JP2008000324A - Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system - Google Patents

Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system Download PDF

Info

Publication number
JP2008000324A
JP2008000324A JP2006172464A JP2006172464A JP2008000324A JP 2008000324 A JP2008000324 A JP 2008000324A JP 2006172464 A JP2006172464 A JP 2006172464A JP 2006172464 A JP2006172464 A JP 2006172464A JP 2008000324 A JP2008000324 A JP 2008000324A
Authority
JP
Japan
Prior art keywords
magnetic field
gradient magnetic
field coil
coil
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006172464A
Other languages
Japanese (ja)
Inventor
Yutaka Morita
森田  裕
Ryozo Takeuchi
良三 武内
Takeshi Yao
武 八尾
Akira Kurome
明 黒目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006172464A priority Critical patent/JP2008000324A/en
Publication of JP2008000324A publication Critical patent/JP2008000324A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a void can be caused in a gradient magnetic field coil apparatus for an MRI produced by resin impregnation. <P>SOLUTION: Between a Z-axis gradient magnetic field coil 11 and an X-axis gradient magnetic field coil 12, and between the X-axis gradient magnetic field coil 12 and a Y-axis gradient magnetic field coil 13, two or more tape-state insulators 51 are arranged with intervals therebetween in parallel with the surface of the coils. Resin injected by a die not shown in the figure flows with intervals between the tape-state insulators 51 as channels 71 for impregnation and the resin is hardened. Thus, the gradient magnetic field coil apparatus which has no void and which has satisfactory insulation is produced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は核磁気共鳴イメージング装置(MRI装置)に係り、特にその傾斜磁場コイルに関する。   The present invention relates to a nuclear magnetic resonance imaging apparatus (MRI apparatus), and more particularly to a gradient magnetic field coil thereof.

MRI装置による診断においては、励起範囲の限定や磁気共鳴信号の空間的な位置情報を取得するために、静磁場に傾斜磁場が重畳される。傾斜磁場は傾斜の空間的方向が静磁場と平行なZ軸傾斜磁場、磁場傾斜の向きが静磁場と直交なX軸傾斜磁場と、磁場傾斜の向きが静磁場及びX軸と直交なY軸傾斜磁場との3種類が使い分けられている。一般的に、これら3軸に対応する3種の傾斜磁場コイルのセットが固体絶縁体によりモールドされ、傾斜磁場コイル装置としてMRI装置に組み込まれている。   In diagnosis using an MRI apparatus, a gradient magnetic field is superimposed on a static magnetic field in order to limit the excitation range and acquire spatial position information of a magnetic resonance signal. The gradient magnetic field is a Z-axis gradient magnetic field whose gradient spatial direction is parallel to the static magnetic field, an X-axis gradient magnetic field whose magnetic field gradient is orthogonal to the static magnetic field, and a Y-axis whose magnetic gradient gradient is orthogonal to the static magnetic field and the X axis. There are three types of gradient magnetic fields. In general, a set of three types of gradient magnetic field coils corresponding to these three axes is molded by a solid insulator, and incorporated in an MRI apparatus as a gradient magnetic field coil apparatus.

近年、診断の高速化、診断画像の高精細化等が求められるようになり、核磁気共鳴イメージング装置の高性能化が進んでおり、傾斜磁場性能の向上も課題の一つである。傾斜磁場は任意のシーケンスに基づいてパルス状に発生させる。診断の高速化を実現するためには、所望の磁場に到達するまでの時間(立ち上がり時間と呼ばれる)の短縮が求められている。このことは傾斜磁場コイルの通電電流の立ち上がり時間を短縮することを意味するが、立ち上がり時間を短縮すると傾斜磁場コイルのインダクタンスと抵抗のためコイルに高電圧が発生する。特に、X、Y、Z軸傾斜磁場コイル相互間については高電圧が発生するので、絶縁性能を強化する必要がある。   In recent years, high-speed diagnosis and high-definition diagnostic images have been demanded, and the performance of nuclear magnetic resonance imaging apparatuses has been improved. Improvement of gradient magnetic field performance is also an issue. The gradient magnetic field is generated in a pulse shape based on an arbitrary sequence. In order to realize high-speed diagnosis, it is required to shorten the time required to reach a desired magnetic field (called rise time). This means that the rise time of the energization current of the gradient magnetic field coil is shortened, but when the rise time is shortened, a high voltage is generated in the coil due to the inductance and resistance of the gradient magnetic field coil. In particular, since a high voltage is generated between the X, Y, and Z axis gradient magnetic field coils, it is necessary to enhance the insulation performance.

不完全な絶縁処理により絶縁体にボイド(空隙)が存在すると、ボイドにおいて部分放電が発生する。部分放電はボイドの大きさと圧力の積がパッシェンの法則で規定される放電電圧に達すると発生する。短絡による放電ではないので放電1回あたりの放電量は小さいものの、少しずつ絶縁体を劣化し、やがてコイルを短絡状態に至らしめる。部分放電を防止するにはその原因であるボイドを無くすことが望ましい。特許文献1には、コイル巻線の表面に溝を形成することにより樹脂の流れを向上させ、コイル巻線の巻線間に含浸される樹脂中のボイドを防止し、コイル巻線の絶縁性を向上する方法が開示されている。   When voids (voids) exist in the insulator due to incomplete insulation treatment, partial discharge occurs in the voids. Partial discharge occurs when the product of void size and pressure reaches a discharge voltage defined by Paschen's law. Since it is not a discharge due to a short circuit, the amount of discharge per discharge is small, but the insulator is gradually deteriorated, and the coil is eventually short-circuited. In order to prevent partial discharge, it is desirable to eliminate voids that are the cause. In Patent Document 1, a groove is formed on the surface of the coil winding to improve the flow of the resin, to prevent voids in the resin impregnated between the windings of the coil winding, and to insulate the coil winding. A method for improving the above is disclosed.

特開2004−73288号公報JP 2004-73288 A

特許文献1の方法では、コイル表面に溝を形成するため、溝のある部分の巻線は断面積が小さくなり、ジュール発熱による部分的な過熱が問題となる。また、溝を加工するためのコストも発生する。   In the method of Patent Document 1, since a groove is formed on the coil surface, the winding in the grooved portion has a small cross-sectional area, and partial overheating due to Joule heat generation becomes a problem. Moreover, the cost for processing a groove | channel also generate | occur | produces.

本発明の目的は、上記従来技術の問題点に鑑み、コイル表面に溝を形成することなく樹脂を確実に含浸でき、ボイドが発生しないので絶縁特性を向上できる傾斜磁場コイル及びそれを用いた核磁気共鳴イメージング装置(MRI装置)を提供することにある。   An object of the present invention is to provide a gradient magnetic field coil capable of reliably impregnating a resin without forming a groove on the coil surface and improving the insulation characteristics because no void is generated, and a nucleus using the same. The object is to provide a magnetic resonance imaging apparatus (MRI apparatus).

上記目的を達成するための本発明は、核磁気共鳴イメージング装置(MRI装置)による静磁場中の被検体に傾斜磁場を印加する傾斜磁場コイル装置であって、傾斜磁場コイルは、らせん状の巻線パターンを平面的に形成し積層された複数のコイルと、前記コイル間に間隔をあけて配置した複数のテープ状の絶縁体と、前記間隔に含浸した樹脂とを含むことを特徴とする。   In order to achieve the above object, the present invention is a gradient magnetic field coil device for applying a gradient magnetic field to a subject in a static magnetic field by a nuclear magnetic resonance imaging apparatus (MRI apparatus), wherein the gradient magnetic field coil is a spiral winding. It includes a plurality of coils formed by planarly forming a line pattern, a plurality of tape-like insulators arranged at intervals between the coils, and a resin impregnated in the intervals.

また、前記傾斜磁場コイルは、らせん状の巻線パターンを平面的に形成し積層された複数のコイルと、前記コイル間に複数のテープ状の絶縁体が間隔を設けて配置され、該間隔に含浸し硬化された樹脂と、によって構成したことを特徴とする。この構成では、含浸樹脂はテープ状の絶縁体の間を流れるため、樹脂中のボイド発生が防止できるという特長がある。   In addition, the gradient magnetic field coil includes a plurality of coils that are formed by laminating a spiral winding pattern in a plane, and a plurality of tape-like insulators arranged between the coils. And a resin impregnated and cured. In this configuration, since the impregnating resin flows between the tape-like insulators, there is a feature that generation of voids in the resin can be prevented.

また、前記傾斜磁場コイルは、らせん状の巻線パターンを平面的に形成し積層された複数のコイルと、前記コイル間に順に配置された複数のテープ状の絶縁体と、絶縁シートと、複数のテープ状の絶縁体と、前記複数のテープ状の絶縁体は間隔を設けて配置され、該間隔に含浸して硬化された樹脂と、によって構成したことを特徴とする。この構成によれば、仮にコイル間にボイドができたとしても、絶縁シートにより電気的短絡を防止できるという特長がある。   Further, the gradient magnetic field coil includes a plurality of coils formed by planarly forming a spiral winding pattern, a plurality of tape-like insulators disposed in order between the coils, an insulating sheet, and a plurality of coils The tape-shaped insulator and the plurality of tape-shaped insulators are arranged at intervals, and the resin is impregnated into the intervals and cured. According to this configuration, even if a void is formed between the coils, there is a feature that an electrical short circuit can be prevented by the insulating sheet.

本発明によれば、核磁気共鳴イメージング装置(MRI装置)の傾斜磁場コイル装置において、樹脂を確実に含浸することができるのでボイドが発生することがなく、絶縁特性を向上できる効果がある。   According to the present invention, in the gradient magnetic field coil apparatus of the nuclear magnetic resonance imaging apparatus (MRI apparatus), the resin can be impregnated with certainty, so that no voids are generated and the insulating characteristics can be improved.

以下、本発明の実施の形態を図面を参照しながら説明する。図4は、垂直磁場タイプと呼ばれるMRI装置におけるコイル群の配置を示している。静磁場発生コイル101は上下2個が1対配置され、シムコイル22、X軸傾斜磁場コイル12、Y軸傾斜磁場コイル13、Z軸傾斜磁場コイル11、RFコイル21が配置されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows the arrangement of coil groups in an MRI apparatus called a vertical magnetic field type. A pair of upper and lower static magnetic field generating coils 101 are arranged, and a shim coil 22, an X axis gradient magnetic field coil 12, a Y axis gradient magnetic field coil 13, a Z axis gradient magnetic field coil 11, and an RF coil 21 are arranged.

静磁場発生コイル101は被検体201の所望の位置に静磁場を発生する。静磁場の発生源としてはコイルの他に永久磁石でもかまわない。静磁場は被検体201に核磁気共鳴を発生させる。共鳴周波数は静磁場の強度に比例する。比例定数は原子により異なるが、例えば、水素原子の場合では、磁場強度2.34Tにおいて共鳴周波数100MHzとなる。静磁場は被検体201の任意の領域において均一な磁場が要求され、許容される誤差は直径30cmの球内において100万分の1程度である。   The static magnetic field generating coil 101 generates a static magnetic field at a desired position of the subject 201. The source of the static magnetic field may be a permanent magnet in addition to the coil. The static magnetic field causes the subject 201 to generate nuclear magnetic resonance. The resonance frequency is proportional to the strength of the static magnetic field. Although the proportionality constant varies depending on the atom, for example, in the case of a hydrogen atom, the resonance frequency is 100 MHz at a magnetic field strength of 2.34T. A static magnetic field requires a uniform magnetic field in an arbitrary region of the subject 201, and an allowable error is about 1 / 1,000,000 in a sphere having a diameter of 30 cm.

傾斜磁場コイルはZ軸傾斜磁場コイル11、X軸傾斜磁場コイル12およびY軸傾斜磁場コイル13により構成される。Z軸傾斜磁場コイル11は静磁場発生装置101の発生する静磁場と平行方向に傾斜磁場を発生する。X軸傾斜磁場コイル12は静磁場発生装置101の発生する静磁場と直角方向に傾斜磁場を発生し、Y軸傾斜磁場コイル13は静磁場方向とX軸傾斜磁場方向のそれぞれに直角方向に傾斜磁場を発生する。図1では被検体に近い順番にY軸傾斜磁場コイル13、X軸傾斜磁場コイル12、Z軸傾斜磁場コイル11の配置となっているが配置の順番についてはこの限りではない。   The gradient coil is composed of a Z-axis gradient coil 11, an X-axis gradient coil 12, and a Y-axis gradient coil 13. The Z-axis gradient magnetic field coil 11 generates a gradient magnetic field in a direction parallel to the static magnetic field generated by the static magnetic field generator 101. The X axis gradient magnetic field coil 12 generates a gradient magnetic field in a direction perpendicular to the static magnetic field generated by the static magnetic field generator 101, and the Y axis gradient magnetic field coil 13 is inclined in a direction perpendicular to the static magnetic field direction and the X axis gradient magnetic field direction. Generate a magnetic field. In FIG. 1, the Y-axis gradient magnetic field coil 13, the X-axis gradient magnetic field coil 12, and the Z-axis gradient magnetic field coil 11 are arranged in the order close to the subject, but the arrangement order is not limited to this.

RFコイル21は被検体に高周波を照射するとともに、被検体から発生するNMR信号(核磁気共鳴信号)を受信し、所定の信号処理されることにより被検体の断層写真を得る。シムコイル22は静磁場発生装置101の不均一性を補正するためのコイルである。   The RF coil 21 irradiates the subject with high frequency, receives an NMR signal (nuclear magnetic resonance signal) generated from the subject, and obtains a tomographic photograph of the subject by performing predetermined signal processing. The shim coil 22 is a coil for correcting non-uniformity of the static magnetic field generator 101.

図5はZ軸傾斜磁場コイルの磁場の方向を示す説明図、図6はX軸傾斜磁場コイルの磁場の方向を示す説明図、図7はY軸傾斜磁場コイルの磁場の方向を示す説明図である。これらの図で30は電流、31は磁場、32は傾斜磁場の方向を示す。コイルは1ターンの円形コイルまたは半月型コイルとして描画しているが、実際には複数ターンのコイルや、形状が異なる場合もある。   5 is an explanatory diagram showing the direction of the magnetic field of the Z-axis gradient magnetic field coil, FIG. 6 is an explanatory diagram showing the direction of the magnetic field of the X-axis gradient magnetic field coil, and FIG. 7 is an explanatory diagram showing the direction of the magnetic field of the Y-axis gradient magnetic field coil. It is. In these drawings, 30 indicates a current, 31 indicates a magnetic field, and 32 indicates a direction of a gradient magnetic field. The coil is drawn as a one-turn circular coil or a half-moon-shaped coil, but in reality it may be a multi-turn coil or a different shape.

垂直磁場タイプのMRI装置では静磁場B0はZの方向である。これらの図におけるコイルは通電すると、図中Bx、ByまたはBzの方向に磁場を発生する。これらの磁場は合成され、Gx、GyまたはGzの方向に強度が傾斜するZ方向の磁場が発生する。これらの傾斜磁場を用いることにより、励起範囲の限定や、磁気共鳴信号の空間的な位置情報の取得を行う。   In the vertical magnetic field type MRI apparatus, the static magnetic field B0 is in the Z direction. When the coils in these figures are energized, a magnetic field is generated in the direction of Bx, By or Bz in the figures. These magnetic fields are combined to generate a Z-direction magnetic field whose intensity is inclined in the Gx, Gy, or Gz direction. By using these gradient magnetic fields, the excitation range is limited and the spatial position information of the magnetic resonance signal is acquired.

MRI装置には他に水平磁場タイプも存在し、静磁場を発生する磁石と被検体の配置は異なるため、傾斜磁場コイルの形状も異なるが、基本的にX軸、Y軸、Z軸方向に傾斜磁場を発生することには垂直磁場タイプと同様である。   There are other horizontal magnetic field types in the MRI system, and since the arrangement of the magnet generating the static magnetic field and the subject is different, the shape of the gradient magnetic field coil is also different, but basically in the X-axis, Y-axis, and Z-axis directions. The generation of the gradient magnetic field is the same as the vertical magnetic field type.

本発明のMRI装置の傾斜磁場コイル装置は、らせん状の巻線パターンを平面的に形成し積層されたZ軸コイル、X軸コイル、Y軸コイルと、これらコイル間に複数のテープ状絶縁体が間隔を設けて配置される。金型に配置された傾斜磁場コイルに樹脂が注入されると、樹脂はテープ状絶縁体間の間隔を流れて含浸し硬化される。   The gradient magnetic field coil apparatus of the MRI apparatus according to the present invention includes a Z-axis coil, an X-axis coil, and a Y-axis coil in which a spiral winding pattern is formed and stacked, and a plurality of tape-like insulators between these coils. Are arranged at intervals. When the resin is injected into the gradient coil disposed in the mold, the resin flows through the space between the tape-shaped insulators and is impregnated and cured.

本発明における第一の実施の形態を説明する。図1は実施例1による傾斜磁場コイル装置の部分断面図を示す。Z軸傾斜磁場コイル11、X軸傾斜磁場コイル12及びY軸傾斜磁場コイル13間には、それぞれ適当な間隙により複数のテープ状絶縁体51を配置してコイル間ギャップ71を設け、この間隙に樹脂を含浸している。   A first embodiment of the present invention will be described. FIG. 1 is a partial sectional view of a gradient coil apparatus according to a first embodiment. Between the Z-axis gradient magnetic field coil 11, the X-axis gradient magnetic field coil 12, and the Y-axis gradient magnetic field coil 13, a plurality of tape-like insulators 51 are arranged by appropriate gaps to provide an inter-coil gap 71, and this gap is provided. Impregnated with resin.

図2はその詳細構造を示す傾斜磁場コイルの断面図の概略を示したものである。Z軸傾斜磁場コイル11とX軸傾斜磁場コイル12は、適当な間隙をあけて複数配置されたテープ状絶縁体51によりコイル間ギャップ71を確保し、樹脂61で含浸されている。また、X軸傾斜磁場コイル12とY軸傾斜磁場コイル13の間も同様の構造である。コイル間において樹脂61は樹脂流路71を流れて含浸される。   FIG. 2 shows an outline of a sectional view of the gradient coil showing its detailed structure. The Z-axis gradient magnetic field coil 11 and the X-axis gradient magnetic field coil 12 have a gap 71 between the coils secured by a plurality of tape-like insulators 51 arranged with an appropriate gap, and are impregnated with a resin 61. Further, the same structure is provided between the X-axis gradient magnetic field coil 12 and the Y-axis gradient magnetic field coil 13. Between the coils, the resin 61 flows through the resin flow path 71 and is impregnated.

各軸の傾斜磁場コイルは銅等の電気抵抗の低い金属で製作されている。X軸傾斜磁場コイル12、Y軸傾斜磁場コイル13およびZ軸傾斜磁場コイル11は平板の金属をらせん状に切断した形状であるが、製作が可能であれば棒状の金属を曲げて構成してもよい。   The gradient coil for each axis is made of a metal having a low electrical resistance such as copper. The X-axis gradient magnetic field coil 12, the Y-axis gradient magnetic field coil 13, and the Z-axis gradient magnetic field coil 11 have a shape in which a flat plate metal is cut into a spiral shape. Also good.

テープ状絶縁体51はポリエチレンテレフタレート樹脂(PET)、ポリイミド樹脂(PI)等が好ましい。さらに、テープ状絶縁体51をガラス繊維で構成してもよい。これにより、樹脂61がガラス繊維に染み込むことにより、樹脂61の強度を増加することができ、樹脂61の割れを防止することができる。テープ状絶縁体51の幅は10mm以上、厚みは10μm以上である。テープ状絶縁体51の長手方向および幅方向はコイル表面と平行であり、厚み方向は垂直である。樹脂61はエポキシ樹脂等が好ましい。   The tape-like insulator 51 is preferably a polyethylene terephthalate resin (PET), a polyimide resin (PI) or the like. Furthermore, you may comprise the tape-shaped insulator 51 with glass fiber. Thereby, when the resin 61 penetrates into the glass fiber, the strength of the resin 61 can be increased, and the cracking of the resin 61 can be prevented. The tape-like insulator 51 has a width of 10 mm or more and a thickness of 10 μm or more. The longitudinal direction and the width direction of the tape-shaped insulator 51 are parallel to the coil surface, and the thickness direction is vertical. The resin 61 is preferably an epoxy resin or the like.

図3は傾斜磁場コイル装置の組み立て方法の説明図である。まず、Y軸傾斜磁場コイル13の上に複数のテープ状絶縁体51を複数配置する。この上にX軸傾斜磁場コイル12を、次にテープ状絶縁体51、さらにZ軸傾斜磁場コイル11を配置する。この際、テープ状絶縁体51は適当な間隙71をあけて平行に配置する。これらを金型に入れ、樹脂61が樹脂流路71を流れて含浸し、硬化させることにより傾斜磁場コイル装置を形成する。   FIG. 3 is an explanatory diagram of a method for assembling the gradient coil apparatus. First, a plurality of tape-like insulators 51 are arranged on the Y-axis gradient magnetic field coil 13. On this, the X-axis gradient magnetic field coil 12, the tape-like insulator 51, and the Z-axis gradient magnetic field coil 11 are arranged. At this time, the tape-like insulator 51 is arranged in parallel with an appropriate gap 71. These are put in a mold, and the resin 61 flows through the resin flow channel 71 to be impregnated and cured to form a gradient magnetic field coil device.

このように構成された傾斜磁場コイルは、図示していない金型に配置され、外部から樹脂が注入される。樹脂61はコイルの外側にコイル枠を形成すると共に、コイル間の樹脂流路71を流れて含浸し、硬化する。   The gradient magnetic field coil configured in this manner is arranged in a mold (not shown), and resin is injected from the outside. The resin 61 forms a coil frame on the outside of the coil and flows through the resin flow path 71 between the coils to be impregnated and cured.

図3では、テープ状絶縁体51を平行に配置する構成を採るが、樹脂を含浸させる際に樹脂が流れる通路を確保できるものであれば、テープ状絶縁体51をコイル中心からの放射状に配置する構成でもよい。また、図2および図3では、X、Y、Z軸傾斜磁場コイルのみを描画しているが、これらが発生する磁場をシールドするためのシールドコイルや、静磁場を補正するためのシムコイルを含んでもよい。   In FIG. 3, the tape-like insulator 51 is arranged in parallel, but the tape-like insulator 51 is arranged radially from the coil center as long as a passage through which the resin flows when impregnating the resin can be secured. The structure to do may be sufficient. In FIGS. 2 and 3, only the X, Y, and Z axis gradient magnetic field coils are drawn. However, a shield coil for shielding a magnetic field generated by these coils and a shim coil for correcting a static magnetic field are included. But you can.

実施例1によれば、テープ状絶縁体51間のギャップが樹脂流路71となり、樹脂61が樹脂流路71をスムーズに流れて含浸するので、樹脂の確実な含浸ができると共に、ボイドが発生しないので、絶縁特性を著しく向上することができる。   According to the first embodiment, the gap between the tape-like insulators 51 becomes the resin flow path 71, and the resin 61 smoothly flows and impregnates the resin flow path 71, so that the resin can be reliably impregnated and voids are generated. Therefore, the insulation characteristics can be remarkably improved.

本発明による実施例2を説明する。図8は実施例2による傾斜磁場コイル装置の断面図の概略を示したものである。Z軸傾斜磁場コイル11とX軸傾斜磁場コイル12間には、適当な間隙71をあけて複数配置されたテープ状絶縁体51を2層に配置し、このテープ状絶縁体71間に絶縁シート81を配置している。また、X軸傾斜磁場コイル12とY軸傾斜磁場コイル13の間も同様の構造である。   A second embodiment according to the present invention will be described. FIG. 8 schematically shows a cross-sectional view of the gradient coil apparatus according to the second embodiment. Between the Z-axis gradient magnetic field coil 11 and the X-axis gradient magnetic field coil 12, a plurality of tape-like insulators 51 arranged with an appropriate gap 71 are arranged in two layers, and an insulation sheet is provided between the tape-like insulators 71. 81 is arranged. Further, the same structure is provided between the X-axis gradient magnetic field coil 12 and the Y-axis gradient magnetic field coil 13.

このように構成された傾斜磁場コイルは、図示していない金型に配置され、外部から樹脂が注入される。樹脂61はコイル間においては樹脂流路71を流れて含浸される。また、絶縁シート81に遮られた樹脂は金型との間の隙間から下の樹脂流路71に流れ込む。   The gradient magnetic field coil configured in this manner is arranged in a mold (not shown), and resin is injected from the outside. The resin 61 is impregnated by flowing through the resin flow path 71 between the coils. Further, the resin blocked by the insulating sheet 81 flows into the lower resin flow path 71 from the gap between the mold and the mold.

各軸の傾斜磁場コイルは銅等の電気抵抗の低い金属で製作されている。テープ状絶縁体51はポリエチレンテレフタレート樹脂(PET)、ポリイミド樹脂(PI)あるいはガラス繊維が好ましい。テープ状絶縁体51の幅は10mm以上、厚みは10μm以上である。テープ状絶縁体51の長手方向および幅方向はコイル表面と平行で、厚み方向は垂直である。絶縁シート81はポリエチレンポリエチレンテレフタレート樹脂(PET)、ポリイミド樹脂(PI)等が好ましい。絶縁シート81は各軸の傾斜磁場コイルをほぼ覆う大きさであり、テープ状絶縁体51で挟み込まれている。   The gradient coil for each axis is made of a metal having a low electrical resistance such as copper. The tape-like insulator 51 is preferably polyethylene terephthalate resin (PET), polyimide resin (PI) or glass fiber. The tape-like insulator 51 has a width of 10 mm or more and a thickness of 10 μm or more. The longitudinal direction and the width direction of the tape-like insulator 51 are parallel to the coil surface, and the thickness direction is vertical. The insulating sheet 81 is preferably made of polyethylene polyethylene terephthalate resin (PET), polyimide resin (PI), or the like. The insulating sheet 81 is sized to substantially cover the gradient magnetic field coils of each axis, and is sandwiched between the tape-like insulators 51.

図9は実施例2による傾斜磁場コイル装置の組み立て方法を示す説明図である。まず、Y軸傾斜磁場コイル13の上に複数のテープ状絶縁体51を間隙を持たせて複数配置する。次に、この上に絶縁シート81、複数のテープ状絶縁体51、X軸傾斜磁場コイル12の順に配置する。さらに、この上に複数のテープ状絶縁体51、絶縁シート81、複数のテープ状絶縁体51、Z軸傾斜磁場コイル11の順に配置する。テープ状絶縁体51は適当な間隙をあけて平行に配置する。これらを金型に入れ、樹脂61を含浸し硬化させることにより傾斜磁場コイル装置を形成する。   FIG. 9 is an explanatory view showing a method of assembling the gradient coil apparatus according to the second embodiment. First, a plurality of tape-like insulators 51 are arranged on the Y-axis gradient magnetic field coil 13 with a gap. Next, the insulating sheet 81, the plurality of tape-like insulators 51, and the X-axis gradient magnetic field coil 12 are disposed in this order. Further, a plurality of tape-like insulators 51, an insulating sheet 81, a plurality of tape-like insulators 51, and a Z-axis gradient magnetic field coil 11 are arranged in this order. The tape-shaped insulator 51 is arranged in parallel with an appropriate gap. These are put in a mold and impregnated with resin 61 and cured to form a gradient coil device.

図9では、テープ状絶縁体51を平行に配置する構成を採るが、樹脂を含浸させる際に樹脂が流れる通路を確保できるのであれば、テープ状絶縁体51をコイル中心からの放射状に配置する構成でもよい。また、図8および図9では、X、Y、Z軸の傾斜磁場コイルのみを描画しているが、これらが発生する磁場をシールドするためのシールドコイルや、静磁場を補正するためのシムコイルを含んでいてもよい。   In FIG. 9, a configuration in which the tape-like insulators 51 are arranged in parallel is adopted, but the tape-like insulators 51 are arranged radially from the coil center as long as a passage through which the resin flows when the resin is impregnated can be secured. It may be configured. 8 and 9, only the gradient magnetic field coils of the X, Y, and Z axes are drawn. However, a shield coil for shielding the magnetic field generated by these and a shim coil for correcting the static magnetic field are provided. May be included.

実施例2によれば、テープ状絶縁体51の間隙が樹脂流路71となり、樹脂含浸時に樹脂がこの樹脂流路71をスムーズに流れボイドが発生しにくい。また、絶縁シート81がコイル間に配置されるので、仮に樹脂61にボイドが発生しても絶縁シート81によりコイル間の短絡を防止することができる。このように、樹脂を確実に含浸することができ、かつコイル間の短絡を防止できるので、コイル間の絶縁特性をさらに向上することができる。   According to the second embodiment, the gap between the tape-like insulators 51 becomes the resin flow path 71, and the resin flows smoothly through the resin flow path 71 during the resin impregnation, and voids are not easily generated. Further, since the insulating sheet 81 is disposed between the coils, even if a void occurs in the resin 61, the insulating sheet 81 can prevent a short circuit between the coils. As described above, since the resin can be reliably impregnated and the short circuit between the coils can be prevented, the insulation characteristics between the coils can be further improved.

本発明の実施例1による傾斜磁場コイル装置の部分断面図。The fragmentary sectional view of the gradient magnetic field coil apparatus by Example 1 of this invention. 実施例1による傾斜磁場コイルの断面図。FIG. 3 is a cross-sectional view of the gradient coil according to the first embodiment. 実施例1による傾斜磁場コイルの組み立て方を示す説明図。Explanatory drawing which shows the assembly method of the gradient magnetic field coil by Example 1. FIG. MRIイメージング装置における磁場発生装置の構成図。The block diagram of the magnetic field generator in an MRI imaging apparatus. Z軸傾斜磁場コイルの説明図。Explanatory drawing of a Z-axis gradient magnetic field coil. X軸傾斜磁場コイルの説明図。Explanatory drawing of an X-axis gradient magnetic field coil. Y軸傾斜磁場コイルの説明図。Explanatory drawing of a Y-axis gradient magnetic field coil. 実施例2による傾斜磁場コイルの断面図。Sectional drawing of the gradient magnetic field coil by Example 2. FIG. 実施例2による傾斜磁場コイルの組み立て方を示す説明図。Explanatory drawing which shows the assembly method of the gradient magnetic field coil by Example 2. FIG.

符号の説明Explanation of symbols

1…傾斜磁場コイル装置、11…Z軸傾斜磁場コイル、12…X軸傾斜磁場コイル、13…Y軸傾斜磁場コイル、21…RFコイル、22…シムコイル、30…電流、31…磁場、32…傾斜磁場方向、51…テープ状絶縁体、61…樹脂、71…樹脂流路、81…絶縁シート、101…静磁場発生コイル、201…被検体。   DESCRIPTION OF SYMBOLS 1 ... Gradient magnetic field coil apparatus, 11 ... Z-axis gradient magnetic field coil, 12 ... X-axis gradient magnetic field coil, 13 ... Y-axis gradient magnetic field coil, 21 ... RF coil, 22 ... Shim coil, 30 ... Current, 31 ... Magnetic field, 32 ... Gradient magnetic field direction 51 ... Tape-like insulator, 61 ... Resin, 71 ... Resin flow path, 81 ... Insulating sheet, 101 ... Static magnetic field generating coil, 201 ... Subject.

Claims (6)

核磁気共鳴イメージング装置(MRI装置)による静磁場中の被検体に傾斜磁場を印加する傾斜磁場コイル装置であって、
傾斜磁場コイルは、らせん状の巻線パターンを平面的に形成し積層された複数のコイルと、前記コイル間に間隔をあけて配置した複数のテープ状の絶縁体と、前記間隔に含浸し硬化された樹脂と、を含むことを特徴とする傾斜磁場コイル装置。
A gradient coil device that applies a gradient magnetic field to a subject in a static magnetic field by a nuclear magnetic resonance imaging apparatus (MRI apparatus),
The gradient magnetic field coil is formed by laminating a plurality of coils formed in a spiral winding pattern in a plane, a plurality of tape-like insulators arranged with a space between the coils, and impregnating and hardening the space. And a gradient magnetic field coil device.
核磁気共鳴イメージング装置(MRI装置)による静磁場中の被検体に傾斜磁場を印加する傾斜磁場コイル装置であって、
傾斜磁場コイルは、らせん状の巻線パターンを平面的に形成し積層された複数のコイルと、前記コイル間に複数のテープ状の絶縁体が間隔を設けて配置され、該間隔に含浸し硬化された樹脂と、によって構成したことを特徴とする傾斜磁場コイル装置。
A gradient coil device that applies a gradient magnetic field to a subject in a static magnetic field by a nuclear magnetic resonance imaging apparatus (MRI apparatus),
The gradient magnetic field coil has a spiral winding pattern formed in a planar manner and a plurality of laminated coils, and a plurality of tape-like insulators are arranged between the coils, and the gap is impregnated and cured. And a gradient magnetic field coil device.
核磁気共鳴イメージング装置(MRI装置)による静磁場中の被検体に傾斜磁場を印加する傾斜磁場コイル装置であって、
前記傾斜磁場コイルは、らせん状の巻線パターンを平面的に形成し積層された複数のコイルと、前記コイル間に順に配置された複数のテープ状の絶縁体と、絶縁シートと、複数のテープ状の絶縁体と、前記複数のテープ状の絶縁体は間隔を設けて配置され、該間隔に含浸して硬化された樹脂と、によって構成したことを特徴とする傾斜磁場コイル装置。
A gradient coil device that applies a gradient magnetic field to a subject in a static magnetic field by a nuclear magnetic resonance imaging apparatus (MRI apparatus),
The gradient magnetic field coil includes a plurality of coils that are formed by laminating a spiral winding pattern in a plane, a plurality of tape-like insulators arranged in order between the coils, an insulating sheet, and a plurality of tapes. And a plurality of tape-like insulators arranged at intervals and a resin impregnated and cured in the intervals.
請求項1、2または3において、前記傾斜磁場コイルはZ軸傾斜磁場コイル、X軸傾斜磁場コイル及びY軸傾斜磁場コイルからなることを特徴とする傾斜磁場コイル装置。   4. The gradient magnetic field coil device according to claim 1, wherein the gradient magnetic field coil includes a Z-axis gradient magnetic field coil, an X-axis gradient magnetic field coil, and a Y-axis gradient magnetic field coil. 請求項1−4のいずれかにおいて、前記テープ状の絶縁体はガラス繊維により構成されていることを特徴とする傾斜磁場コイル装置。   5. The gradient magnetic field coil device according to claim 1, wherein the tape-like insulator is made of glass fiber. 請求項1から5の何れかに記載の傾斜磁場コイルを有する磁気共鳴イメージング装置。   A magnetic resonance imaging apparatus comprising the gradient magnetic field coil according to claim 1.
JP2006172464A 2006-06-22 2006-06-22 Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system Pending JP2008000324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172464A JP2008000324A (en) 2006-06-22 2006-06-22 Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172464A JP2008000324A (en) 2006-06-22 2006-06-22 Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system

Publications (1)

Publication Number Publication Date
JP2008000324A true JP2008000324A (en) 2008-01-10

Family

ID=39005181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172464A Pending JP2008000324A (en) 2006-06-22 2006-06-22 Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP2008000324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383582A3 (en) * 2010-09-22 2012-02-29 Tesla Engineering Limited Gradient coil assemblies
JP2013544613A (en) * 2010-12-10 2013-12-19 コーニンクレッカ フィリップス エヌ ヴェ Apparatus and method for influencing and / or detecting magnetic particles
CN107076815A (en) * 2014-10-27 2017-08-18 西门子医疗有限公司 Support for the superconducting coil of MRI system
EP4058819A4 (en) * 2019-11-13 2024-01-10 California Inst Of Techn Electromagnet gradient coil apparatus for micro-device localization

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383582A3 (en) * 2010-09-22 2012-02-29 Tesla Engineering Limited Gradient coil assemblies
US9356541B2 (en) 2010-09-22 2016-05-31 Tesla Engineering Limited Gradient coil assemblies having conductive coil portions and screening material
JP2013544613A (en) * 2010-12-10 2013-12-19 コーニンクレッカ フィリップス エヌ ヴェ Apparatus and method for influencing and / or detecting magnetic particles
US10267873B2 (en) 2010-12-10 2019-04-23 Koninklijke Philips N.V. Combined MPI and MRI apparatus and method for influencing and/or detecting magnetic particles
CN107076815A (en) * 2014-10-27 2017-08-18 西门子医疗有限公司 Support for the superconducting coil of MRI system
US10823795B2 (en) 2014-10-27 2020-11-03 Siemens Healthcare Limited Support of superconducting coils for MRI systems
US11467237B2 (en) 2014-10-27 2022-10-11 Siemens Healthcare Limited Support of superconducting coils for MRI systems
EP4058819A4 (en) * 2019-11-13 2024-01-10 California Inst Of Techn Electromagnet gradient coil apparatus for micro-device localization

Similar Documents

Publication Publication Date Title
US7554326B2 (en) MRI gradient magnetic coil unit assembley using different resins within windings and between components
JP6462292B2 (en) Magnetic resonance imaging system
Handler et al. New head gradient coil design and construction techniques
JP2008000324A (en) Gradient magnetic field coil apparatus for nuclear magnetic resonance imaging system
EP2237059B1 (en) Cooled gradient coil system
JP2666773B2 (en) Gradient magnetic field generator
US10551453B2 (en) Gradient coil and magnetic resonance imaging device
JP4004038B2 (en) Coil apparatus and magnetic resonance imaging apparatus
JPH0576507A (en) Gradient magnetic field coil and production thereof
JP2016116804A (en) Magnetic resonance imaging apparatus
JP3524607B2 (en) Magnetic field generating coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus using the same
JP6651593B2 (en) Manufacturing method of gradient magnetic field coil
EP3553547A1 (en) Shim irons for a magnetic resonance apparatus
US10859649B2 (en) Vibration reduction for a magnetic resonance imaging apparatus
US20180372821A1 (en) Magnetic field gradient coils with closely packed windings and methods of manufaturing same
RU2782979C2 (en) Shielding coil of gradient magnetic field with meander winding for magnetic resonance imaging device
US11255935B2 (en) Gradient shield coil with meandering winding for a magnetic resonance imaging apparatus
JP6422739B2 (en) Gradient coil and magnetic resonance imaging apparatus
JP2016032504A (en) Magnetic resonance imaging device
US11181593B2 (en) Gradient coil assembly for a magnetic resonance apparatus
JP6108350B2 (en) Magnetic resonance imaging system
WO2019187465A1 (en) Gradient magnetic field coil device and magnetic resonance imaging apparatus
JP2018133514A (en) Superconducting coil and manufacturing method of the same
JP2014236827A (en) Magnetic resonance imaging apparatus