JP6368625B2 - Magnetic resonance imaging system - Google Patents
Magnetic resonance imaging system Download PDFInfo
- Publication number
- JP6368625B2 JP6368625B2 JP2014233218A JP2014233218A JP6368625B2 JP 6368625 B2 JP6368625 B2 JP 6368625B2 JP 2014233218 A JP2014233218 A JP 2014233218A JP 2014233218 A JP2014233218 A JP 2014233218A JP 6368625 B2 JP6368625 B2 JP 6368625B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic pole
- magnetic field
- disk
- insulating structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Description
本発明は、磁気共鳴イメージング装置において、装置使用時に発生する不要な変動磁場低減方法に関する。
The present invention relates to a method for reducing an unnecessary fluctuation magnetic field generated when a magnetic resonance imaging apparatus is used.
磁気共鳴イメージング装置(以下、MRI装置という)は、均一な静磁場中に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体の物理的、化学的性質を示す断面画像を得る装置であり、特に、医療用として用いられている。 A magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) uses a nuclear magnetic resonance phenomenon that occurs when an object placed in a uniform static magnetic field is irradiated with a high-frequency pulse, and thereby the physical and chemical properties of the object. It is an apparatus for obtaining a cross-sectional image showing properties, and is particularly used for medical purposes.
MRI装置は、主に被検体が挿入される撮像空間に均一な静磁場を生成する磁石装置と、撮像空間に位置情報を付与するために空間的に強度が勾配した磁場をパルス状に発生させる傾斜磁場コイル、被検体に高周波パルスを照射するRFコイル、被検体からの磁気共鳴信号を受信する受信コイル、および、受信した信号を処理して画像を表示するコンピュータシステムから構成されている。 An MRI apparatus generates a magnetic field that generates a uniform static magnetic field mainly in an imaging space into which a subject is inserted, and a magnetic field that is spatially gradient in intensity to give positional information to the imaging space. A gradient magnetic field coil, an RF coil that irradiates a subject with a high frequency pulse, a receiving coil that receives a magnetic resonance signal from the subject, and a computer system that processes the received signal and displays an image.
MRI装置の性能向上の手段として、磁石装置が発生する静磁場の強度または均一度の向上がある。静磁場がより強い程、鮮明な画像が得られ、また、静磁場の広い空間でより一様である程、広い範囲にわたって鮮明な画像を得ることが出来るため、MRI装置は磁場の強度と均一性向上を指向して開発が続けられている。他の性能向上の手段としては、傾斜磁場精度の向上と傾斜磁場パルスの高速駆動がある。これらは、画質の向上と撮像時間の短縮に寄与する。特に撮像方法の多様化に伴い、傾斜磁場パルスを発生させる電流波形は高速な時間変化を伴うパルス波形となる傾向にある。 As a means for improving the performance of the MRI apparatus, there is an improvement in the strength or uniformity of the static magnetic field generated by the magnet apparatus. The stronger the static magnetic field, the clearer the image can be obtained, and the more uniform in the wide space of the static magnetic field, the clearer image can be obtained over a wide range. Development is being continued with the aim of improving performance. As other means for improving performance, there are improvement of gradient magnetic field accuracy and high-speed driving of gradient magnetic field pulses. These contribute to improvement of image quality and reduction of imaging time. In particular, with the diversification of imaging methods, a current waveform that generates a gradient magnetic field pulse tends to be a pulse waveform with a fast time change.
傾斜磁場コイルにはパルス状の電流が流れるため、撮像空間における傾斜磁場だけでなく、撮像空間外では漏れ磁場を生じ、磁石装置を構成する金属構造物に変動磁場を生じることで渦電流を発生させる。渦電流は撮像空間内で変動磁場を生じるため、静磁場と傾斜磁場の分布に影響し画質に悪影響を生じる。特に、近年のMRI装置においては、撮像方法の高度化に伴い、高精度な磁場が要求されるため、渦電流を低減することが重要な課題となっている。このため、一般に、超電導の静磁場磁石を有する高磁場(0.5テスラ以上)のMRI磁石に置いては、自己遮蔽型の傾斜磁場コイルを採用し、撮像空間以外への漏れ磁場を低減する構造が採用されている。一方、中低磁場(0.5テスラ未満)の静磁場磁石を有するMRI装置においては、傾斜磁場コイルを出力の小さな駆動電源で使用するために、シールドコイルを有しておらず、代わりに、静磁場磁石の磁極面に珪素鋼板などの磁束の通路となり、かつ、渦電流の発生が小さい磁性体磁極片が設置されている。また、中低磁場の静磁場磁石には、磁性体である鉄製の磁極が使用されることが多い。この場合、傾斜磁場による変動磁場は、渦電流による磁場だけでなく、磁性体のヒステリシス特性を持った鉄製磁極の磁化による残留磁場も画像に悪影響を及ぼすため、これらを低減することが重要な課題となっている。
本技術分野の背景技術として、特開平05−182821号広報(特許文献1)がある。この広報には、静磁場磁極の表面に傾斜磁場側からソフトフェライト、積層珪素鋼板を積層させた磁極片を用いることによって、傾斜磁場コイルによる渦電流を低減させる技術が開示されている。また、特開2004−65714号広報(特許文献2)には、静磁場磁極の表面に積層させた珪素鋼板の磁極片を深層部に対して表層部で小さい形状で設置し、鉄製磁極への傾斜磁場の漏れ磁場を低減する技術がある。
Since a pulsed current flows through the gradient magnetic field coil, not only a gradient magnetic field in the imaging space but also a leakage magnetic field is generated outside the imaging space, and an eddy current is generated by generating a variable magnetic field in the metal structure constituting the magnet device. Let The eddy current generates a fluctuating magnetic field in the imaging space, which affects the distribution of the static magnetic field and the gradient magnetic field and adversely affects the image quality. In particular, in recent MRI apparatuses, with the advancement of imaging methods, a highly accurate magnetic field is required, so reducing eddy current is an important issue. For this reason, in general, a high magnetic field (0.5 Tesla or higher) MRI magnet with a superconducting static magnetic field magnet adopts a self-shielding gradient magnetic field coil to reduce the leakage magnetic field outside the imaging space. It has been adopted. On the other hand, in an MRI apparatus having a static magnetic field magnet with a medium to low magnetic field (less than 0.5 Tesla), since the gradient magnetic field coil is used with a drive power source with a small output, it does not have a shield coil, but instead a static magnetic field. A magnetic pole piece serving as a magnetic flux path such as a silicon steel plate and generating less eddy current is provided on the magnetic pole face of the magnet. Further, iron magnetic poles, which are magnetic materials, are often used for medium and low magnetic field magnets. In this case, the fluctuation magnetic field due to the gradient magnetic field not only affects the magnetic field due to the eddy current, but also the residual magnetic field due to the magnetization of the iron magnetic pole having the hysteresis characteristic of the magnetic material adversely affects the image. It has become.
As a background art in this technical field, there is a publication (Japanese Patent Laid-Open No. 05-182821) (Patent Document 1). This public information discloses a technique for reducing eddy current caused by a gradient magnetic field coil by using a pole piece in which soft ferrite and a laminated silicon steel plate are laminated on the surface of a static magnetic field magnetic pole from the gradient magnetic field side. In addition, in JP 2004-65714 A (Patent Document 2), a pole piece of a silicon steel plate laminated on the surface of a static magnetic field magnetic pole is installed in a small shape in a surface layer portion with respect to a deep layer portion, There is a technique for reducing the leakage magnetic field of the gradient magnetic field.
特許文献1が示すように、傾斜磁場コイルに最も近い静磁場磁極表面に抵抗値が大きくヒステリシス特性の小さいソフトフェライトを設置することで、渦電流と磁化変化による変動磁場を低減することができる。しかしながら、ソフトフェライトの飽和磁化は珪素鋼板などよりも低く、磁束が飽和しないためには積層の厚さが必要である。ソフトフェライトと珪素鋼板を合わせた厚さが十分に取れない場合は、静磁場磁極表面(鉄製磁極)に傾斜磁場の漏れ磁場が到達し、渦電流と磁化変化による変動磁場が画質に影響を及ぼす原因となる。 As shown in Patent Document 1, by installing a soft ferrite having a large resistance value and a small hysteresis characteristic on the surface of a static magnetic field magnetic pole closest to the gradient magnetic field coil, a variable magnetic field due to an eddy current and a magnetization change can be reduced. However, the saturation magnetization of soft ferrite is lower than that of a silicon steel plate or the like, and the thickness of the laminate is necessary so that the magnetic flux is not saturated. If the combined thickness of soft ferrite and silicon steel plate is not sufficient, the leakage magnetic field of the gradient magnetic field reaches the surface of the static magnetic field magnetic pole (iron magnetic pole), and the eddy current and the fluctuation magnetic field due to the magnetization change affect the image quality. Cause.
特許文献2では、静磁場磁極表層部の珪素鋼板製の磁極片を小さくすることにより、珪素鋼板表面に発生する渦電流を低減させている。珪素鋼板はソフトフェライトよりも飽和磁化が大きいため、積層厚さを抑えやすい。しかし渦電流の発生をより抑えるために、磁極片を小さくしていくと、見かけの電気抵抗が増加していくが、絶縁のための隙間が増加し、占積率が低下し、見かけの飽和磁化も低下する。このため、鉄製磁極へ到達する傾斜磁場の漏れ磁場を抑制するためには、占積率が低下した分だけ珪素鋼板の厚さを増す必要があった。 In Patent Document 2, the eddy current generated on the surface of the silicon steel sheet is reduced by reducing the magnetic steel pole piece made of the silicon steel sheet on the surface portion of the static magnetic field magnetic pole. Since silicon steel has a saturation magnetization larger than that of soft ferrite, it is easy to suppress the lamination thickness. However, if the pole pieces are made smaller in order to suppress the generation of eddy current, the apparent electrical resistance increases, but the gap for insulation increases, the space factor decreases, and the apparent saturation. Magnetization also decreases. For this reason, in order to suppress the leakage magnetic field of the gradient magnetic field that reaches the iron magnetic pole, it is necessary to increase the thickness of the silicon steel sheet by the amount that the space factor is reduced.
このように、従来技術では、静磁場磁極表面の渦電流発生を低減することが可能となる一方で、鉄製磁極の表面に厚く珪素鋼板またはソフトフェライトを設置する必要がある。撮像空間を広くするためには、傾斜磁場コイルと鉄製磁極の間隔は極力狭くする方が、静磁場磁石の磁気エネルギーを増やさずに済むので効率的である。一方で、傾斜磁場コイルが撮像空間に効果的に傾斜磁場を発生するためには、傾斜磁場コイルとソフトフェライトまたは珪素鋼板表面との間隔は広い方が良い。 As described above, in the prior art, it is possible to reduce the generation of eddy currents on the surface of the static magnetic field magnetic pole, while it is necessary to install a thick silicon steel plate or soft ferrite on the surface of the iron magnetic pole. In order to widen the imaging space, it is more efficient to reduce the distance between the gradient magnetic field coil and the iron magnetic pole as much as possible because it is not necessary to increase the magnetic energy of the static magnetic field magnet. On the other hand, in order for the gradient coil to effectively generate a gradient magnetic field in the imaging space, it is preferable that the gap between the gradient coil and the surface of the soft ferrite or silicon steel plate is wide.
このように、従来技術では、静磁場磁極表面に発生する渦電流を小さくすることが可能となる一方で、鉄製磁極への傾斜磁場の漏れ磁場は増加傾向にあった。これにより、鉄製磁極に発生する渦電流と磁化変化による変動磁場が画質に影響を与える場合があった。 As described above, in the prior art, it is possible to reduce the eddy current generated on the surface of the static magnetic field magnetic pole, while the leakage magnetic field of the gradient magnetic field to the iron magnetic pole tends to increase. As a result, the eddy current generated in the iron magnetic pole and the fluctuating magnetic field due to the magnetization change may affect the image quality.
本発明は、このような事情に鑑みてなされたものであり、傾斜磁場発生時に鉄製磁極において、漏れ磁場による渦電流磁場と磁化変化による変動磁場の発生を抑えると同時に、撮像空間を広くとることで、被検者の快適性を向上させつつ良好な画像を得る手段を備えたMRI装置を提供することを課題とする。
The present invention has been made in view of such circumstances, and at the time of generating a gradient magnetic field, in an iron magnetic pole, the generation of an eddy current magnetic field due to a leakage magnetic field and a fluctuation magnetic field due to a magnetization change are suppressed, and at the same time, an imaging space is widened. Thus, an object of the present invention is to provide an MRI apparatus provided with means for obtaining a good image while improving the comfort of a subject.
上記課題を解決するために、本発明では、磁性体磁極を有する静磁場磁石と傾斜磁場コイルを有するMRI装置において、撮像空間に対向する磁性体磁極は、略円盤状の鉄製磁極と略円環形状の鉄製磁極と略タイル形状の珪素鋼板の磁極片で構成され、前記円盤状の鉄製磁極の表面に前記タイル形状の珪素鋼板の磁極片が積層されており、前記円盤状の鉄製磁極は周回方向に分割され、絶縁物または空隙によって互いに絶縁されている。特に円盤形状の外周側部分で周方向に分割されている。
In order to solve the above-described problems, in the present invention, in an MRI apparatus having a static magnetic field magnet having a magnetic pole and a gradient magnetic field coil, the magnetic pole facing the imaging space includes a substantially disc-shaped iron magnetic pole and a substantially annular ring. It is composed of a magnetic iron pole of a shape and a magnetic pole piece of a substantially tile-shaped silicon steel plate, and the magnetic pole piece of the tile-shaped silicon steel plate is laminated on the surface of the disk-shaped iron magnetic pole, and the disk-shaped iron magnetic pole Divided in directions and insulated from each other by insulators or voids. In particular, it is divided in the circumferential direction at the outer peripheral portion of the disk shape.
本構成のMRI装置によれば、静磁場磁石を構成する円盤形状の鉄製磁極と傾斜磁場コイルとの間隔を広げずに、磁性体磁極に発生する渦電流を抑制することが可能になる。すなわち、渦電流磁場および残留磁場が抑えられ、良好な画質を得ることのできるMRI装置が実現する。
According to the MRI apparatus of this configuration, it is possible to suppress the eddy current generated in the magnetic pole without increasing the distance between the disc-shaped iron magnetic pole constituting the static magnetic field magnet and the gradient magnetic field coil. That is, an MRI apparatus that can suppress the eddy current magnetic field and the residual magnetic field and obtain a good image quality is realized.
以下、実施形態を図面を用いて説明する。 Hereinafter, embodiments will be described with reference to the drawings.
図2に示すように、一般的な中磁場のMRI装置は、円盤形状の上下の磁極1を概略C字形状のリターンヨーク2で連結した形状を有しており、上下磁極1の間にある撮像空間3に矢印4で示す方向に静磁場を発生する。被検者5は可動式のベッド6によって、撮像空間3に運ばれて画像を取得する。本形状により、中磁場のMRI装置は一般の高磁場の水平磁場型MRIに対して被検者5が挿入される撮像空間3は周囲の広い範囲を構造物で囲われておらず、被検者5はより解放感を得ることができる。これにより、被検者5の不安感を取り除くと共に、ベッド6を移動させることで常に撮像空間3の中心で患部を撮像することができ、さらに、撮像中に装置外部から操作者などが被検者5の撮像を補助出来るといった特徴を持つ。 As shown in FIG. 2, a general medium magnetic field MRI apparatus has a shape in which a disk-shaped upper and lower magnetic poles 1 are connected by a substantially C-shaped return yoke 2, and is located between the upper and lower magnetic poles 1. A static magnetic field is generated in the imaging space 3 in the direction indicated by the arrow 4. The subject 5 is carried to the imaging space 3 by the movable bed 6 and acquires an image. Due to this shape, the MRI apparatus with medium magnetic field is not surrounded by structures in the imaging space 3 into which the subject 5 is inserted with respect to a general high magnetic field horizontal magnetic field type MRI. The person 5 can obtain a feeling of liberation more. As a result, the anxiety of the subject 5 can be removed, and the affected part can always be imaged at the center of the imaging space 3 by moving the bed 6, and further, an operator or the like can be examined from outside the apparatus during imaging. It has the feature that it can assist the person's 5 imaging.
磁極1は図3に示すように、鉄などの磁性体を使用した磁極円盤部7と概略円環形状で磁極円盤部と同じ磁性体を使用した磁極突起部8、および、珪素鋼板などの透磁率と電気抵抗が大きいシート形状の磁性体を概略タイル形状に積層した珪素鋼板ブロック9が上下の磁極をつなぐリターンヨークと共に磁気回路を形成している。静磁場は超電導材などを用いた概略円環形状のコイル10、または、図には示されていない磁化された永久磁石により発生させる。円環形状のコイルに超電導コイルを使用する場合、図3に示すように、コイル10は外側から真空容器11、輻射シールド12、液体ヘリウム容器13等の断熱構造を有する容器内に収められ、図示していない液体ヘリウムおよび冷凍機などによって極低温に維持される。 As shown in FIG. 3, the magnetic pole 1 includes a magnetic pole disc portion 7 using a magnetic material such as iron, a magnetic pole projection portion 8 having a substantially annular shape and using the same magnetic material as the magnetic pole disc portion, and a transparent material such as a silicon steel plate. A silicon steel plate block 9 in which sheet-shaped magnetic bodies having a large magnetic susceptibility and electrical resistance are laminated in a substantially tile shape forms a magnetic circuit together with a return yoke that connects the upper and lower magnetic poles. The static magnetic field is generated by a substantially annular coil 10 using a superconducting material or the like, or a magnetized permanent magnet not shown in the figure. When a superconducting coil is used for an annular coil, as shown in FIG. 3, the coil 10 is housed in a container having a heat insulating structure such as a vacuum container 11, a radiation shield 12, and a liquid helium container 13 from the outside. It is kept at a very low temperature by liquid helium and a refrigerator not shown.
珪素鋼板ブロック9の撮像空間3側には、撮像空間3に中心からの距離に比例した強度で、静磁場の方向4と同一方向の傾斜磁場15をパルス状に発生する傾斜磁場コイル14が設置されている。傾斜磁場コイルは撮像空間3において、直交する三方向に独立に傾斜磁場を発生させるため、上下で3組のコイルの対からなり、例えば図3において、紙面の左右方向をx、紙面に垂直な方向をy、紙面の上下方向をzとすると、撮像空間3にx方向の傾斜磁場15を発生するX傾斜磁場コイル16による磁束は、破線17で示されるような分布となる。紙面垂直方向であるy方向の傾斜磁場を発生するY傾斜磁場コイルは18、z方向のZ傾斜磁場コイルは19で示しており、これらの三つのコイルは樹脂などによって一体の概略円盤形状に形成され、上下磁極で一対の傾斜磁場コイル14を構成している。傾斜磁場コイル14のさらに撮像空間3側には、高周波の電磁パルスを発生する概略円盤形状のRFコイル20が設置されている。これらをFRP樹脂製などのカバー21で覆ったものが磁極1を構成している。なお、RFコイル20は傾斜磁場コイル14と一体の場合、または、カバー21を兼ねる場合もある。 On the imaging space 3 side of the silicon steel plate block 9, a gradient magnetic field coil 14 is installed in the imaging space 3 to generate a gradient magnetic field 15 in the same direction as the static magnetic field direction 4 in a pulse shape with an intensity proportional to the distance from the center. Has been. In order to generate a gradient magnetic field independently in three orthogonal directions in the imaging space 3, the gradient magnetic field coil is composed of three pairs of upper and lower coils. For example, in FIG. If the direction is y and the vertical direction of the paper is z, the magnetic flux generated by the X gradient magnetic field coil 16 that generates the gradient magnetic field 15 in the x direction in the imaging space 3 has a distribution as indicated by the broken line 17. The Y gradient magnetic field coil that generates the gradient magnetic field in the y direction, which is the vertical direction of the paper, is indicated by 18, and the Z gradient magnetic field coil in the z direction is indicated by 19, and these three coils are formed into a single, substantially disk shape by resin or the like. In addition, a pair of gradient magnetic field coils 14 is constituted by the upper and lower magnetic poles. Further on the imaging space 3 side of the gradient coil 14, an approximately disk-shaped RF coil 20 that generates high-frequency electromagnetic pulses is installed. These are covered with a cover 21 made of FRP resin or the like to constitute the magnetic pole 1. The RF coil 20 may be integrated with the gradient coil 14 or may also serve as the cover 21.
この他、図示していないが、MRI装置には、傾斜磁場コイル14やRFコイル20を駆動するための電源装置や、電源を制御したり、RFコイル12により得られた信号を画像化したりするコンピュータシステムが含まれる。 In addition, although not shown, the MRI apparatus has a power supply device for driving the gradient coil 14 and the RF coil 20, a power supply control, and an image of the signal obtained by the RF coil 12. A computer system is included.
図1には、下側の磁極のうち、磁極円盤部7と磁極突起部8、珪素鋼板ブロック9、断熱構造容器とその内部に収められた超電導コイル10と磁極突起部8と珪素鋼板ブロック9、および、本発明の第1実施例である周回方向に分割した磁極円盤部7と磁極円盤部の分割の間に設置される隙間または絶縁構造物の構成を部分正面図で示している。 In FIG. 1, among the lower magnetic poles, the magnetic disk part 7 and the magnetic pole protrusion 8, the silicon steel plate block 9, the heat insulating structure container, the superconducting coil 10 housed therein, the magnetic pole protrusion 8 and the silicon steel plate block 9 are shown. FIG. 2 is a partial front view showing the configuration of a gap or an insulating structure installed between the magnetic pole disk portion 7 divided in the circumferential direction and the magnetic pole disk portion according to the first embodiment of the present invention.
図1に示すように、時間変動する傾斜磁場により磁極円盤部7には渦電流が経路23のように発生するが、磁極円盤部7の撮像空間に対向する表面に絶縁構造を設ける、例えば隙間またはFRPなどの絶縁構造物によって、この渦電流23が磁極円盤部7全体で大きな渦電流流路を形成することを防いでいる。磁極円盤部7は通常、鉄などの電気抵抗が小さく、磁気ヒステリシス特性が大きい部材で構成されるので、ここで発生した渦電流23は撮像空間での渦電流磁場を生じると同時に、渦電流の時間変化に伴う変動磁場によって残留磁場を発生し、画質劣化の原因となる。 As shown in FIG. 1, an eddy current is generated in the magnetic pole disk portion 7 as a path 23 by a time-varying gradient magnetic field, but an insulating structure is provided on the surface of the magnetic pole disk portion 7 facing the imaging space. Alternatively, an insulating structure such as FRP prevents the eddy current 23 from forming a large eddy current flow path in the entire magnetic disk part 7. Since the magnetic disk 7 is usually composed of a member having a small electrical resistance such as iron and a large magnetic hysteresis characteristic, the eddy current 23 generated here generates an eddy current magnetic field in the imaging space, and at the same time, A residual magnetic field is generated by a fluctuating magnetic field with time change, which causes image quality degradation.
このため、鉄等と比較して電気抵抗率が大きく比透磁率の大きい珪素鋼板ブロック9を磁極円盤部7の表面に貼り付けているが、珪素鋼板の比透磁率は磁気的に飽和しない約1.7〜1.8テスラ以下で大きく、それ以上では急激に小さくなる。また、珪素鋼板は一般に厚さが1mm以下の薄板で、積層したものを加工し使用する必要があるため、構造上の貼り付けのベースとして飽和磁化の大きい鉄が磁極円盤部7に使用される。 For this reason, although the silicon steel plate block 9 having a large electrical resistivity and a large relative magnetic permeability compared to iron or the like is attached to the surface of the magnetic pole disk portion 7, the relative magnetic permeability of the silicon steel plate is approximately not saturated magnetically. It is large at 1.7-1.8 Tesla or less, and it becomes small rapidly at more than that. Further, since a silicon steel plate is generally a thin plate having a thickness of 1 mm or less, and it is necessary to process and use a laminated one, iron having a large saturation magnetization is used for the magnetic pole disc portion 7 as a base for structural attachment. .
図4に示すように、従来の中磁場MRI装置においては、一体の鉄製の磁極円盤部7上に、磁極突起部8が周回方向に同心円状で設置されている。磁極突起部は製作を容易にするためと、渦電流の低減のために、円環を周回方向に幾つかに分割した構造をしている。本構成において、傾斜磁場コイルによる磁束17は磁極円盤部全体で大きな渦電流経路24を生成する。 As shown in FIG. 4, in a conventional medium magnetic field MRI apparatus, magnetic pole projections 8 are concentrically arranged in the circumferential direction on an integral iron magnetic pole disk part 7. The magnetic pole protrusion has a structure in which the circular ring is divided into several parts in the circumferential direction for easy manufacture and reduction of eddy current. In this configuration, the magnetic flux 17 generated by the gradient coil generates a large eddy current path 24 in the entire magnetic pole disk.
特に、磁極円盤部7は磁極突起部8に比べて周回方向の断面積が大きく、磁気的に未飽和の鉄製であるために、渦電流が発生しないようにすることが重要な課題である。このために、珪素鋼板ブロック9は傾斜磁場が直接磁極円盤部を通過しないように設置されている。しかしながら、珪素鋼板ブロックだけでは遮蔽できない漏れ磁場により渦電流24が発生し、この渦電流による磁場と残留磁場が画像に影響することを本発明者は発見した。 In particular, since the magnetic disk part 7 has a larger cross-sectional area in the circumferential direction than the magnetic pole protrusion 8 and is made of magnetically unsaturated iron, it is an important issue to prevent eddy currents from being generated. For this purpose, the silicon steel plate block 9 is installed so that the gradient magnetic field does not directly pass through the magnetic pole disk. However, the present inventor has discovered that an eddy current 24 is generated by a leakage magnetic field that cannot be shielded only by a silicon steel plate block, and the magnetic field and residual magnetic field due to the eddy current affect the image.
特に、超電導コイル10を発生源とする静磁場の磁束密度25は磁極円盤部の外周付近で高くなっており、この部分の磁化も大きくなっている。これは磁極円盤部の板厚が数センチから数10センチほどあるため、磁化が大きくなると比透磁率が小さくなり、渦電流の流れる流路断面積が大きくなり、流路抵抗が減少する。このため、特に磁極円盤部の外周部分で長時定数の渦電流流路が出来やすくなっていると考えられる。 In particular, the magnetic flux density 25 of the static magnetic field using the superconducting coil 10 as the source is high near the outer periphery of the magnetic pole disk part, and the magnetization of this part is also large. This is because the plate thickness of the magnetic pole disk part is about several centimeters to several tens of centimeters. Therefore, when the magnetization increases, the relative permeability decreases, the cross-sectional area of the flow path through which eddy current flows increases, and the flow path resistance decreases. For this reason, it is considered that an eddy current flow path having a long time constant can be easily formed particularly in the outer peripheral portion of the magnetic pole disk portion.
一方、図5に示すように、永久磁石26を静磁場25の発生源とした場合には、磁極円盤部7の傾斜磁場側の表面は外周部においても磁束密度が高くなることはない。このため、外周側でも磁化は大きくならず、比透磁率も小さくならないので、渦電流が発生した場合でも短い時定数で減衰するために、図4の超電導コイルが起磁力の場合に比べて画質への影響は小さい。 On the other hand, as shown in FIG. 5, when the permanent magnet 26 is used as the generation source of the static magnetic field 25, the magnetic flux density does not increase even at the outer peripheral portion of the surface of the magnetic pole disc portion 7 on the gradient magnetic field side. For this reason, the magnetization does not increase on the outer peripheral side, and the relative permeability does not decrease. Therefore, even when an eddy current is generated, it is attenuated with a short time constant. Therefore, the superconducting coil in FIG. The impact on is small.
これに対して、図1と図3に示すように、本発明の第1実施形態では、磁極円盤部7を周回方向に分割し、その間に絶縁構造22を設置することで、傾斜磁場コイルからの磁束17により磁極円盤部に渦電流が流路23のように発生しても、渦電流路は磁極円盤部7の表面上において絶縁構造22によって分割された範囲内で一周するので、発生量を減少させると共に時定数を短く抑えることができる。特に、磁極円盤部7の外周部分で周回方向に分割することで、長い時定数の渦電流の発生を低減できる。なお、磁極突起部を分割しても電位が同じであれば絶縁構造として部材を配置する場合の、その絶縁構造物は極めて薄い(1mm程度以下)シートまたは塗膜状で良いため、磁極突起部や磁極円盤部の形状は従来と同様でよく、形状の変化による静磁場均一度への影響は無視できる。 On the other hand, as shown in FIG. 1 and FIG. 3, in the first embodiment of the present invention, the magnetic pole disk portion 7 is divided in the circumferential direction, and an insulating structure 22 is installed between them, thereby removing the gradient magnetic field coil. Even if an eddy current is generated in the magnetic pole disk part by the magnetic flux 17 like the flow path 23, the eddy current path makes a round within the range divided by the insulating structure 22 on the surface of the magnetic pole disk part 7, and the generated amount And the time constant can be kept short. In particular, by dividing the magnetic pole disk portion 7 in the circumferential direction at the outer peripheral portion, generation of eddy currents having a long time constant can be reduced. If the potential is the same even if the magnetic pole protrusion is divided, the insulating structure may be an extremely thin sheet (about 1 mm or less) or a coating when the member is disposed as an insulating structure. The shape of the magnetic disk and the magnetic disk may be the same as the conventional one, and the influence on the static magnetic field uniformity due to the change in shape can be ignored.
図6には、撮像空間中の一点に関して、渦電流磁場の時間変化をシミュレートした例を示す。従来技術による磁極構造の渦電流磁束密度の時間変化27と、本発明の第1実施例による磁極構造の渦電流磁場の時間変化28、29を磁場シミュレーションにより解析し比較している。それぞれ28は周方向の分割を45°毎とした結果、29は周方向の分割を90°毎とした場合の結果である。本発明により、渦電流磁場は時定数、値共に本発明による磁極形状で6〜7割程に低減できることがわかった。 FIG. 6 shows an example of simulating the temporal change of the eddy current magnetic field for one point in the imaging space. The time change 27 of the eddy current magnetic flux density of the magnetic pole structure according to the prior art and the time change 28 and 29 of the eddy current magnetic field of the magnetic pole structure according to the first embodiment of the present invention are analyzed and compared by magnetic field simulation. Each 28 is a result when the circumferential division is 45 °, and 29 is a result when the circumferential division is 90 °. According to the present invention, it was found that the eddy current magnetic field can be reduced to about 60 to 70% in both the time constant and the value by the magnetic pole shape according to the present invention.
本発明における第2実施形態の部分正面図を図7に、部分断面図を図8に示す。図7においては、磁極円盤部7と磁極突起部8および磁極円盤部の分割による隙間または絶縁構造物のみを示している。 FIG. 7 is a partial front view of the second embodiment of the present invention, and FIG. 8 is a partial cross-sectional view thereof. In FIG. 7, only the gap or the insulating structure due to the division of the magnetic pole disc portion 7, the magnetic pole projection portion 8, and the magnetic pole disc portion is shown.
図8は3つの傾斜磁場軸のうちのX軸を含み、絶縁構造22位置における平面での断面図を示している。磁極円盤部は半径方向の絶縁構造22により、周回方向に分割されており、それぞれの部分は略扇型形状を有している。本実施例では、すべての絶縁構造を隙間として設けており、平面で構成されているため、加工や組み立てが容易であるが、外周部のスリットにより渦電流を低減できる効果は実施例1と同様に期待できる。なお、周方向の分割を磁極突起部8の周方向の分割位置と合わせることにより、分割した部分を渡る渦電流が発生しない。なお、図では周方向90°毎の分割となっているが、渦電流低減の効果を考慮して45°または180°など角度を任意に選ぶことができる。 FIG. 8 shows a cross-sectional view in a plane at the position of the insulating structure 22 including the X axis of the three gradient magnetic field axes. The magnetic disk portion is divided in the circumferential direction by a radial insulating structure 22, and each portion has a substantially fan shape. In this embodiment, since all the insulating structures are provided as gaps and are formed in a plane, it is easy to process and assemble, but the effect of reducing eddy currents by the slits on the outer peripheral portion is the same as that of the first embodiment. Can be expected. In addition, by matching the circumferential division with the circumferential division position of the magnetic pole protrusion 8, no eddy current is generated across the divided portion. In the figure, although the division is performed every 90 ° in the circumferential direction, an angle such as 45 ° or 180 ° can be arbitrarily selected in consideration of the effect of reducing eddy currents.
本発明における第3実施形態の部分正面図を図9に、部分断面図を図10に示す。図9においては、磁極円盤部7と磁極突起部8および磁極円盤部の分割による隙間または絶縁構造22のみを示している。図10はX軸を含み、隙間部 22位置における平面での断面図を示している。本実施形態では、磁極円盤部7は円盤内側部7aと円盤外側部7bに分かれている。内側円盤部は一体の円盤形状で、円盤外側部は表面に凸部のある扇形形状となっている。すなわち本実施例において、外側円盤部は内側円盤部をはめ込む構造を有しているとともに、外側円盤部は図9であれば、4つの扇形形状の磁性体部材を組み合わせることによって形成されている。また、円盤内側部と円盤外側部の間は空隙または絶縁部材22aおよび22bによって電気的に絶縁されている。本実施形態によれば、磁極円盤部で比較的磁化の小さい中心部分は円盤形状とすることで、空隙による静磁場分布への影響を避けることができる。磁極円盤部の外周部分は半径方向の空隙または絶縁構造物によって、長時定数の渦電流の発生を抑えることができる。 A partial front view of a third embodiment of the present invention is shown in FIG. 9, and a partial cross-sectional view is shown in FIG. In FIG. 9, only the gap or the insulating structure 22 due to the division of the magnetic disk part 7, the magnetic pole protrusion 8, and the magnetic disk part is shown. FIG. 10 shows a cross-sectional view in a plane including the X axis and at the position of the gap portion 22. In this embodiment, the magnetic disk part 7 is divided into a disk inner part 7a and a disk outer part 7b. The inner disk portion has an integral disk shape, and the outer disk portion has a fan shape with a convex portion on the surface. In other words, in this embodiment, the outer disk portion has a structure in which the inner disk portion is fitted, and the outer disk portion is formed by combining four fan-shaped magnetic members in FIG. Further, the inner part of the disk and the outer part of the disk are electrically insulated by a gap or insulating members 22a and 22b. According to the present embodiment, the central portion of the magnetic pole disk portion having relatively small magnetization is formed into a disk shape, so that the influence on the static magnetic field distribution due to the air gap can be avoided. Generation of a long time constant eddy current can be suppressed at the outer peripheral portion of the magnetic pole disk portion by a radial gap or an insulating structure.
本発明における第4実施形態の部分正面図を図11に、部分断面図を図12に示す。図10においては、磁極円盤部と磁極突起部および磁極円盤部の分割による空隙または絶縁構造物のみを示している。図12はX軸を含み、空隙位置における平面での断面図を示している。本実施形態では、磁極円盤部は円盤中心部7cと円盤外周部7dに分かれている。また、円盤中心部と円盤外周部の間は、空隙または絶縁部材22cによって電気的に絶縁されている。本実施形態によれば、渦電流の時定数の短い中心部分には空隙または絶縁部材を設けないことで、静磁場の磁束密度分布の均一性には影響を及ぼさないで長時定数の渦電流の発生を抑えることができる。 FIG. 11 is a partial front view of a fourth embodiment of the present invention, and FIG. 12 is a partial cross-sectional view thereof. In FIG. 10, only a gap or an insulating structure due to the division of the magnetic pole disk part, the magnetic pole protrusion part, and the magnetic pole disk part is shown. FIG. 12 shows a cross-sectional view in a plane including the X axis and in the space position. In the present embodiment, the magnetic disk part is divided into a disk center part 7c and a disk outer periphery part 7d. Further, the center of the disk and the outer periphery of the disk are electrically insulated by a gap or an insulating member 22c. According to the present embodiment, by not providing a gap or an insulating member in the central portion where the time constant of the eddy current is short, the eddy current having a long time constant is not affected without affecting the uniformity of the magnetic flux density distribution of the static magnetic field. Can be suppressed.
本発明における第5実施形態の部分正面図を図13に、部分断面図を図14に示す。図13においては、磁極円盤部と磁極突起部および磁極円盤部の分割による空隙または絶縁構造物のみを示している。図14はX軸を含む平面による空隙位置での断面図を示している。本実施形態では、磁極円盤部は第4に実施形態と同一であるが、磁極突起部8が傾斜磁場軸のZ軸周りの周回方向に22.5度回転した形状となっている。また、磁極突起部と磁極円盤部の間には、空隙または絶縁構造物22dが配されている。磁極突起部を止める絶縁構造のボルト30により、磁極突起部は磁極円盤部をつなぎ合わせている。しかしながら、磁極突起部には鉄などの導電性部材が用いられているため、絶縁構造物22dと絶縁ボルト30によって、分割された磁極円盤部間で大きな渦電流流路が形成されることを防いでいる。なお、本実施形態は第1、第2、第3、第4いずれの場合でも同様に採用することができる。また、磁極突起部と磁極円盤部の周回方向に分割する角度は実施例1〜5で示した90度または45度以外にも任意に選ぶことができる。 FIG. 13 is a partial front view of the fifth embodiment of the present invention, and FIG. 14 is a partial cross-sectional view thereof. In FIG. 13, only a gap or an insulating structure due to the division of the magnetic pole disc portion, the magnetic pole projection portion, and the magnetic pole disc portion is shown. FIG. 14 shows a cross-sectional view at a gap position by a plane including the X axis. In the present embodiment, the magnetic disk portion is the same as the fourth embodiment, but the magnetic pole protrusion 8 has a shape rotated by 22.5 degrees in the circumferential direction around the Z axis of the gradient magnetic field axis. Further, a gap or an insulating structure 22d is disposed between the magnetic pole protrusion and the magnetic pole disk. The magnetic pole protrusion part connects the magnetic pole disk parts by an insulating bolt 30 that stops the magnetic pole protrusion part. However, since a conductive member such as iron is used for the magnetic pole projection, the insulating structure 22d and the insulating bolt 30 prevent a large eddy current flow path from being formed between the divided magnetic pole disks. It is out. The present embodiment can be similarly adopted in any of the first, second, third, and fourth cases. Moreover, the angle divided | segmented into the circumference direction of a magnetic pole protrusion part and a magnetic pole disc part can be arbitrarily selected in addition to 90 degree | times or 45 degree | times shown in Examples 1-5.
本発明における第6実施形態の部分正面図を図15に、部分断面図を図16に示す。図15においては、磁極円盤部と磁極突起部および磁極円盤部の分割による空隙または絶縁構造物のみを示している。図16はY軸を含む鉛直な平面による断面図を示しており、Y軸はこの場合、撮像中心を原点にリターンヨーク側に向かう方向である。本実施形態において、磁極円盤部の外周側の空隙または絶縁構造物22は周回対称ではなく、リターンヨーク側で密に、リターンヨークと反対側で疎になっている。これは、磁極円盤部において、静磁場の磁束密度がリターンヨークの方向に集中して分布するために、磁束密度が大きく、比透磁率の小さいリターンヨーク側に空隙または絶縁構造物を多く配することで、長時定数の渦電流の発生を抑えると同時に、磁極円盤部の周回方向で渦電流の大きさと時定数を均一にすることができる。なお、本実施形態においては、磁極円盤部の構造は第4の実施例としたが、第1〜第5いずれの実施例の磁極円盤部構造においても適用できる。 FIG. 15 is a partial front view of the sixth embodiment of the present invention, and FIG. 16 is a partial cross-sectional view thereof. In FIG. 15, only a gap or an insulating structure due to the division of the magnetic disk part, the magnetic pole protrusion part, and the magnetic disk part is shown. FIG. 16 shows a cross-sectional view of a vertical plane including the Y axis. In this case, the Y axis is a direction from the imaging center to the return yoke side. In the present embodiment, the gap or insulating structure 22 on the outer peripheral side of the magnetic pole disc part is not circularly symmetric but is dense on the return yoke side and sparse on the opposite side of the return yoke. This is because the magnetic flux density of the static magnetic field is concentrated and distributed in the direction of the return yoke in the magnetic pole disc portion, so that a lot of gaps or insulating structures are arranged on the return yoke side where the magnetic flux density is large and the relative permeability is small. As a result, the generation of eddy currents with a long time constant can be suppressed, and at the same time, the magnitude and time constant of the eddy current can be made uniform in the circumferential direction of the magnetic pole disk part. In the present embodiment, the structure of the magnetic pole disk part is the fourth example, but the present invention can also be applied to the magnetic pole disk part structure of any of the first to fifth examples.
本発明における第7実施形態の部分正面図を図17に、第7実施形態の部分断面図を図18と図19に示す。図17においては、磁極円盤部と珪素鋼板ブロックと磁極突起部および磁極円盤部の分割による空隙または絶縁構造物のみを示している。第7実施形態は静磁場の発生源として永久磁石26を使用した場合について示している。本実施形態においても磁極円盤部を周回方向に分割することで長時定数の渦電流の発生を低減できるが、永久磁石による磁束密度分布は、磁極円盤部の外周部分と中心部分で大きく変わらないので、外周部分のみの空隙または絶縁構造物では効果が大きくない。したがって、図17に示すように中心部分から外周部分までの半径方向の空隙または絶縁構造物22によって、長時定数の渦電流を低減することができる。また、静磁場発生源に超伝導コイルを使用した場合に比べ、磁極円盤部の撮像領域側表面円の磁化は小さく、比透磁率も大きいので、傾斜磁場の漏れ磁場は磁極円盤部の表面近くで急激に減衰する。このため、図19に示すように、磁極円盤部を円盤部撮像領域側7eと円盤部磁極側7fに分割し、円盤部撮像領域側のみ周回方向に空隙または絶縁構造物で分割する。また、円盤部撮像領域側と円盤部磁極側の間は空隙または絶縁構造物22eで互いに電気的に絶縁されている。本実施形態により、磁極円盤部を分割することにより生じる空隙または絶縁構造物を少なくでき、均一な静磁場の分布に与える影響を低減することができる。
FIG. 17 is a partial front view of the seventh embodiment of the present invention, and FIGS. 18 and 19 are partial cross-sectional views of the seventh embodiment. In FIG. 17, only a gap or an insulating structure by dividing the magnetic pole disk part, the silicon steel plate block, the magnetic pole protrusion part, and the magnetic pole disk part is shown. The seventh embodiment shows a case where a permanent magnet 26 is used as a generation source of a static magnetic field. Also in this embodiment, the generation of eddy currents with a long time constant can be reduced by dividing the magnetic pole disk part in the circumferential direction, but the magnetic flux density distribution by the permanent magnet does not change significantly between the outer peripheral part and the central part of the magnetic pole disk part. Therefore, the effect is not large in the gap or the insulating structure only in the outer peripheral portion. Accordingly, the long time constant eddy current can be reduced by the radial gap or the insulating structure 22 from the central portion to the outer peripheral portion as shown in FIG. Compared to the case where a superconducting coil is used as a static magnetic field generation source, the magnetization of the surface circle on the imaging area side of the magnetic pole disk is small and the relative permeability is large, so the leakage magnetic field of the gradient magnetic field is close to the surface of the magnetic pole disk. Decreases rapidly at. For this reason, as shown in FIG. 19, the magnetic disk part is divided into a disk part imaging region side 7e and a disk part magnetic pole side 7f, and only the disk part imaging region side is divided by a gap or an insulating structure in the circumferential direction. Further, the disk part imaging region side and the disk part magnetic pole side are electrically insulated from each other by a gap or an insulating structure 22e. According to the present embodiment, it is possible to reduce the gaps or insulating structures generated by dividing the magnetic pole disk portion, and to reduce the influence on the uniform static magnetic field distribution.
1 磁極
2 リターンヨーク
3 撮像空間
4 静磁場およびその方向を示す矢印
5 被検者
6 可動式ベッド
7 磁極円盤部
7a 円盤内側部
7b 円盤外側部
7c 円盤中心部
7d 円盤外周部
7e 円盤部撮像領域側
7f 円盤部磁極側
8 磁極突起部
9 珪素鋼板ブロック
10 略円形コイル
11 真空容器
12 輻射シールド
13 ヘリウム容器
14 傾斜磁場コイル
15 X方向傾斜磁場の強さを示す矢印
16 X傾斜磁場コイル
17 X傾斜磁場コイルによる磁束
18 Y傾斜磁場コイル
19 Z傾斜磁場コイル
20 RFコイル
21 外装カバー
22、22a、22b、22c、22d、22e 絶縁構造である空隙または絶縁構造物
23 磁極円盤部に発生する渦電流
24 従来技術の磁極円盤部に発生する渦電流
25 静磁場磁石による磁束密度
26 永久磁石による静磁場発生源
27 従来技術の磁極構造による渦電流磁場の時間変化シミュレーション結果
28 本発明の磁極構造による渦電流磁場の時間変化シミュレーション結果(磁極円盤部の周回方向分割の角度が45度の場合)
29 本発明の磁極構造による渦電流磁場の時間変化シミュレーション結果(磁極円盤部の周回方向分割の角度が90度の場合)
30 絶縁ボルト
DESCRIPTION OF SYMBOLS 1 Magnetic pole 2 Return yoke 3 Imaging space 4 Static magnetic field and arrow which shows the direction 5 Subject 6 Movable bed 7 Magnetic pole disk part
7a Inside the disk
7b Disc outer side
7c Disk center
7d disk outer periphery
7e Disk part imaging area side
7f Disk part magnetic pole side 8 Magnetic pole projection part 9 Silicon steel plate block 10 Substantially circular coil 11 Vacuum container 12 Radiation shield 13 Helium container 14 Gradient magnetic field coil 15 Arrow 16 indicating the strength of the X direction gradient magnetic field X Gradient magnetic field coil 17 X Gradient magnetic field Magnetic flux by coil 18 Y gradient magnetic field coil 19 Z gradient magnetic field coil 20 RF coil 21 Exterior cover 22, 22a, 22b, 22c, 22d, 22e Insulation structure gap or insulation structure 23 Eddy current 24 generated in magnetic disk part Eddy current generated in magnetic pole disk of technology 25 Magnetic flux density by static magnetic field magnet 26 Static magnetic field generating source by permanent magnet 27 Simulation result 28 of eddy current magnetic field by conventional magnetic pole structure 28 Eddy current magnetic field by magnetic pole structure of the present invention Time change simulation result (when the angle of the circular direction division of the magnetic disk part is 45 degrees)
29 Simulation results of time variation of eddy current magnetic field by the magnetic pole structure of the present invention (when the angle of the rotation direction division of the magnetic pole disk is 90 degrees)
30 Insulation bolt
Claims (7)
前記撮像空間を中心に対向して配置される一対の傾斜磁場コイルと、
前記撮像空間に高周波磁場を発生させるRFコイルと、
を有し、
前記静磁場磁石は、
磁場発生源として超伝導磁石を有し、
前記撮像空間に対向した表面上に絶縁構造を有する略円盤形状の磁性体磁極円盤部を有し、
前記絶縁構造は、前記磁性体磁極円盤部の中心軸に対して放射状に設けられており、
前記撮像空間に面した前記磁性体磁極円盤部の表面がタイル形状に積層された珪素鋼板によって覆われ、かつ前記撮像空間に向かって突出し前記中心軸に対する周回方向において分割された円環状の磁極突起部を有し、
前記磁極突起部は、前記超伝導磁石の内径面に沿って設けられ、かつ前記磁性体磁極円盤部に対して絶縁構造を介して固定される
磁気共鳴イメージング装置。 A pair of static magnetic field magnets arranged opposite to each other centering on the imaging space;
A pair of gradient coils arranged opposite to each other centering on the imaging space;
An RF coil for generating a high-frequency magnetic field in the imaging space;
Have
The static magnetic field magnet is
Has a superconducting magnet as a magnetic field source,
Having a substantially disc-shaped magnetic pole plate having an insulating structure on the surface facing the imaging space;
The insulating structure is provided radially with respect to the central axis of the magnetic pole disc part ,
An annular magnetic pole projection in which the surface of the magnetic pole disc portion facing the imaging space is covered with a silicon steel plate laminated in a tile shape, and protrudes toward the imaging space and is divided in a circumferential direction with respect to the central axis Part
The magnetic resonance imaging apparatus , wherein the magnetic pole protrusion is provided along an inner diameter surface of the superconducting magnet and is fixed to the magnetic magnetic pole disk through an insulating structure .
を特徴とする請求項1に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1, wherein the insulating structure is made of a thin film-like insulating material such as a sheet or paint .
を特徴とする請求項1または請求項2に記載の磁気共鳴イメージング装置。 Claim the magnetic pole disc portion, which in point located inside in the direction of the central axis, characterized in that the disc-shaped insulating structure having a vertical bottom with respect to the central axis is provided The magnetic resonance imaging apparatus according to claim 1 or 2 .
前記円盤中心部と前記円盤外周部の間に絶縁構造が設けられ、
前記円盤外周部が前記中心軸に対する周回方向において分割されていること
を特徴とする請求項1から請求項3のいずれか1項に記載の磁気共鳴イメージング装置。 The magnetic magnetic pole disk part is divided into a disk center part and a disk outer peripheral part,
An insulating structure is provided between the disc central portion and the disc outer peripheral portion,
Magnetic resonance imaging apparatus according to any one of claims 1 to 3, characterized in that said disc outer peripheral portion is Oite divided in the circumferential direction with respect to the central axis.
を特徴とする請求項1から請求項4のいずれか1項に記載の磁気共鳴イメージング装置。 The magnetic pole disk unit according to claim claim 1, before Symbol pole protrusions, characterized in that the insulating structure along an angular same, or angle of an integral multiple being divided is provided radially 5. The magnetic resonance imaging apparatus according to any one of 4 above .
を特徴とする請求項5に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 5 , wherein the magnetic magnetic pole disk parts divided in the circumferential direction are fastened to each other by magnetic pole protrusions divided in the circumferential direction .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014233218A JP6368625B2 (en) | 2014-11-18 | 2014-11-18 | Magnetic resonance imaging system |
CN201510738150.7A CN105596002B (en) | 2014-11-18 | 2015-11-03 | Magnetic resonance image device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014233218A JP6368625B2 (en) | 2014-11-18 | 2014-11-18 | Magnetic resonance imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016096829A JP2016096829A (en) | 2016-05-30 |
JP6368625B2 true JP6368625B2 (en) | 2018-08-01 |
Family
ID=55976758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014233218A Expired - Fee Related JP6368625B2 (en) | 2014-11-18 | 2014-11-18 | Magnetic resonance imaging system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6368625B2 (en) |
CN (1) | CN105596002B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3553547A1 (en) * | 2018-04-12 | 2019-10-16 | Koninklijke Philips N.V. | Shim irons for a magnetic resonance apparatus |
JP7410790B2 (en) | 2020-04-27 | 2024-01-10 | 富士フイルムヘルスケア株式会社 | Open magnetic resonance imaging device |
JP2023005490A (en) | 2021-06-29 | 2023-01-18 | 富士フイルムヘルスケア株式会社 | Magnetic resonance imaging device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07100058B2 (en) * | 1986-10-22 | 1995-11-01 | 株式会社東芝 | Magnetic resonance imaging device |
JPS6449549A (en) * | 1987-08-20 | 1989-02-27 | Sanyo Electric Co | Magnetic resonance imaging apparatus |
JPH0287505A (en) * | 1988-09-22 | 1990-03-28 | Sumitomo Special Metals Co Ltd | Magnetic field generating equipment for mri use |
JPH02119844A (en) * | 1988-10-28 | 1990-05-07 | Hitachi Medical Corp | Magnetic field generating device for nuclear magnetic resonance tomograph |
US5134374A (en) * | 1989-06-01 | 1992-07-28 | Applied Superconetics | Magnetic field control apparatus |
US4980641A (en) * | 1989-08-11 | 1990-12-25 | General Atomics | Method and apparatus of reducing magnetic hysteresis in MRI systems |
JP2649437B2 (en) * | 1990-09-29 | 1997-09-03 | 住友特殊金属株式会社 | Magnetic field generator for MRI |
US5283544A (en) * | 1990-09-29 | 1994-02-01 | Sumitomo Special Metals Co., Ltd. | Magnetic field generating device used for MRI |
JPH0787145B2 (en) * | 1991-12-26 | 1995-09-20 | アプライド スーパーコネティクス,インコーポレイテッド | Proximity magnet for magnetic resonance imaging |
JP2561591B2 (en) * | 1991-12-27 | 1996-12-11 | 住友特殊金属株式会社 | Magnetic field generator for MRI |
JP3016544B2 (en) * | 1995-06-08 | 2000-03-06 | 信越化学工業株式会社 | Permanent magnet magnetic circuit |
US6150818A (en) * | 1998-08-31 | 2000-11-21 | General Electric Company | Low eddy current and low hysteresis magnet pole faces in MR imaging |
US6591202B1 (en) * | 2000-11-22 | 2003-07-08 | Fonar Corporation | Magnetic field measuring device |
JP4214736B2 (en) * | 2002-08-08 | 2009-01-28 | 日立金属株式会社 | Magnetic field generator for MRI |
-
2014
- 2014-11-18 JP JP2014233218A patent/JP6368625B2/en not_active Expired - Fee Related
-
2015
- 2015-11-03 CN CN201510738150.7A patent/CN105596002B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105596002A (en) | 2016-05-25 |
JP2016096829A (en) | 2016-05-30 |
CN105596002B (en) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4105665B1 (en) | Methods and apparatus for magnetic field shimming | |
CN107110931B (en) | Ferromagnetic enhancement system for magnetic resonance imaging and method of providing the same | |
TW202004211A (en) | B magnet methods and apparatus for a magnetic resonance imaging system | |
EP0998876B1 (en) | Magnetic field generating device for mri | |
JP4856430B2 (en) | Electromagnet device | |
JP2009066399A (en) | Magnet system and mri apparatus | |
JP6368625B2 (en) | Magnetic resonance imaging system | |
WO2012174834A1 (en) | Open nuclear magnetic resonance magnet system having iron ring structure | |
JP4369613B2 (en) | Magnetic resonance imaging system | |
JP2007097761A (en) | Magnetic field generator | |
US11320504B2 (en) | Open-type magnetic resonance imaging apparatus | |
JP2005118566A (en) | System and method for adjusting central magnetic field of permanent mri magnetic field generator | |
JP2002253530A (en) | Magnetic pole and magnet device using the same | |
WO2004104612A1 (en) | Magnetic field generating system applicable to nuclear magnetic resonance device | |
JP2008000324A (en) | Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system | |
JP3377822B2 (en) | Magnetic resonance imaging equipment | |
JP2002102205A (en) | Magnetic resonace imaging apparatus | |
Wang et al. | Development of high‐field permanent magnetic circuits for NMRI/MRI and imaging on mice | |
JP6108350B2 (en) | Magnetic resonance imaging system | |
JP7076339B2 (en) | Magnetic resonance imaging device | |
JP5891063B2 (en) | Magnetic resonance imaging system | |
JP4293686B2 (en) | Static magnetic field generator and magnetic resonance imaging apparatus using the same | |
JP2024035534A (en) | Magnetic resonance imaging apparatus | |
JP2014236827A (en) | Magnetic resonance imaging apparatus | |
JP4651236B2 (en) | Magnetic resonance imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170110 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170112 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6368625 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |