JP2912745B2 - Failure analysis method for semiconductor device - Google Patents

Failure analysis method for semiconductor device

Info

Publication number
JP2912745B2
JP2912745B2 JP28106391A JP28106391A JP2912745B2 JP 2912745 B2 JP2912745 B2 JP 2912745B2 JP 28106391 A JP28106391 A JP 28106391A JP 28106391 A JP28106391 A JP 28106391A JP 2912745 B2 JP2912745 B2 JP 2912745B2
Authority
JP
Japan
Prior art keywords
semiconductor device
failure
analysis method
location
failure analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28106391A
Other languages
Japanese (ja)
Other versions
JPH05121500A (en
Inventor
洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28106391A priority Critical patent/JP2912745B2/en
Publication of JPH05121500A publication Critical patent/JPH05121500A/en
Application granted granted Critical
Publication of JP2912745B2 publication Critical patent/JP2912745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の故障箇所
を簡単に解析する故障解析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure analysis method for simply analyzing a failure location of a semiconductor device.

【0002】[0002]

【従来の技術】従来の半導体装置の故障箇所解析方法
は、図5に示すようにステップ1で半導体装置の故障箇
所を電気的測定により特定し、ステップ2で故障箇所を
荷電ビーム装置により解析するものであった。
2. Description of the Related Art As shown in FIG. 5, in a conventional method for analyzing a failure location of a semiconductor device, a failure location of the semiconductor device is specified by electrical measurement in step 1, and a failure location is analyzed by a charged beam device in step 2. Was something.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の故障解析方法では、ステップ2の故障箇所を荷電ビ
ーム装置で解析するときに半導体装置の表面が帯電する
ために局所的な故障箇所を特定するのに多くの時間と労
力を要したり、見落としたりするという問題があった。
However, in the above-described conventional failure analysis method, a local failure location is specified because the surface of the semiconductor device is charged when the failure location in step 2 is analyzed by the charged beam device. However, there was a problem that it took a lot of time and effort, or was overlooked.

【0004】本発明は上記従来の問題を解決し、簡単で
かつ精度の高い故障解析方法の提供を目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a simple and highly accurate failure analysis method.

【0005】[0005]

【課題を解決するための手段】本発明の故障解析方法
は、ダイナミックメモリ装置の故障個所を電気的測定に
より特定し、特定された故障個所に対して、上下、左右
の4カ所にマーキングを行って、故障個所を荷電ビーム
装置により解析する際、4カ所のマーキングの交点によ
り故障個所を特定して解析を行うものである。
SUMMARY OF THE INVENTION A failure analysis method according to the present invention.
Is used for electrical measurement of failure points in dynamic memory devices.
More specific, and for the identified fault location, up and down, left and right
Marking at 4 locations to charge failure beam
When analyzing with the instrument, the intersection of the four markings
The analysis is performed by specifying the failure location.

【0006】[0006]

【作用】この方法によれば、ダイナミックメモリ装置の
故障個所をアドレス等で特定し、そのアドレスに対応す
る上下、左右の4カ所にマーキングを施しておくことに
よって、故障個所を解析する際、4カ所のマーキングの
交点を求めれば容易に素早く故障個所を特定して解析で
きるようになる。
According to this method, the dynamic memory device
Identify the fault location using an address, etc.
To make markings in four places, up, down, left and right
Therefore, when analyzing the failure location, the four markings
If you find the intersection, you can easily and quickly identify the fault location and analyze it.
I will be able to.

【0007】[0007]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1は本実施例の故障解析方法のフローチ
ャートであり、図5の従来例と相違する点は、半導体装
置にエネルギービームを照射して半導体基板まで達する
穴を設けて故障箇所をマーキングするステップ2の工程
を設けた点である。
FIG. 1 is a flow chart of a failure analysis method according to the present embodiment. The difference from the conventional example shown in FIG. 5 is that a hole which reaches the semiconductor substrate by irradiating a semiconductor device with an energy beam is provided to mark a failure portion. That is, the process of step 2 is provided.

【0009】ここでステップ1は電気的測定による故障
箇所を特定する工程、ステップ3は荷電ビーム装置によ
り故障箇所を解析する工程である。
Here, step 1 is a process of specifying a fault location by electrical measurement, and step 3 is a process of analyzing the fault location by a charged beam device.

【0010】この方法によれば、半導体基板まで達する
穴の二次電子像のコントラストは半導体装置表面に比べ
て暗く観察され、故障箇所を簡単に識別することができ
る。
According to this method, the contrast of the secondary electron image of the hole reaching the semiconductor substrate is observed to be darker than the surface of the semiconductor device, so that the failure portion can be easily identified.

【0011】図2〜図4により本実施例をさらに詳しく
説明する。図2は本実施例で用いたマーキング装置の構
成図、図3は本実施例における解析方法の詳細なフロー
チャート、図4は半導体装置の上面図である。
This embodiment will be described in more detail with reference to FIGS. FIG. 2 is a configuration diagram of a marking device used in the present embodiment, FIG. 3 is a detailed flowchart of an analysis method in the present embodiment, and FIG. 4 is a top view of the semiconductor device.

【0012】図2において、1はレーザー光源、2は光
学顕微鏡、3は赤外光用対物レンズ、4はCCDカメ
ラ、5はモニター用カラーテレビ受像機、6はレーザー
発振用電源、7はXY軸走査駆動コントローラー、8は
半導体装置、9はXY軸走査駆動装置、10はレーザー
ガイド光光源である。
In FIG. 2, 1 is a laser light source, 2 is an optical microscope, 3 is an objective lens for infrared light, 4 is a CCD camera, 5 is a color TV receiver for monitoring, 6 is a power supply for laser oscillation, and 7 is XY. An axis scan drive controller, 8 is a semiconductor device, 9 is an XY axis scan drive, and 10 is a laser guide light source.

【0013】本実施例では、まず図3に示すように半導
体装置8[例えばダイナミックメモリ(DRAM)]を
電気的測定によりその故障箇所を特定する。次に図2に
示すマーキング装置により故障箇所をマーキングする。
その方法は、電気的測定により特定された故障箇所を光
学顕微鏡2により観察する。例えば、異物等によりパタ
ーンに段差が生じている場合は反射波の波長の差や焦点
深度の差により光学顕微鏡像において図4に示すように
故障箇所11が低倍率で識別できる。次に、半導体装置
8をXY軸走査駆動装置9により故障箇所の中心から左
側に20μmだけ移動させる。そしてレーザー光源1か
ら、発振波長1.06μm,レーザー出力6nJ/puls
e,パルス幅8nsec,ピークパワー0.75MWのNd:
YAG(イットリウム,アルミニウム,ガーネット)パ
ルスレーザ光を直径φ200μmの円形固定絞り、透過
率2.5%の減衰フィルター、倍率100倍の赤外線用
対物レンズを通じて半導体装置8上に照射して加工穴を
設けてマーキング12を形成する。この場合、加工穴径
は約4μmであり、加工穴は半導体基板まで達する。加
工穴径φdと対物レンズの倍率nはφd=φD/nで表わ
される。ここでφDは円形固定絞り径である。以下同様
に、故障箇所11の中心から右側,上側,下側各々20
μmの位置にNd:YAGパルスレーザー光により半導
体装置8にマーキング12をする(図4)。次に、走査
型電子顕微鏡(SEM)により故障箇所11の二次電子
像を観察する。電子ビームは20KVで加速され、ビーム
径は0.01μmである。パルスレーザー光による加工
穴は半導体基板まで達しているため二次電子像のコント
ラストは半導体装置の表面に比べて暗く観察され、容易
に故障箇所11を識別することができる。これは、電子
励起の二次電子の場合、絶縁物のような帯電しやすい物
質の方が半導体基板と接続している物質に比べて二次電
子発生が多いためである。次にフレオンガスなどによる
ドライエッチングまたはフッ化水素酸などによるウエッ
トエッチングにより半導体装置8を構成する多層膜を除
去し、故障箇所の異物を露出させ、同じくSEMにより
二次電子像を観察することにより故障箇所11の詳細な
観察が簡単にできる。
In this embodiment, first, as shown in FIG. 3, a faulty portion of a semiconductor device 8 [for example, a dynamic memory (DRAM)] is specified by electrical measurement. Next, the failure location is marked by the marking device shown in FIG.
According to the method, a failure point specified by electrical measurement is observed with the optical microscope 2. For example, when a step is generated in the pattern due to a foreign substance or the like, a failure portion 11 can be identified at a low magnification in an optical microscope image as shown in FIG. 4 by a difference in the wavelength of the reflected wave or a difference in the depth of focus. Next, the semiconductor device 8 is moved by 20 μm to the left from the center of the fault location by the XY-axis scanning drive device 9. Then, from the laser light source 1, an oscillation wavelength of 1.06 μm and a laser output of 6 nJ / pulse
e, Nd with a pulse width of 8 nsec and a peak power of 0.75 MW:
A YAG (yttrium, aluminum, garnet) pulse laser beam is irradiated on the semiconductor device 8 through a circular fixed stop having a diameter of 200 μm, an attenuation filter having a transmittance of 2.5%, and an infrared objective lens having a magnification of 100 to form a processing hole. The marking 12 is formed. In this case, the processing hole diameter is about 4 μm, and the processing hole reaches the semiconductor substrate. The processing hole diameter φ d and the magnification n of the objective lens are represented by φ d = φ D / n. Here, φ D is a circular fixed stop diameter. Similarly, the right side, the upper side, and the lower side from the center of the fault location 11
A marking 12 is formed on the semiconductor device 8 at a position of μm using an Nd: YAG pulse laser beam (FIG. 4). Next, a secondary electron image of the failed portion 11 is observed with a scanning electron microscope (SEM). The electron beam is accelerated at 20 KV and the beam diameter is 0.01 μm. Since the hole processed by the pulsed laser beam reaches the semiconductor substrate, the contrast of the secondary electron image is observed to be darker than the surface of the semiconductor device, and the failure portion 11 can be easily identified. This is because, in the case of electron-excited secondary electrons, an easily charged substance such as an insulator generates more secondary electrons than a substance connected to the semiconductor substrate. Next, the multilayer film constituting the semiconductor device 8 is removed by dry etching with freon gas or the like or wet etching with hydrofluoric acid or the like, the foreign matter at the failed portion is exposed, and the secondary electron image is observed by SEM. Detailed observation of the portion 11 can be easily performed.

【0014】なお、本実施例ではパターンを形成した半
導体装置について説明したが、パターンのない半導体装
置や積層膜から構成される半導体装置の故障解析につい
ても同じ方法により同様の効果が得られた。また、本実
施例ではエネルギービームとしてNd:YAGパルスレ
ーザー光を用いたが集束イオンビーム,電子ビームでも
同様の効果が得られる。さらに、SEM観察に代えて集
束イオンビーム(FIB)装置により故障箇所11のイ
オン励起二次電子像(SIM像)を観察して故障箇所の
解析ができる。例えば、加速電圧30KV,イオンビーム
電流103pA,ビーム径0.1μmの正のGaイオンを
半導体装置8上を走査させると、半導体装置8の表面が
窒化ケイ素や二酸化ケイ素のような絶縁膜の場合、Ga
イオンは絶縁膜上を正に帯電させ、イオン励起による二
次電子発生量を減少させ、SIM像が観察されにくくな
る。また、Gaイオンの原子半径は電子半径に比べて数
桁大きく物質表面を透過することができないのでイオン
励起二次電子像は物質表面を反映する。そのため下地に
よる異常を観察,識別することはSEMに比べて困難で
多大の時間を労する。本発明においては、パルスレーザ
ー光により加工された穴は半導体基板まで達しているた
めに照射されたイオンは穴を通して半導体基板に流れこ
む。そのことによりイオン励起二次電子像は絶縁物表面
に比べて輝度が高く故障箇所近傍が明瞭に識別できる。
そこで集束イオンビームにより故障箇所11をスパッタ
エッチングにより加工し、故障箇所の構造をSIM像に
より観察することにより故障原因を解明することができ
る。
In this embodiment, a semiconductor device having a pattern is described. However, the same effect can be obtained by the same method for failure analysis of a semiconductor device having no pattern or a semiconductor device formed of a laminated film. In this embodiment, a pulsed Nd: YAG laser beam is used as the energy beam, but the same effect can be obtained by using a focused ion beam or an electron beam. Further, instead of the SEM observation, a focused ion beam (FIB) device can be used to observe the ion-excited secondary electron image (SIM image) of the failure location 11 and analyze the failure location. For example, when positive Ga ions having an acceleration voltage of 30 KV, an ion beam current of 103 pA, and a beam diameter of 0.1 μm are scanned over the semiconductor device 8, when the surface of the semiconductor device 8 is an insulating film such as silicon nitride or silicon dioxide, Ga
The ions positively charge the insulating film, reduce the amount of secondary electrons generated by the ion excitation, and make it difficult to observe a SIM image. Further, since the atomic radius of Ga ions is several orders of magnitude larger than the electron radius and cannot pass through the material surface, the ion-excited secondary electron image reflects the material surface. Therefore, observing and identifying an abnormality due to the groundwork is more difficult and more time-consuming than SEM. In the present invention, since the hole processed by the pulsed laser beam reaches the semiconductor substrate, the irradiated ions flow into the semiconductor substrate through the hole. As a result, the ion-excited secondary electron image has a higher luminance than the surface of the insulator, so that the vicinity of the failure location can be clearly identified.
Therefore, the cause of the failure can be clarified by processing the failure location 11 by the sputter etching using the focused ion beam and observing the structure of the failure location with the SIM image.

【0015】さらに、SEM観察に代えて表面分析装
置、例えば二次イオン質量分析装置(SIMS)を用い
ても同様の効果が得られる。すなわち、従来の分析領域
の位置決めはSIMS本体付属の光学顕微鏡でなされて
いたが、低倍率のため、半導体装置の微細化,高集積化
につれて局所的な故障箇所を識別することは困難になっ
ている。そこで、半導体装置8の故障箇所11近傍にN
d:YAGパルスレーザー光によりSIMS本体付属の
光学顕微鏡で識別可能な加工穴径20μmをマーキング
し、次に二次イオン質量分析装置(SIMS)に半導体
装置8を設置し分析領域の位置決めをする。このことに
より分析領域の位置精度が増し、分析データの信頼性が
増加し故障原因の解明に役立つ。分析条件としては、一
次イオンCs,一次イオンエネルギー14.5KeV,一次
イオン電流20nA,一次イオンビーム径20μm,ラス
ター面積100μm□,分析領域60μmφとした。
Further, similar effects can be obtained by using a surface analyzer, for example, a secondary ion mass spectrometer (SIMS) instead of the SEM observation. That is, the conventional analysis area is positioned by the optical microscope attached to the SIMS main body. However, due to the low magnification, it becomes difficult to identify a local failure part with miniaturization and high integration of the semiconductor device. I have. Therefore, N near the fault location 11 of the semiconductor device 8
d: The YAG pulse laser beam is used to mark a processing hole diameter of 20 μm that can be identified with an optical microscope attached to the SIMS main body, and then the semiconductor device 8 is installed in a secondary ion mass spectrometer (SIMS) to position the analysis region. This increases the positional accuracy of the analysis area, increases the reliability of the analysis data, and helps to clarify the cause of the failure. The analysis conditions were: primary ion Cs, primary ion energy 14.5 KeV, primary ion current 20 nA, primary ion beam diameter 20 μm, raster area 100 μm □, and analysis area 60 μmφ.

【0016】表面分析装置としては、二次イオン質量分
析装置(SIMS)の他にオージェ電子分光装置(AE
S),エネルギー分散X線分光装置(EDX),波長分
散X線分光装置(WDX)を用いても同様の効果が得ら
れた。
As a surface analyzer, an Auger electron spectrometer (AE) is used in addition to a secondary ion mass spectrometer (SIMS).
S), the same effect was obtained by using an energy dispersive X-ray spectrometer (EDX) or a wavelength dispersive X-ray spectrometer (WDX).

【0017】[0017]

【発明の効果】以上のように、本発明によれば、ダイナ
ミックメモリ装置の故障個所をアドレス等で特定し、そ
のアドレスに対応する上下、左右の4カ所にマーキング
を施しておくことによって、故障個所を解析する際、4
カ所のマーキングの交点を求めれば容易にかつ素早く故
障個所を特定して解析できるようになるという格別の効
果を奏する。
As described above, according to the present invention, the dyna
Identify the fault location of the memory device by its address, etc.
Marking in four places, up, down, left and right corresponding to the address of
When analyzing the fault location by applying
Easily and quickly find the intersection of the markings
The special effect of being able to identify and analyze obstacles
Play a fruit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の故障解析方法のフローチ
ャート
FIG. 1 is a flowchart of a semiconductor device failure analysis method according to the present invention;

【図2】同じくマーキング装置の構成図FIG. 2 is a configuration diagram of the marking device.

【図3】同じく故障解析方法の詳細なフローチャートFIG. 3 is a detailed flowchart of the failure analysis method.

【図4】同じく半導体装置の上面図FIG. 4 is a top view of the same semiconductor device.

【図5】従来の半導体装置の故障解析方法のフローチャ
ート
FIG. 5 is a flowchart of a conventional semiconductor device failure analysis method.

【符号の説明】[Explanation of symbols]

ステップ1 電気的測定 ステップ2 マーキング ステップ3 故障箇所解析 Step 1 Electrical measurement Step 2 Marking Step 3 Failure location analysis

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ダイナミックメモリ装置の故障個所を電気
的測定により特定する工程と、前記特定された故障個所
に対して、上下、左右の4カ所にマーキングを行う工程
と、前記故障個所を荷電ビーム装置により解析する際、
前記4カ所のマーキングの交点により故障個所を特定し
て解析を行うことを特徴とする半導体装置の故障解析方
法。
1. A method according to claim 1, wherein the failure location of the dynamic memory device is electrically determined.
Identifying by faulty measurement, and the identified fault location
Marking at four locations: up, down, left and right
And, when analyzing the fault location by a charged beam device,
Identify the fault location by the intersection of the four markings.
A failure analysis method for a semiconductor device, wherein the failure analysis is performed .
JP28106391A 1991-10-28 1991-10-28 Failure analysis method for semiconductor device Expired - Fee Related JP2912745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28106391A JP2912745B2 (en) 1991-10-28 1991-10-28 Failure analysis method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28106391A JP2912745B2 (en) 1991-10-28 1991-10-28 Failure analysis method for semiconductor device

Publications (2)

Publication Number Publication Date
JPH05121500A JPH05121500A (en) 1993-05-18
JP2912745B2 true JP2912745B2 (en) 1999-06-28

Family

ID=17633799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28106391A Expired - Fee Related JP2912745B2 (en) 1991-10-28 1991-10-28 Failure analysis method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2912745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066119A (en) * 2001-08-30 2003-03-05 Sanyo Electric Co Ltd Failure location display method in semiconductor device
JP6212455B2 (en) * 2014-03-12 2017-10-11 東芝メモリ株式会社 Marking apparatus and marking method

Also Published As

Publication number Publication date
JPH05121500A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP3456999B2 (en) Detection system for high aspect ratio measurement
JPH11238484A (en) Projection type charged particle microscope and substrate inspection system
US6714289B2 (en) Semiconductor device inspecting apparatus
KR100707817B1 (en) Method for inspection, process for making analytic piece, method for analysis, analyzer, process for producing soi wafer, and soi wafer
JP2012073069A (en) Preparation method of specimen for observing defective part of semiconductor device substrate
US7709062B2 (en) Refilling method by ion beam, instrument for fabrication and observation by ion beam, and manufacturing method of electronic device
JP2912745B2 (en) Failure analysis method for semiconductor device
US6297503B1 (en) Method of detecting semiconductor defects
JP2002116184A (en) Instrument and system for analyzing foreign matter in semiconductor device
JP2947650B2 (en) Failure analysis method for semiconductor device
US6251782B1 (en) Specimen preparation by focused ion beam technique
JP2001319954A (en) Sample processing method with focused ion beam
JPH0528950A (en) Method and device for machining cross section
JP2006024921A (en) Inspection method and device by charged particle beam
JP2003133379A (en) Inspection apparatus and manufacturing method of semiconductor device
JPS6297246A (en) Scanning type electron microscope
JP4625376B2 (en) Inspection method by electron beam
JP2004014207A (en) Inspection device of semiconductor circuit pattern
JP7468402B2 (en) How to make a sample
JP2004170395A (en) Charged particle beam system
JPS62154543A (en) Charged beam equipment
JPH11354598A (en) Wafer inspection device
JP2667275B2 (en) Method of manufacturing sample for analysis of semiconductor device and device for marking sample for analysis
JPS63170940A (en) Correction of device
EP0932022B1 (en) Method and apparatus for dimension measurement and inspection of structures

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees