Hc及びヒステリシス損の小さな電気的に絶縁さ
れている薄板を複数枚積層した構成であることから、傾
斜磁界コイルにGCパルスが印加されても磁極に発生す
る渦電流は低減され、しかも残磁現象を低減させること
も可能となる。また、ソフトフェライト層により空隙の
磁界が均一化され、傾斜磁界コイルによる渦電流の低減
の効果とともに、GCパルスにより生じる残磁を低減さ
せる効果がある。従って、積層けい素鋼板層とソフトフ
ェライト層の厚み比を適宜選定することにより、双方の
相乗効果で渦電流及び残磁現象の低減にすぐれた作用効
果を示す。
The magnetic pole piece having the above structure according to the present invention is MR
When used in a magnetic field generator for I, a silicon steel sheet has a high saturation magnetic flux density Bs, it is easy to achieve a uniform magnetic field in the air gap, and a plurality of electrically insulated thin plates with a small coercive force Hc and hysteresis loss are used. Due to the stacked structure, even when the GC pulse is applied to the gradient magnetic field coil, the eddy current generated in the magnetic pole is reduced, and the residual magnetism phenomenon can be reduced. Further, the magnetic field in the air gap is made uniform by the soft ferrite layer, and there is an effect of reducing the eddy current by the gradient magnetic field coil and an effect of reducing the residual magnetism caused by the GC pulse. Therefore, by appropriately selecting the thickness ratio of the laminated silicon steel sheet layer and the soft ferrite layer, a synergistic effect of both is effective in reducing the eddy current and the residual magnetism phenomenon.

【0033】さらに、上記の2層に磁性材ベースを加え
た3層構成からなる場合は、磁性材ベースにて磁極片の
必要とする強度を確保することができ、上記2層の相乗
効果を大きく疎外することがなく、製造性がよく工業上
極めて有用な構成となる。
Further, when the magnetic material base has a three-layer structure in which the magnetic material base is added to the above two layers, the magnetic material base can secure the strength required for the magnetic pole piece, and the synergistic effect of the above two layers can be obtained. It does not significantly alienate, has good manufacturability, and is an extremely useful industrial structure.

【0034】なお、積層けい素鋼板層とソフトフェライ
ト層の厚み比の選定のほか、積層けい素鋼板層の積層状
態や個々のブロック形状と組み立て状態(分割状態)に
より渦電流及び残磁現象の低減効果に差があり、要求さ
れる特性や用途などに応じて適宜選定する必要がある。
In addition to the selection of the thickness ratio of the laminated silicon steel sheet layer and the soft ferrite layer, the eddy current and the residual magnetism phenomenon are caused by the laminated state of the laminated silicon steel sheet layer, the individual block shape and the assembled state (divided state). There is a difference in the reduction effect, and it is necessary to select it appropriately according to the required characteristics and applications.

【0035】[0035]

【実施例】実施例1 図6と同様構成の磁界発生装置に、BHmax35MG
Oeを有するNd−Fe−B系永久磁石を用い、下記性
状の無方向性けい素鋼板を用い図2Bに示す構成のブロ
ック状磁極片用部材にて円盤を縦横に分割した積層けい
素鋼板層となし、さらにその上に同様形状のブロック状
磁極片用部材にてソフトフェライト層を積層して磁極片
となし、軟鉄からなる環状突起のスリットは4箇所とし
た一対の磁極片の対向間距離を500mmに設定した。
このとき、磁極片厚みを50mmに一定にしてソフトフ
ェライト層と積層けい素鋼板層厚みを種々変えて磁極片
を作製し、それぞれのGCパルスにより生じる残留磁場
を測定した。図3に測定結果を示すが、積層けい素鋼板
層厚みをtとして示してある。従って、図の右端のプロ
ットの場合は磁極片の全てが積層けい素鋼板の場合(比
較例1)である。なお、□印はパルス幅が100ms、
△印はパルス幅が10ms、○印はパルス幅が1msの
場合である。
EXAMPLE 1 A magnetic field generator having the same structure as that shown in FIG.
A laminated silicon steel sheet layer in which a disk is vertically and horizontally divided by a block-shaped pole piece member configured as shown in FIG. 2B using a Nd-Fe-B system permanent magnet having Oe and a non-oriented silicon steel sheet having the following properties. In addition, a soft ferrite layer is laminated on top of it with a block-shaped pole piece member of the same shape to form a pole piece. The slits of the annular protrusion made of soft iron are provided at four locations. Was set to 500 mm.
At this time, the pole pieces were manufactured by varying the thicknesses of the soft ferrite layer and the laminated silicon steel sheet layer while keeping the thickness of the pole pieces constant at 50 mm, and the residual magnetic fields generated by the respective GC pulses were measured. The measurement results are shown in FIG. 3, where the laminated silicon steel sheet layer thickness is shown as t. Therefore, the case of the plot at the right end of the figure is the case where all of the pole pieces are laminated silicon steel sheets (Comparative Example 1). In addition, □ indicates a pulse width of 100 ms,
A mark indicates that the pulse width is 10 ms, and a mark indicates that the pulse width is 1 ms.

【0036】実施例2 実施例1において、積層けい素鋼板層を、短冊状のけい
素鋼板を磁極片対向方向に直交方向に積層した構成に代
えてGCパルスにより生じる残留磁場を測定し、測定結
果を図4に示す。
Example 2 In Example 1, the laminated magnetic steel sheet layer was replaced with a structure in which strip-shaped silicon steel sheets were laminated in the direction orthogonal to the pole piece opposing direction, and the residual magnetic field generated by the GC pulse was measured and measured. The results are shown in Fig. 4.

【0037】比較例2 実施例1の磁界発生装置に、下記性状の軟鉄からなるベ
ース部上に実施例1と同質のソフトフェライト部を設
け、軟鉄からなる環状突起を設けた一対の磁極片の対向
間距離を500mmに設定した。このとき、磁極片厚み
を一定にして軟鉄ベースとソフトフェライト部の厚みを
種々変えて磁極片を作製し、それぞれのGCパルスによ
り生じる残留磁場を測定した。図5に測定結果を示す
が、軟鉄ベース厚みをtとして示してある。従って、図
の右端のプロットの場合は磁極片の全てが軟鉄の場合
(従来例)である。
Comparative Example 2 In the magnetic field generator of Example 1, a pair of magnetic pole pieces each having a soft ferrite portion of the same quality as that of Example 1 provided on a base portion made of soft iron having the following properties and an annular protrusion made of soft iron was provided. The facing distance was set to 500 mm. At this time, the thickness of the magnetic pole pieces was kept constant, the thicknesses of the soft iron base and the soft ferrite portion were variously changed, and the magnetic pole pieces were produced, and the residual magnetic fields generated by the respective GC pulses were measured. The measurement results are shown in FIG. 5, where the soft iron base thickness is shown as t. Therefore, the plot at the right end of the figure is the case where all the pole pieces are soft iron (conventional example).

【0038】その結果、実施例1,2、比較例1,2、
従来例とも空隙中心から半径200mm内の計測空間で
の測定値で、磁界均一度;30ppm、磁界強度;0.
2Tを得た。傾斜磁界コイルによる渦電流は、この発明
による実施例1,2の場合、従来例に対して1/3以下
に低減された。GCパルス(1〜10ms)により生じ
る残留磁気は、比較例1,2は従来例に対して最大1/
3以下に低減され、この発明による実施例1,2の場合
は比較例1,2に対して最大1/4以下に低減された。
また、パルス幅の違いによる残留磁場は、実施例1,2
の場合は比較例1,2に対してパルス幅にかかわらず同
様の低減効果を有している。
As a result, Examples 1 and 2, Comparative Examples 1 and 2,
Also in the conventional example, the measured value is in a measurement space within a radius of 200 mm from the center of the air gap, magnetic field homogeneity: 30 ppm, magnetic field strength: 0.
I got 2T. The eddy currents generated by the gradient magnetic field coils were reduced to 1/3 or less in the case of Examples 1 and 2 according to the present invention as compared with the conventional example. The residual magnetism generated by the GC pulse (1 to 10 ms) is 1 / maximum in Comparative Examples 1 and 2 as compared with the conventional example.
It was reduced to 3 or less, and in the cases of Examples 1 and 2 according to the present invention, the maximum was reduced to 1/4 or less of Comparative Examples 1 and 2.
Further, the residual magnetic field due to the difference in pulse width is
In the case of, the same reduction effect is obtained for Comparative Examples 1 and 2 regardless of the pulse width.

【0039】またさらに、実施例1,2において、軟鉄
ベースを追加して3層構造として、磁極片厚みを50m
mに一定にしてソフトフェライト層と積層けい素鋼板層
厚みを種々変えて磁極片を作製し、それぞれのGCパル
スにより生じる残留磁場を測定した結果、磁極片に必要
な強度を付与しても実施例1,2と同傾向の残留磁場低
減効果を有していることを確認した。
Furthermore, in Examples 1 and 2, a soft iron base was added to form a three-layer structure, and the pole piece thickness was 50 m.
Magnetic pole pieces were produced by varying the thickness of the soft ferrite layer and the laminated silicon steel sheet layer while keeping the value constant at m, and the residual magnetic field generated by each GC pulse was measured. It was confirmed that the residual magnetic field reducing effect has the same tendency as in Examples 1 and 2.

【0040】上記の実施例1,2及び比較例1,2の構
成において、磁性材ベースは外径1050mmとした。
種々の磁極片厚さ50mmとした。また,無方向性けい
素鋼板の厚さは0.35mmを採用した。無方向性けい
素鋼板は、Hc=40A/m、Bs=1.7T、ρ=4
5×10-8Ω・mである。ソフトフェライトはMn−Z
n系フェライト、Hc=6.0A/m、Bs=0.58
T、ρ=0.2Ω・mである。純鉄は、Hc=80A/
m、Bs=2.0T、ρ=1×10-7Ω・mである。
In the structures of Examples 1 and 2 and Comparative Examples 1 and 2, the magnetic material base had an outer diameter of 1050 mm.
The thickness of various pole pieces was 50 mm. The thickness of the non-oriented silicon steel sheet was 0.35 mm. Non-oriented silicon steel sheet has Hc = 40 A / m, Bs = 1.7 T, ρ = 4
It is 5 × 10 −8 Ω · m. Soft ferrite is Mn-Z
n-type ferrite, Hc = 6.0 A / m, Bs = 0.58
T, ρ = 0.2Ω · m. Pure iron has Hc = 80A /
m, Bs = 2.0T, ρ = 1 × 10 −7 Ω · m.

【0041】[0041]

【発明の効果】この発明による空隙側からソフトフェラ
イト層、積層けい素鋼板層と積層された磁極片をMRI
用磁界発生装置に用いると、空隙の磁界均一化が達成し
やすく、傾斜磁界コイルにGCパルスが印加されても磁
極に発生する渦電流は低減され、しかも残磁現象を低減
させることができる。さらに、積層けい素鋼板層とソフ
トフェライト層の厚み比の選定のほか、積層けい素鋼板
層の積層状態や個々のブロック形状と組み立て状態(分
割状態)の選定より渦電流及び残磁現象の低減を図るこ
とができる。
The magnetic pole piece laminated with the soft ferrite layer and the laminated silicon steel sheet layer from the void side according to the present invention is subjected to MRI.
When used in a magnetic field generator for use in a magnetic field, it is easy to achieve a uniform magnetic field in the air gap, and even if a GC pulse is applied to the gradient magnetic field coil, the eddy current generated in the magnetic poles is reduced and the residual magnetism phenomenon can be reduced. Furthermore, in addition to selecting the thickness ratio of the laminated silicon steel sheet layer and the soft ferrite layer, the eddy current and residual magnetism phenomenon are reduced by selecting the laminated state of the laminated silicon steel sheet layer and the individual block shape and assembly state (divided state). Can be planned.

【図面の簡単な説明】[Brief description of drawings]

【図1】A,Bはこの発明による磁界発生装置の磁極片
の一実施例を示す横断面図と上面図である。
1A and 1B are a cross-sectional view and a top view showing an embodiment of a magnetic pole piece of a magnetic field generator according to the present invention.

【図2】A,Bはこの発明の磁極片を構成するブロック
状磁極片用部材の一実施例を示す斜視図である。
2A and 2B are perspective views showing an embodiment of a block-shaped magnetic pole piece member constituting the magnetic pole piece of the present invention.

【図3】この発明(実施例1)の磁極片の積層けい素鋼
板層厚みと残留磁場との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the laminated silicon steel sheet layer thickness of the magnetic pole piece of the present invention (Example 1) and the residual magnetic field.

【図4】この発明(実施例2)の磁極片の積層けい素鋼
板層厚みと残留磁場との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the laminated silicon steel sheet layer thickness of the magnetic pole piece of the present invention (Example 2) and the residual magnetic field.

【図5】比較例2の磁極片の磁性材ベース厚みと残留磁
場との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the magnetic material base thickness of the pole piece of Comparative Example 2 and the residual magnetic field.

【図6】A,Bは従来の磁界発生装置の縦断面図と横断
面図である。
6A and 6B are a longitudinal sectional view and a lateral sectional view of a conventional magnetic field generator.

【符号の説明】[Explanation of symbols]

1 永久磁石構成体 2,10 磁極片 3 継鉄 4 空隙 5 環状突起 6 傾斜磁界コイル 11 積層けい素鋼板層 11A,11B 小ブロック 12 磁性材リング 13 ソフトフェライト層 14 円形凸状部 15 コア部 16 スリット DESCRIPTION OF SYMBOLS 1 Permanent magnet constituent 2,10 Magnetic pole piece 3 Yoke 4 Air gap 5 Annular protrusion 6 Gradient magnetic field coil 11 Laminated silicon steel sheet layer 11A, 11B Small block 12 Magnetic material ring 13 Soft ferrite layer 14 Circular convex part 15 Core part 16 slit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空隙を形成して対向する一対の磁極片を
有し、該空隙に磁界を発生させるMRI用磁界発生装置
において、磁極片が空隙側からソフトフェライト、積層
けい素鋼板の2層からなることを特徴とするMRI用磁
界発生装置。
1. A magnetic field generator for MRI, comprising a pair of magnetic pole pieces facing each other with a gap formed therebetween, wherein the magnetic pole pieces are two layers of soft ferrite and laminated silicon steel plate from the gap side. A magnetic field generator for MRI, comprising:
【請求項2】 空隙を形成して対向する一対の磁極片を
有し、該空隙に磁界を発生させるMRI用磁界発生装置
において、磁極片が空隙側からソフトフェライト、積層
けい素鋼板、磁性材ベースの3層からなることを特徴と
するMRI用磁界発生装置。
2. An MRI magnetic field generator having a pair of magnetic pole pieces facing each other with a gap formed, wherein the magnetic pole pieces are soft ferrite, laminated silicon steel sheet, and magnetic material from the gap side. A magnetic field generator for MRI, which comprises three layers of a base.
JP3359168A 1991-12-27 1991-12-27 Magnetic field generator for MRI Expired - Lifetime JP2561591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359168A JP2561591B2 (en) 1991-12-27 1991-12-27 Magnetic field generator for MRI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359168A JP2561591B2 (en) 1991-12-27 1991-12-27 Magnetic field generator for MRI

Publications (2)

Publication Number Publication Date
JPH05182821A true JPH05182821A (en) 1993-07-23
JP2561591B2 JP2561591B2 (en) 1996-12-11

Family

ID=18463095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359168A Expired - Lifetime JP2561591B2 (en) 1991-12-27 1991-12-27 Magnetic field generator for MRI

Country Status (1)

Country Link
JP (1) JP2561591B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691548A1 (en) 1994-07-08 1996-01-10 Sumitomo Special Metals Company Limited Magnetic field generating device for use in MRI
WO1999052427A1 (en) * 1998-04-14 1999-10-21 Sumitomo Special Metals Co., Ltd. Magnetic field generating device for mri
WO2003075757A1 (en) * 2002-03-14 2003-09-18 Hitachi, Ltd. Magnet device and magnetic resonance imaging using the same
EP1447676A2 (en) * 2003-02-12 2004-08-18 GE Medical Systems Global Technology Company LLC Circular pole piece and mri system
JP2005131410A (en) * 2003-10-31 2005-05-26 Ge Medical Systems Global Technology Co Llc System and method of manufacturing pole piece for magnetic resonance imaging system
JP2016096829A (en) * 2014-11-18 2016-05-30 株式会社日立製作所 Magnetic resonance imaging device
JP2021171343A (en) * 2020-04-27 2021-11-01 株式会社日立製作所 Open type magnetic resonance imaging apparatus
US11366188B2 (en) 2016-11-22 2022-06-21 Hyperfine Operations, Inc. Portable magnetic resonance imaging methods and apparatus
US11397233B2 (en) 2014-09-05 2022-07-26 Hyperfine Operations, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US11841408B2 (en) 2016-11-22 2023-12-12 Hyperfine Operations, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
US12025685B2 (en) 2021-06-29 2024-07-02 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691548A1 (en) 1994-07-08 1996-01-10 Sumitomo Special Metals Company Limited Magnetic field generating device for use in MRI
US6794973B1 (en) 1998-04-14 2004-09-21 Sumitomo Special Metals Co., Ltd. Magnetic field generating device for MRI
WO1999052427A1 (en) * 1998-04-14 1999-10-21 Sumitomo Special Metals Co., Ltd. Magnetic field generating device for mri
WO2003075757A1 (en) * 2002-03-14 2003-09-18 Hitachi, Ltd. Magnet device and magnetic resonance imaging using the same
EP1447676A3 (en) * 2003-02-12 2005-09-07 GE Medical Systems Global Technology Company LLC Circular pole piece and mri system
EP1447676A2 (en) * 2003-02-12 2004-08-18 GE Medical Systems Global Technology Company LLC Circular pole piece and mri system
CN100419451C (en) * 2003-02-12 2008-09-17 Ge医疗系统环球技术有限公司 Circular pole piece and MRI system
JP2005131410A (en) * 2003-10-31 2005-05-26 Ge Medical Systems Global Technology Co Llc System and method of manufacturing pole piece for magnetic resonance imaging system
US11397233B2 (en) 2014-09-05 2022-07-26 Hyperfine Operations, Inc. Ferromagnetic augmentation for magnetic resonance imaging
JP2016096829A (en) * 2014-11-18 2016-05-30 株式会社日立製作所 Magnetic resonance imaging device
US11366188B2 (en) 2016-11-22 2022-06-21 Hyperfine Operations, Inc. Portable magnetic resonance imaging methods and apparatus
US11841408B2 (en) 2016-11-22 2023-12-12 Hyperfine Operations, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
JP2021171343A (en) * 2020-04-27 2021-11-01 株式会社日立製作所 Open type magnetic resonance imaging apparatus
US11320504B2 (en) 2020-04-27 2022-05-03 Fujifilm Healthcare Corporation Open-type magnetic resonance imaging apparatus
US12025685B2 (en) 2021-06-29 2024-07-02 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP2561591B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
EP0479514B1 (en) Magnetic field generating device used for MRI
EP0691548B1 (en) Magnetic field generating device for use in MRI
US5252924A (en) Magnetic field generating apparatus for MRI
US4818966A (en) Magnetic field generating device
EP0645641B1 (en) Improvements in or relating to MRI magnets
JP4039495B2 (en) Magnetic field generator for MRI
WO1993018707A1 (en) Magnetic field generator for mri
JP2561591B2 (en) Magnetic field generator for MRI
JP3016544B2 (en) Permanent magnet magnetic circuit
JP2764458B2 (en) Magnetic field generator for MRI
EP0541872B1 (en) Magnetic field generating apparatus for MRI
JP2649436B2 (en) Magnetic field generator for MRI
JP2649437B2 (en) Magnetic field generator for MRI
USRE35565E (en) Magnetic field generating apparatus for MRI
JP3073933B2 (en) Magnetic field generator for MRI
JP4214736B2 (en) Magnetic field generator for MRI
JP3445303B2 (en) Magnetic field generator for MRI
JP3073934B2 (en) Magnetic field generator for MRI
US6937018B2 (en) Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JPS61203605A (en) Magnet having highly uniform magnetic field
JPH0287505A (en) Magnetic field generating equipment for mri use
JPH0394733A (en) Magnetic field generator for mri
JP3113438B2 (en) Magnetic field generator for MRI
JPH0563085B2 (en)
JPH03203203A (en) Magnetic field generating device for mri

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 16