JP3016544B2 - Permanent magnet magnetic circuit - Google Patents

Permanent magnet magnetic circuit

Info

Publication number
JP3016544B2
JP3016544B2 JP7140974A JP14097495A JP3016544B2 JP 3016544 B2 JP3016544 B2 JP 3016544B2 JP 7140974 A JP7140974 A JP 7140974A JP 14097495 A JP14097495 A JP 14097495A JP 3016544 B2 JP3016544 B2 JP 3016544B2
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
magnetic
magnetic field
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7140974A
Other languages
Japanese (ja)
Other versions
JPH08335511A (en
Inventor
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7140974A priority Critical patent/JP3016544B2/en
Publication of JPH08335511A publication Critical patent/JPH08335511A/en
Application granted granted Critical
Publication of JP3016544B2 publication Critical patent/JP3016544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、医療診断用の核磁気共
鳴断層撮影装置(以下、MRI装置という)において、
勾配磁場印加に伴う渦電流発生が少なく、勾配磁束が通
り易いバイアス磁場発生に有用な核磁気共鳴断層撮影装
置用永久磁石磁気回路である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear magnetic resonance tomography apparatus for medical diagnosis (hereinafter referred to as an MRI apparatus).
This is a permanent magnet magnetic circuit for a nuclear magnetic resonance tomography apparatus useful for generating a bias magnetic field in which an eddy current is less generated due to application of a gradient magnetic field and a gradient magnetic flux easily passes.

【0002】[0002]

【従来の技術】磁気共鳴断層装置に使用するマグネット
として、磁石対向型永久磁石磁気回路はよく知られてい
る。例えば、W.H.Oldendorf; WO 84/00611 (PCT/US83/0
1175)、実公平2- 44483号、 実公平2- 44484号、 実公平2-
44485号、実公平2- 44486号各公報、映像情報15巻 p.3
79(1983)および病態生理4巻 p.91(1985) などがある。
該磁気回路は空隙に磁石を対向させただけでは空隙中心
に十分な磁場均一性が得られない。このため空隙中に発
生する磁場強度は少し低下するが、図6に示したように
空隙に面した磁石表面に整磁板と呼ばれる鉄板を貼って
磁場均一性を向上させている。この整磁板形状には磁場
の均一性を向上させる様々な工夫がされている。例え
ば、整磁板外周部に環状突起を設けることは空隙中心部
の磁場を向上(磁場均一性は空隙中心に仮想的に設けら
れた球空間の磁場分布で評価される)させ、極と赤道部
の磁場の不均一性を緩和する。更に整磁板表面に環状突
起よりもっと小さい環状段差を設けることも行われてお
り、均一球(例えば40cm直径の球空間)内の磁場均一性
として例えば2000Gの発生磁場に対して50ppm 以下の磁
場均一度が得られている。このように永久磁石対向型磁
気回路において整磁板は磁場均一性向上のため必要不可
欠な部材である。
2. Description of the Related Art As a magnet used in a magnetic resonance tomography apparatus, a magnet facing type permanent magnet magnetic circuit is well known. For example, WHOldendorf; WO 84/00611 (PCT / US83 / 0
1175), Jitsuhei 2-44483, Jitsuhei 2-44484, Jitsuhei 2-
No. 44485, Jitsuho 2-44486, each of the gazettes of video information, volume 15 p.3
79 (1983) and Pathophysiology, Vol. 4, p. 91 (1985).
In the magnetic circuit, sufficient magnetic field uniformity cannot be obtained at the center of the air gap only by making the magnet face the air gap. For this reason, the intensity of the magnetic field generated in the gap slightly decreases, but as shown in FIG. 6, an iron plate called a magnetic shunt is attached to the magnet surface facing the gap to improve the magnetic field uniformity. Various measures have been taken to improve the uniformity of the magnetic field in the shape of the magnetic shunt plate. For example, providing an annular protrusion on the outer periphery of the magnetic shunt plate improves the magnetic field in the center of the gap (magnetic field uniformity is evaluated by the magnetic field distribution in a sphere space virtually provided in the center of the gap), and the pole and the equator Alleviates the inhomogeneity of the magnetic field in the part. Further, an annular step smaller than the annular protrusion is also provided on the surface of the magnetic shunt plate, and as a magnetic field uniformity within a uniform sphere (for example, a sphere space having a diameter of 40 cm), for example, a magnetic field of 50 ppm or less for a generated magnetic field of 2000 G Uniformity is obtained. In this way, the magnetic shunt plate is an indispensable member for improving the magnetic field uniformity in the permanent magnet opposed magnetic circuit.

【0003】一方、MRI装置においては、位置情報を
得るためにソレノイドコイルに通電して該磁気回路空隙
空間内に勾配磁場を発生させる。該勾配磁場は永久磁石
の発生するバイアス磁場に重畳されて、水素原子核の核
磁気共鳴(NMR)周波数を場所により変化させる。M
RI装置における勾配磁場の役割は単にこれだけではな
いが、時間軸に対して矩形状のパルス磁場を印加するこ
とが本質的に必要である。磁石対向型磁気回路におい
て、勾配コイルは整磁板表面に図1のように設置される
のが一般的である。該勾配コイルにパルス矩形波状の勾
配磁場を印加した場合、勾配コイルと整磁板は近接して
いるため整磁板には勾配磁場を打ち消す方向に渦電流が
流れる。該渦電流はパルス勾配磁場波形(矩形波)の立
ち上がりを鈍らせ、立ち下がりの裾を引かせるように働
く(図5参照)。このことはMRI装置において画像を
得る上で非常に有害であり、勾配磁場印加における整磁
板の渦電流の発生をできるだけ低減する事が望ましい。
On the other hand, in the MRI apparatus, a gradient magnetic field is generated in the magnetic circuit space by energizing a solenoid coil in order to obtain positional information. The gradient magnetic field is superimposed on the bias magnetic field generated by the permanent magnet, and changes the nuclear magnetic resonance (NMR) frequency of the hydrogen nucleus depending on the location. M
The role of the gradient magnetic field in the RI apparatus is not limited to this, but it is essentially necessary to apply a rectangular pulse magnetic field to the time axis. In a magnet facing type magnetic circuit, a gradient coil is generally installed on the surface of a magnetic shunt as shown in FIG. When a pulse rectangular wave gradient magnetic field is applied to the gradient coil, an eddy current flows through the magnetic shunt plate in a direction to cancel the gradient magnetic field because the gradient coil and the magnetic shunt plate are close to each other. The eddy current acts to slow down the rise of the pulse gradient magnetic field waveform (rectangular wave) and reduce the tail of the fall (see FIG. 5). This is very harmful in obtaining an image in an MRI apparatus, and it is desirable to minimize the generation of eddy current in the magnetic shunt plate when a gradient magnetic field is applied.

【0004】該渦電流低減のためには種々のハイブリッ
ド構造の整磁板が考案されており、一般的にはベース鉄
板と軟磁性層の組み合わせが用いられる。例えば、特開
昭63-241905 号、 特開平1-304709号、 特開平2-2603号、
特開平2-184002号、 特開平2-218343号、 特開平3-203203
号、 特開平4-82536 号、 特開平4-138131号、 特開平5-18
2821号などの各公報が開示されている。勾配コイルに面
する整磁板表面の材質に要求される特性は、磁気的に透
磁率が高く、保磁力が低い軟質磁性で、かつ電気抵抗の
高いことであり、これを構造的に保持するためバルク鉄
板がベースとして使用されている。このような整磁板表
面の材質に要求される特性の内、前者は均一磁場を得る
ために必要であり、後者は渦電流を抑制するために必要
である。このような要求を満たす軟質磁性素材として
は、軟磁性フェライト(MnZnフェライト、NiZnフェライ
トなど)、アモルファス薄帯、珪素鋼板、パーマロイ、
純鉄などがある。後4者はバルク状態では電気抵抗が高
くないので薄板形状を積層する必要がある。また電気抵
抗をできるだけ高くするため薄板間は絶縁処理すること
が望ましい。この他、鉄粉を樹脂とともに圧粉成形した
樹脂鉄も高電気抵抗と軟磁気特性を有するため使用可能
である。これらの軟質磁性素材の中では、バルク状態で
電気抵抗が非常に高く、透磁率も高いフェライトが磁気
特性的に好ましい。しかしフェライトはセラミックスで
あるから元々脆く、バイアス磁場中に設置されるため常
に磁場方向にフェライトの長手方向が配向するような力
を受ける。このため整磁板ベースへの固着方法が難し
く、割れやクラックが発生する危険性がつきまとう。ま
た、粉末燒結法により作製する焼き物であるため、大型
ブロックを作製することは寸法精度や加工の面から難し
い。また純鉄積層や樹脂鉄は軟磁気特性の面から他の素
材ほど良くない。さらにパーマロイは非常に優れた軟磁
気特性を有するが、非常に高価でかつ応力などによる磁
気特性の劣化が生じ易いため使いにくい。
In order to reduce the eddy current, various types of magnetic shunt plates having a hybrid structure have been devised, and a combination of a base iron plate and a soft magnetic layer is generally used. For example, JP-A-63-241905, JP-A-1-304709, JP-A-2-603,
JP-A-2-184002, JP-A-2-218343, JP-A-3-203203
No., JP-A-4-82536, JP-A-4-138131, JP-A-5-18
Each gazette such as 2821 is disclosed. The characteristics required for the material of the surface of the magnetic shunt plate facing the gradient coil are that the magnetic permeability is high, the coercive force is low, the soft magnetism is high, and the electric resistance is high, and this is structurally retained. Therefore, a bulk iron plate is used as a base. Among the characteristics required for the material of the surface of the magnetic shunt plate, the former is necessary to obtain a uniform magnetic field, and the latter is necessary to suppress eddy current. Soft magnetic materials satisfying such requirements include soft magnetic ferrites (MnZn ferrite, NiZn ferrite, etc.), amorphous ribbons, silicon steel sheets, permalloy,
There is pure iron. In the latter four, the electric resistance is not high in the bulk state, so that it is necessary to laminate thin plate shapes. Further, it is desirable to perform insulation treatment between the thin plates in order to increase the electric resistance as much as possible. In addition, resin iron obtained by compacting iron powder with resin can also be used because it has high electric resistance and soft magnetic characteristics. Among these soft magnetic materials, ferrite having very high electric resistance in bulk state and high magnetic permeability is preferable in terms of magnetic properties. However, ferrite is inherently brittle because it is ceramic and is placed in a bias magnetic field, so that it is always subjected to a force such that the longitudinal direction of the ferrite is oriented in the direction of the magnetic field. For this reason, it is difficult to fix the magnet to the magnetic shunt plate base, and there is a risk that cracks and cracks may occur. In addition, since it is a baked product manufactured by the powder sintering method, it is difficult to manufacture a large block in terms of dimensional accuracy and processing. Pure iron laminate and resin iron are not as good as other materials in terms of soft magnetic properties. Further, although permalloy has very excellent soft magnetic properties, it is very expensive and is difficult to use because its magnetic properties are easily deteriorated by stress or the like.

【0005】これに対し、珪素鋼板は軟磁気特性が良好
で、打ち抜きなどで大型の薄板加工も容易であり、モー
タなどに大量に使用されているため廉価であり該整磁板
のハイブリッド素材として適している。珪素鋼板には無
方向性と方向性の2種類があり、方向性珪素鋼板の方が
磁気特性は良好であるが使用は難しい。勾配磁場はX、
Y、Zの3方向に印加されるので、方向性珪素鋼板では
X、Y、Z勾配磁場3方向に対して磁束の流れる方向全
てを満足するように方向性珪素鋼板の配向を配置するこ
とが困難である。方向性珪素鋼板を容易軸が2方向にな
るように積層することも提案(特開平4-138131号参照)
されているが、X、Y、Z3方向の勾配磁束の流れを満
足する積層構造ではなく、無方向性珪素鋼板を積層する
のが一般的である。
On the other hand, silicon steel sheets have good soft magnetic properties, are easy to process large thin sheets by punching and the like, and are inexpensive because they are used in large quantities in motors and the like. Are suitable. There are two types of silicon steel sheets: non-oriented and oriented, and oriented silicon steel sheets have better magnetic properties but are difficult to use. The gradient magnetic field is X,
Since the voltage is applied in three directions of Y and Z, the orientation of the directional silicon steel sheet may be arranged in the directional silicon steel sheet so as to satisfy all the directions in which the magnetic flux flows in the three directions of the X, Y and Z gradient magnetic fields. Have difficulty. It is also proposed to stack oriented silicon steel sheets so that the easy axis is in two directions (see JP-A-4-138131).
However, a non-oriented silicon steel sheet is generally laminated instead of a laminated structure that satisfies the flow of gradient magnetic fluxes in the X, Y, and Z directions.

【0006】[0006]

【発明が解決しようとする課題】従って磁石対向型永久
磁石磁気回路の整磁板として、従来のものよりも更に渦
電流の発生が少なく、勾配磁束が流れ易く、製作の容易
な整磁板構造が望まれている。本発明はかかる課題を解
決し、X、Y、Zの勾配磁束が流れ易く、渦電流発生の
少ない整磁板構造を提供してMRI装置の画質向上を図
ろうとするものである。
Accordingly, as a magnetic shunt plate of a permanent magnet magnetic circuit opposed to a magnet, a magnetic shunt plate structure which generates less eddy current, allows a gradient magnetic flux to flow easily, and is easy to manufacture as compared with the conventional magnetic shunt plate. Is desired. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has an object to improve the image quality of an MRI apparatus by providing a magnetic shunt plate structure in which gradient magnetic fluxes of X, Y, and Z easily flow, and in which eddy current is less generated.

【0007】[0007]

【課題を解決するための手段】本発明者等は磁石対向型
永久磁石磁気回路で、勾配磁束が流れ易く、渦電流発生
の少ない、珪素鋼板と鉄板のハイブリッド構造の整磁板
を開発し、諸条件を確立して本発明を完成したもので、
その要旨は、一対の磁石を対向させて該磁石空隙表面に
整磁板を設け、これらを継鉄により結合して閉磁路を構
成した永久磁石対向型磁気回路において、該整磁板が鉄
板と珪素鋼板から成る積層鋼板であり、該珪素鋼板は空
隙に面した整磁板表面に配置され、該珪素鋼板は配向方
向が径方向に向いた径配向方向性珪素鋼板と無方向性珪
素鋼板とを、または該径配向方向性珪素鋼板と配向方向
が周方向に向いた周配向方向性珪素鋼板とを、厚み方向
に混在するように積層されて成ることを特徴とする永久
磁石磁気回路にあり、更に詳しくは、該積層珪素鋼板
は、勾配磁束を通すのに十分な厚みを有し、周方向に4
分割以上かつ径方向に2分割以上分割され、個々の珪素
鋼板は隣接珪素鋼板と電気的に絶縁されている永久磁石
磁気回路にある。
Means for Solving the Problems The present inventors have developed a magnetic shunt plate having a hybrid structure of a silicon steel plate and an iron plate, which is a magnet facing type permanent magnet magnetic circuit, in which a gradient magnetic flux easily flows and an eddy current is less generated, The present invention was completed by establishing various conditions,
The gist is that in a permanent magnet facing magnetic circuit in which a pair of magnets are opposed to each other and a magnetic shunt plate is provided on the surface of the magnet gap, and these are joined by a yoke to form a closed magnetic circuit, the magnetic shunt plate and the iron plate are combined. A laminated steel sheet composed of a silicon steel sheet, wherein the silicon steel sheet is disposed on the surface of the magnetic shunt plate facing the gap, and the silicon steel sheet has a radially oriented silicon steel sheet and a non-oriented silicon steel sheet whose orientation directions are radially oriented. Or a permanent magnet magnetic circuit characterized in that the radially oriented silicon steel sheet and a circumferentially oriented silicon steel sheet whose orientation direction is oriented in the circumferential direction are laminated so as to be mixed in the thickness direction. More specifically, the laminated silicon steel sheet has a thickness sufficient to pass a gradient magnetic flux, and
Each silicon steel sheet is divided into two or more parts in a radial direction or more, and each silicon steel sheet is in a permanent magnet magnetic circuit that is electrically insulated from an adjacent silicon steel sheet.

【0008】以下、本発明を詳細に説明する。既に述べ
たように方向性珪素鋼板の径方向配向したものでの積層
は、Z勾配磁場に対して軟磁気特性は優れているが、
X、Y勾配磁場に対しては磁束を通しにくいという問題
があった。一方、無方向性珪素鋼板の積層は、X、Y、
Z勾配磁場に対応できるが、軟磁気特性が方向性珪素鋼
板より劣っている。そこで鉄板−珪素鋼板からなるハイ
ブリッド整磁板を改良するため、Z勾配磁場に対して径
配向の方向性珪素鋼板を採用し、X、Y勾配磁場に対し
て無方向性珪素鋼板か周配向の方向性珪素鋼板を採用す
ることとした。Z勾配磁場に対応する珪素鋼板の配置
は、図2(a)に示したように径方向に分割され、各珪
素鋼板セグメントは疑似径方向に配向したものを組み合
わせて円板状とし、容易磁化方向を径方向配向とした。
勾配コイルにより発生したZ勾配磁束は、整磁板のギャ
ップ側底面を通って外周の環状突起を経由して元に戻
る。このため、整磁板底面でのZ勾配磁束は環状突起に
向かって径方向に流れるため、径配向方向性珪素鋼板を
採用する。これにより径方向に磁束が流れ易いので、Z
勾配磁場印加に伴う渦電流発生や、整磁板に起因する残
留磁化の変化が低減される。一方、X、Y勾配磁場に対
応する無方向性珪素鋼板または周配向方向性珪素鋼板の
分割は、径方向性珪素鋼板と同じで円板状にする。例え
ば、X勾配コイルは図4(a)のような形状をしてお
り、図4(b)のようにX方向に勾配磁束が流れる。X
勾配磁束の流れる周方向に、方向性珪素鋼板をを配置す
るか、無方向性珪素鋼板を用いる。後者の場合、配向を
考慮する必要はない。周配向の方向性珪素鋼板と無方向
性珪素鋼板で、勾配磁束の通り易さは同等である。何故
なら、周配向は必ずしもX勾配磁束の最適導磁方向と一
致していないためである。従って、X、Y勾配磁場に対
して、どちらを採用してもよい。
Hereinafter, the present invention will be described in detail. As described above, the lamination of the grain-oriented silicon steel sheet in the radial direction is excellent in the soft magnetic property with respect to the Z gradient magnetic field,
There is a problem that it is difficult to pass a magnetic flux to the X and Y gradient magnetic fields. On the other hand, the lamination of non-oriented silicon steel sheets is X, Y,
Although it can cope with a Z gradient magnetic field, its soft magnetic properties are inferior to those of a grain oriented silicon steel sheet. Therefore, in order to improve the hybrid magnetic shunt plate composed of an iron plate and a silicon steel plate, a directional silicon steel plate having a radial orientation with respect to a Z gradient magnetic field is adopted, and a non-directional silicon steel plate or a circumferentially oriented silicon steel plate with respect to an X, Y gradient magnetic field is employed. Oriented silicon steel sheet was adopted. The arrangement of the silicon steel sheet corresponding to the Z gradient magnetic field is divided in the radial direction as shown in FIG. 2 (a), and each silicon steel sheet segment is formed into a disc shape by combining those oriented in the pseudo radial direction, and is easily magnetized. The direction was radial orientation.
The Z-gradient magnetic flux generated by the gradient coil passes through the gap-side bottom surface of the magnetic shunt plate and returns to the original state through the annular projection on the outer periphery. For this reason, since the Z gradient magnetic flux at the bottom surface of the magnetic shunt plate flows in the radial direction toward the annular protrusion, a radially oriented silicon steel plate is employed. As a result, magnetic flux easily flows in the radial direction.
The generation of eddy current due to the application of the gradient magnetic field and the change in residual magnetization due to the magnetic shunt plate are reduced. On the other hand, the division of the non-oriented silicon steel sheet or the circumferentially oriented silicon steel sheet corresponding to the X, Y gradient magnetic field is the same as that of the radial silicon steel sheet and is made into a disk shape. For example, the X gradient coil has a shape as shown in FIG. 4A, and a gradient magnetic flux flows in the X direction as shown in FIG. 4B. X
A directional silicon steel sheet is arranged in the circumferential direction in which the gradient magnetic flux flows, or a non-oriented silicon steel sheet is used. In the latter case, there is no need to consider the orientation. The directional silicon steel sheet having the circumferential orientation and the non-oriented silicon steel sheet have the same ease of passing the gradient magnetic flux. This is because the circumferential orientation does not always coincide with the optimal magnetic guiding direction of the X gradient magnetic flux. Therefore, either may be adopted for the X and Y gradient magnetic fields.

【0009】方向性と無方向性珪素鋼板の積層は、1枚
づつ交互に、複数同数枚毎交互に、或は異数枚毎交互に
積層してもよいが、整磁板の厚み方向に混合しているこ
とが好ましく、少なくとも4組以上、好ましくは6組以
上が良い。勾配磁束は、整磁板表面の磁束が流れ易い所
(透磁率の高い所)を流れるため、例えば上半分が方向
性で下半分が無方向性のような(もしくはその逆)1組
の交互積層は好ましくない。何故なら、このような積層
ではX、Y勾配磁束は環状突起部を流れる可能性があ
り、勾配磁場の線形性が乱されるからである。この場合
用いる珪素鋼板厚みは0.1mm 〜1mmの間のものでよい。
[0009] Directional and non-oriented silicon steel sheets may be laminated alternately one by one, alternately by a plurality of the same number of sheets, or alternately by a different number of sheets, but in the thickness direction of the magnetic shunt plate. It is preferable that they are mixed, and at least 4 or more, preferably 6 or more are good. Since the gradient magnetic flux flows through a place where the magnetic flux on the surface of the magnetic shunt plate easily flows (a place with high magnetic permeability), for example, a set of alternating ones in which the upper half is directional and the lower half is non-directional (or vice versa). Lamination is not preferred. This is because in such a stack, the X and Y gradient magnetic fluxes may flow through the annular protrusion, and the linearity of the gradient magnetic field is disturbed. The thickness of the silicon steel sheet used in this case may be between 0.1 mm and 1 mm.

【0010】渦電流を抑制するため、珪素鋼板は径方向
と周方向に分割する必要がある。周方向には4分割以上
が必要で、好ましくは6分割以上[図3(a)参照]で
ある。径方向には更に渦電流低減のため2分割以上の分
割が好ましい。各珪素鋼板セグメントは積層方向(厚み
方向)の表面は絶縁処理されており、渦電流が流れたと
しても整磁板面内に制限される。また、隣接セグメント
間も絶縁処理されていることが望ましく、整磁板面内周
方向に流れる渦電流を抑制できる。該珪素鋼板の表面絶
縁処理と分割により、渦電流の強度を大幅に低減でき
る。
In order to suppress the eddy current, the silicon steel sheet needs to be divided into a radial direction and a circumferential direction. Four or more divisions are necessary in the circumferential direction, and preferably six or more divisions (see FIG. 3A). In the radial direction, two or more divisions are preferable in order to further reduce the eddy current. The surface of each silicon steel sheet segment in the laminating direction (thickness direction) is insulated, so that even if an eddy current flows, it is limited to the plane of the magnetic shunt plate. Also, it is desirable that the insulation treatment is performed between adjacent segments, and eddy current flowing in the inner circumferential direction of the magnetic shunt plate can be suppressed. By the surface insulation treatment and division of the silicon steel sheet, the intensity of the eddy current can be significantly reduced.

【0011】本発明において整磁板の環状突起および勾
配コイルの設計条件については従来公知の技術を適応す
ることができる。
In the present invention, conventionally known techniques can be applied to the design conditions of the annular projection of the magnetic shunt plate and the gradient coil.

【0012】[0012]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例)中心磁場が2,000Gの磁石対向型磁気回路で、
径1,000mm の整磁板を使用した。整磁板厚み60mmの内表
層部30mmが珪素鋼板で、残り30mmがベース鉄板である。
表層部珪素鋼板は周方向が8分割、径方向が4分割され
ており、厚み 0.5mmの珪素鋼板を積層した。径配向方向
性珪素鋼板5枚(2.5mmt)と無方向性珪素鋼板5枚(2.5mm
t)を交互に厚み方向に積層して6組(30mmt) で表層部を
形成した。この整磁板にX方向とZ方向に夫々1G/cmに
相当する矩形波状勾配磁場(立ち上がり1msec、パルス
幅5msec、上下の勾配コイルに同じ方向の磁場)を印加
して、均一磁場空間の磁場変化を測定したところ、その
変化の割合は、中心で20ppm であった。
EXAMPLES Hereinafter, embodiments of the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. (Example) A magnet facing magnetic circuit having a center magnetic field of 2,000 G,
A magnetic shunt having a diameter of 1,000 mm was used. The inner surface layer 30 mm of the magnetic shunt plate 60 mm thick is a silicon steel plate, and the remaining 30 mm is a base iron plate.
The surface layer silicon steel sheet was divided into eight parts in the circumferential direction and four parts in the radial direction. 5 oriented silicon steel sheets (2.5mmt) and 5 non-oriented silicon steel sheets (2.5mmt)
t) were alternately laminated in the thickness direction to form a surface layer in six sets (30 mmt). A rectangular wave-shaped gradient magnetic field (1 msec rising, pulse width 5 msec, magnetic field in the same direction to the upper and lower gradient coils) corresponding to 1 G / cm in the X direction and the Z direction is applied to the magnetic shunt plate, and the magnetic field in the uniform magnetic field space is applied. When the change was measured, the rate of change was 20 ppm at the center.

【0013】(比較例)無方向性珪素鋼板のみで表層部
を形成した整磁板に、実施例と同じ磁場を印加してその
変化率を測定したところ 56ppmであった。以上の結果か
ら、方向性珪素鋼板と無方向性珪素鋼板を併用すること
により、渦電流が抑制され磁束が通り易くなったため、
均一空間の磁場変化が小さくなることがわかった。
(Comparative Example) When the same magnetic field as in the example was applied to a magnetic shunt plate having a surface layer formed only of a non-oriented silicon steel sheet, the change rate was 56 ppm. From the above results, by using a grain-oriented silicon steel sheet and a non-oriented silicon steel sheet together, the eddy current was suppressed and the magnetic flux became easier to pass,
It was found that the change of the magnetic field in the uniform space became small.

【0014】[0014]

【発明の効果】本発明によれば、勾配磁場に対する整磁
板表面の軟磁気特性と、渦電流低減を両立させることが
でき、勾配磁場による整磁板の残留磁化変化の少ない磁
石対向型磁気回路が実現でき、核磁気共鳴断層撮影装置
の画質向上に効果がある。
According to the present invention, it is possible to achieve both the soft magnetic characteristics of the surface of the magnetic shunt plate against the gradient magnetic field and the reduction of the eddy current, and to reduce the residual magnetization of the magnetic shunt plate due to the gradient magnetic field. The circuit can be realized, which is effective for improving the image quality of the nuclear magnetic resonance tomography apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁石対向型磁気回路における整磁板お
よび勾配コイルの配置を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an arrangement of a magnetic shunt plate and a gradient coil in a magnet facing magnetic circuit of the present invention.

【図2】本発明の整磁板の一例を示す(a)平面図、
(b)縦断面図である。
FIG. 2A is a plan view showing an example of a magnetic shunt plate of the present invention;
(B) It is a longitudinal cross-sectional view.

【図3】本発明の整磁板の別の例を示す(a)平面図、
(b)縦断面図である。
FIG. 3A is a plan view showing another example of the magnetic shunt plate of the present invention;
(B) It is a longitudinal cross-sectional view.

【図4】本発明の整磁板内における(a)勾配コイル形
状を示す平面図と(b)勾配磁束の流れを示す縦断面図
である(X方向勾配コイルを表し、Y、Z方向勾配コイ
ルは省略した)。
4A is a plan view showing a gradient coil shape and FIG. 4B is a longitudinal sectional view showing a flow of a gradient magnetic flux in the magnetic shunt plate of the present invention. The coil was omitted).

【図5】勾配磁場と渦電流の関係を表した説明図であ
る。
FIG. 5 is an explanatory diagram showing a relationship between a gradient magnetic field and an eddy current.

【図6】従来の磁石対向型磁気回路を示す斜視図であ
る。
FIG. 6 is a perspective view showing a conventional magnet-facing magnetic circuit.

【符号の説明】 1 永久磁石 2 整磁板 3 鉄ヨーク 4 磁場空間 5 環状突起 6 勾配コイル 7 無方向性珪素鋼板 8 方向性珪素
鋼板 9 径配向方向性珪素鋼板 10 周配向方向
性珪素鋼板 11 X勾配コイル → 磁束配向方
[Description of Signs] 1 Permanent magnet 2 Magnetic shunt plate 3 Iron yoke 4 Magnetic field space 5 Annular protrusion 6 Gradient coil 7 Non-directional silicon steel sheet 8 Oriented silicon steel sheet 9 Radially oriented directional silicon steel sheet 10 Circularly oriented directional silicon steel sheet 11 X gradient coil → direction of magnetic flux orientation

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一対の磁石を対向させて該磁石空隙表面に
整磁板を設け、これらを継鉄により結合して閉磁路を構
成した永久磁石対向型磁気回路において、該整磁板が鉄
板と珪素鋼板から成る積層鋼板であり、該珪素鋼板は空
隙に面した整磁板表面に配置され、該珪素鋼板は配向方
向が径方向に向いた径配向方向性珪素鋼板と無方向性珪
素鋼板とを、または該径配向方向性珪素鋼板と配向方向
が周方向に向いた周配向方向性珪素鋼板とを、厚み方向
に混在するように積層されて成ることを特徴とする永久
磁石磁気回路。
1. A permanent magnet facing magnetic circuit in which a pair of magnets are opposed to each other and a magnetic shunt plate is provided on the surface of the magnet gap, and these are joined by a yoke to form a closed magnetic circuit. And a silicon steel sheet, wherein the silicon steel sheet is disposed on the surface of the magnetic shunt plate facing the gap, and the silicon steel sheet has a radially oriented silicon steel sheet and a non-oriented silicon steel sheet whose orientation directions are oriented in the radial direction. Or a permanent magnet magnetic circuit, wherein the radially oriented silicon steel sheet and the circumferentially oriented silicon steel sheet whose orientation is oriented in the circumferential direction are laminated so as to be mixed in the thickness direction.
【請求項2】請求項1記載の積層珪素鋼板は、勾配磁束
を通すのに十分な厚みを有し、周方向に4分割以上かつ
径方向に2分割以上分割され、個々の珪素鋼板は隣接珪
素鋼板と電気的に絶縁されていることを特徴とする永久
磁石磁気回路。
2. The laminated silicon steel sheet according to claim 1 has a thickness sufficient to allow a gradient magnetic flux to pass through, and is divided into four or more in the circumferential direction and two or more in the radial direction. A permanent magnet magnetic circuit which is electrically insulated from a silicon steel sheet.
JP7140974A 1995-06-08 1995-06-08 Permanent magnet magnetic circuit Expired - Fee Related JP3016544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140974A JP3016544B2 (en) 1995-06-08 1995-06-08 Permanent magnet magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140974A JP3016544B2 (en) 1995-06-08 1995-06-08 Permanent magnet magnetic circuit

Publications (2)

Publication Number Publication Date
JPH08335511A JPH08335511A (en) 1996-12-17
JP3016544B2 true JP3016544B2 (en) 2000-03-06

Family

ID=15281179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140974A Expired - Fee Related JP3016544B2 (en) 1995-06-08 1995-06-08 Permanent magnet magnetic circuit

Country Status (1)

Country Link
JP (1) JP3016544B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3283242B2 (en) * 1999-06-21 2002-05-20 ジーイー横河メディカルシステム株式会社 Gradient coil manufacturing method, gradient coil and MRI apparatus
JP4051301B2 (en) * 2003-02-12 2008-02-20 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Circular pole piece and MRI equipment
US7868723B2 (en) 2003-02-26 2011-01-11 Analogic Corporation Power coupling device
US9490063B2 (en) 2003-02-26 2016-11-08 Analogic Corporation Shielded power coupling device
US9368272B2 (en) 2003-02-26 2016-06-14 Analogic Corporation Shielded power coupling device
US8350655B2 (en) 2003-02-26 2013-01-08 Analogic Corporation Shielded power coupling device
US6937018B2 (en) * 2003-10-31 2005-08-30 General Electric Company Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JP5224275B2 (en) * 2008-03-28 2013-07-03 日立金属株式会社 PET / MRI integrated device
CN102403081B (en) * 2010-09-17 2015-02-11 通用电气公司 Magnet assembly and manufacturing method thereof
JP2014236827A (en) * 2013-06-07 2014-12-18 株式会社日立メディコ Magnetic resonance imaging apparatus
JP6368625B2 (en) * 2014-11-18 2018-08-01 株式会社日立製作所 Magnetic resonance imaging system

Also Published As

Publication number Publication date
JPH08335511A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
EP0691548B1 (en) Magnetic field generating device for use in MRI
US5061897A (en) Eddy current control in magnetic resonance imaging
US5283544A (en) Magnetic field generating device used for MRI
EP0645641B1 (en) Improvements in or relating to MRI magnets
US5252924A (en) Magnetic field generating apparatus for MRI
JP3016544B2 (en) Permanent magnet magnetic circuit
WO1999052427A1 (en) Magnetic field generating device for mri
JP3150248B2 (en) Magnetic field generator for MRI
US5729188A (en) Homogeneous field magnet with at least one pole plate to be mechanically aligned
EP0801314B1 (en) MRI magnet assembly with opposite permanent magnets
JP2561591B2 (en) Magnetic field generator for MRI
US7034536B2 (en) Inclined magnetic field generation coil and magnetic field generator for MRI
JP2764458B2 (en) Magnetic field generator for MRI
EP0541872B1 (en) Magnetic field generating apparatus for MRI
USRE35565E (en) Magnetic field generating apparatus for MRI
JP2649436B2 (en) Magnetic field generator for MRI
JPH10146326A (en) Magnetic field generator for mri
GB2282451A (en) Yoke MRI magnet with radially laminated pole-plates
JP4214736B2 (en) Magnetic field generator for MRI
JP3073933B2 (en) Magnetic field generator for MRI
US6937018B2 (en) Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JP3445303B2 (en) Magnetic field generator for MRI
JPH05144628A (en) Magnetic field generator
JPH0394733A (en) Magnetic field generator for mri
JP3073934B2 (en) Magnetic field generator for MRI

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees