JPH0528950A - Method and device for machining cross section - Google Patents

Method and device for machining cross section

Info

Publication number
JPH0528950A
JPH0528950A JP18225991A JP18225991A JPH0528950A JP H0528950 A JPH0528950 A JP H0528950A JP 18225991 A JP18225991 A JP 18225991A JP 18225991 A JP18225991 A JP 18225991A JP H0528950 A JPH0528950 A JP H0528950A
Authority
JP
Japan
Prior art keywords
cross
section
mask
processing
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18225991A
Other languages
Japanese (ja)
Inventor
Takeshi Onishi
毅 大西
Toru Ishitani
亨 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18225991A priority Critical patent/JPH0528950A/en
Publication of JPH0528950A publication Critical patent/JPH0528950A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the accuracy of a position at which to form the cross section of a device so as to obtain an accurate cross section at a desired place with efficiency by utilizing a mask which is movable in vacuum state in machining the cross section of the device using a focused ion beam. CONSTITUTION:A rectangular hole 3 for enabling observation from the oblique direction of a cross section is formed in the surface of a substrate 2 such as LSI by using a focused ion beam 1. Next a mask 4 put on the end of a manipulator 5 is shifted to a finish cross section position by driving of the manipulator 5. Since a large quantity of secondary electrons are emitted from the end face of the mask, halation occurs at the end portion of the mask 4 against an effort to adjust a contrast on the surface of the sample and so accurate positioning is not possible. Therefore secondary electron signal intensity is compressed logarithmically to prevent halations to form a beam image which is easy to watch and to accurately set the cross section position. The mask 4 is formed by opening an Si crystal thin film while making the form of its end face good, and a strip shape cross section including the boundary of the mask 4 is finished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集束イオンビームを利用
したデバイスの断面加工方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for processing a cross section of a device using a focused ion beam.

【0002】[0002]

【従来の技術】従来技術は、プロシーディングス オブ
インターナショナル リライアビリティー フィジッ
クス シンポジウム、(1989年)第43頁から第5
2頁(Proceedings of International Reliability Phy
sics Symposium, (1989)pp.43−52)に記載されて
いる。
2. Description of the Related Art The prior art is the Proceedings of International Reliability Physics Symposium, (1989) pp. 43-5.
Page 2 (Proceedings of International Reliability Phy
sics Symposium, (1989) pp.43-52).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は集束イ
オンビームを利用してデバイスの断面加工を行ない、走
査イオン顕微鏡像(Scanning IonMicroscope:略してSI
M)機能を用いて断面構造の像観察を行なったものであ
る。図3は加工手順の説明図である。
In the above-mentioned prior art, the device is processed using a focused ion beam for cross-section processing, and a scanning ion microscope image (Scanning Ion Microscope: SI for short) is used.
The image of the cross-sectional structure was observed using the M) function. FIG. 3 is an explanatory diagram of a processing procedure.

【0004】(1)SIM像を元に粗加工領域を指定す
る。
(1) A rough processing area is designated based on the SIM image.

【0005】(2)電流2〜5nAのビームにより矩形
孔を粗く加工する。
(2) A rectangular hole is roughly processed with a beam having a current of 2 to 5 nA.

【0006】(3)観察断面近傍を電流400pAのビ
ームにより走査して仕上げ加工する。 該従来技術は複数のビーム電流(ビーム径)を使い分
け、効率良く断面を形成している点で評価できる。しか
し、最初にビーム径の大きいビームで粗加工するため、
最終的に仕上がる断面位置を精度良く所望の場所に設定
しにくい欠点があった。また、仕上げ加工時にビーム径
を微小にするため少ないビーム電流で加工するため加工
に時間がかかる欠点がある。また、デバイスのチャージ
アップその他の原因で加工領域がドリフトすると正確な
位置に断面が形成できない欠点があった。
(3) Finishing is performed by scanning the vicinity of the observation cross section with a beam having a current of 400 pA. The prior art can be evaluated in that a plurality of beam currents (beam diameters) are selectively used and a cross section is efficiently formed. However, since the rough processing is first performed with a beam with a large beam diameter,
There is a drawback that it is difficult to accurately set the final cross-sectional position to a desired position. Further, since the beam diameter is made minute at the time of finish processing, processing is performed with a small beam current. Further, if the processing region drifts due to charge-up of the device or other reasons, there is a drawback that a cross section cannot be formed at an accurate position.

【0007】DRAM(Dynamic Random Access Memor
y) に代表されるように、半導体の微細化,高集積化は
急速に進んでおり、断面加工に関してはその加工位置精
度の向上が課題となっている。
DRAM (Dynamic Random Access Memor)
As typified by y), miniaturization and high integration of semiconductors are rapidly advancing, and improvement of processing position accuracy is a problem in cross-section processing.

【0008】本発明の目的は、断面加工の加工位置精度
を向上させ、微細なデバイスの所望位置の断面を形成す
ること、そして該断面の構造を観察可能とすることにあ
る。
An object of the present invention is to improve the processing position accuracy of cross-section processing, to form a cross section at a desired position of a fine device, and to make it possible to observe the structure of the cross section.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、該加工断面を真空中で移動可能なマスクを利用して
加工するようにした。
In order to achieve the above object, the processed cross section is processed by using a mask movable in vacuum.

【0010】[0010]

【作用】該断面を形成する際にマスクを利用すること
で、ビーム径が大きくビーム電流の大きいビームを利用
してきれいな断面を形成できるため、高速に加工でき
る。また、マスク端面を含む帯状の領域を走査して加工
すると、加工領域がドリフトしてもそのドリフト量が該
帯状領域の幅以内であれば断面位置が移動することが無
い。従って、断面位置を正確に設定できる。
By using a mask when forming the cross section, a clean cross section can be formed by using a beam having a large beam diameter and a large beam current, so that processing can be performed at high speed. Further, when the band-shaped region including the mask end face is scanned and processed, even if the processed region drifts, the sectional position does not move as long as the drift amount is within the width of the band-shaped region. Therefore, the cross-sectional position can be set accurately.

【0011】[0011]

【実施例】以下、本発明の実施例を図を用いて説明す
る。図2は実施例で用いたFIB加工装置の構成図であ
る。液体金属イオン源100から放出したイオンビーム
はコンデンサーレンズ101と対物レンズ107により
試料基板2上に集束する。ビーム加速電圧は30kVで
ある。レンズ間には可変アパーチャー102,アライナ
ー・スティグマー103,ブランカー104,ブランキ
ング・アパーチャー105,デフレクター106が配置
されている。試料基板2はステージ108により移動で
きる。FIB照射により試料基板2から発生した二次電
子は、二次電子検出器109により検出・増幅され、偏
向制御と同期させることによりコンピューター111の
CRT上にSIM像として表示される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of the FIB processing apparatus used in the embodiment. The ion beam emitted from the liquid metal ion source 100 is focused on the sample substrate 2 by the condenser lens 101 and the objective lens 107. The beam acceleration voltage is 30 kV. A variable aperture 102, an aligner / stigmer 103, a blanker 104, a blanking aperture 105, and a deflector 106 are arranged between the lenses. The sample substrate 2 can be moved by the stage 108. Secondary electrons generated from the sample substrate 2 by FIB irradiation are detected and amplified by the secondary electron detector 109, and displayed as a SIM image on the CRT of the computer 111 by synchronizing with deflection control.

【0012】図1は本発明を利用した断面加工手順を示
すデバイス上面図である。以下、順を追って説明する。
(1)試料基板2(LSI基板)に、断面の斜め方向か
らの観察を可能とする角孔3をFIB加工する。(2)
マニピュレーター5先端に搭載したマスク4をマニピュ
レーター5を駆動して仕上げ断面位置に移動する。この
際、マスク端面から多量の二次電子が放出されるため試
料表面にコントラストを合わせるとマスク端部でハレー
ションが起こり、正確な位置決めが行えない。この対策
として二次電子信号強度を対数的に圧縮した。これによ
り、ハレーションを防止でき、見やすいSIM像による
正確な断面位置設定が行えた。また、本実施例で用いた
マスクはシリコン結晶薄膜を劈開して作成したもので、
マスクの端面形状が良好である。(3)試料基板2とマ
スク4の境界線を含む帯状の領域をFIB1により仕上
げ加工する。これにより、チャージアップ等で加工領域
が多少シフトしても、正確な位置に(マスク端面)に断
面が形成できる。また、仕上げ加工用のビームとして微
細ビームを使用する必要が無いため、大電流で高速に仕
上げ加工ができる利点がある。(4)マニピュレーター
を駆動してマスク4を移動して取り除く。断面6が形成
されており、断面観察が可能となる。
FIG. 1 is a device top view showing a cross-section processing procedure utilizing the present invention. Hereinafter, description will be made step by step.
(1) The sample substrate 2 (LSI substrate) is FIB-processed with the square hole 3 that allows observation from a diagonal direction of the cross section. (2)
The mask 4 mounted on the tip of the manipulator 5 is driven to move to the finishing cross-section position. At this time, since a large amount of secondary electrons are emitted from the mask end surface, if contrast is adjusted to the sample surface, halation occurs at the mask end portion, and accurate positioning cannot be performed. As a measure against this, the secondary electron signal intensity was logarithmically compressed. As a result, halation can be prevented, and accurate cross-sectional position setting can be performed using a SIM image that is easy to see. The mask used in this example was prepared by cleaving a silicon crystal thin film,
The end face shape of the mask is good. (3) A band-shaped region including the boundary line between the sample substrate 2 and the mask 4 is finished by FIB1. As a result, even if the processing region is slightly shifted due to charge-up or the like, a cross section can be formed at an accurate position (mask end face). Moreover, since it is not necessary to use a fine beam as a beam for finishing, there is an advantage that finishing can be performed at high speed with a large current. (4) The manipulator is driven to move and remove the mask 4. Since the cross section 6 is formed, the cross section can be observed.

【0013】本実施例ではFIB照射によるスパッタリ
ング加工を利用したが、この他、FIBアシストエッチ
ング、電子ビーム・アシストエッチング、レーザービー
ム・アシストエッチング等も原理的に利用可能である。
アシストエッチングは加工材料の違いによる選択性が大
きく出るものの、加工速度が速いのが特徴である。本実
施例で述べた断面加工は例えば半導体レーザーや導波路
の端面加工などにも応用可能である。
In the present embodiment, sputtering processing by FIB irradiation was used, but in addition to this, FIB assist etching, electron beam assist etching, laser beam assist etching and the like can also be used in principle.
Assisted etching has a high processing speed, although the selectivity is greatly increased depending on the processing material. The cross-section processing described in this embodiment can be applied to, for example, semiconductor laser and end face processing of a waveguide.

【0014】[0014]

【発明の効果】本発明によれば、断面加工の断面形成位
置精度が向上し、所望場所の断面が効率良く正確に形成
できる効果がある。
According to the present invention, the precision of the cross-section forming position in cross-section processing is improved, and the cross-section at a desired location can be efficiently and accurately formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面加工手順を示す斜視図で
ある。
FIG. 1 is a perspective view showing a cross-section processing procedure according to an embodiment of the present invention.

【図2】本発明の実施例で使用した集束イオンビーム加
工装置の構成図である。
FIG. 2 is a configuration diagram of a focused ion beam processing apparatus used in an example of the present invention.

【図3】従来技術の説明図である。FIG. 3 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…FIB、2…試料基板、3…角孔、4…マスク、5
…マニピュレーター、6…観察断面、100…液体金属
イオン源、101…コンデンサ・レンズ、102…可変ア
パーチャー、103…アライナー・スティグマー、10
4…ブランカー、105…ブランキング・アパーチャ
ー、106…デフレクター、107…対物レンズ、10
8…ステ−ジ、109…二次電子検出器、110…マニ
ピュレーター、111…コンピューター、112…シス
テム・バス。
1 ... FIB, 2 ... Sample substrate, 3 ... square hole, 4 ... mask, 5
... manipulator, 6 ... observation section, 100 ... liquid metal ion source, 101 ... condenser lens, 102 ... variable aperture, 103 ... aligner stigmer, 10
4 ... Blanker, 105 ... Blanking aperture, 106 ... Deflector, 107 ... Objective lens, 10
8 ... Stage, 109 ... Secondary electron detector, 110 ... Manipulator, 111 ... Computer, 112 ... System bus.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】集束イオンビーム(FIB)を利用してデ
バイスに断面を形成する加工方法であって、該加工断面
を真空中で移動可能なマスクを利用して加工することを
特徴とする断面加工方法。
1. A processing method for forming a cross section in a device by using a focused ion beam (FIB), wherein the processed cross section is processed by using a mask movable in vacuum. Processing method.
【請求項2】該断面加工は少なくとも断面の斜め方向か
らの観察を可能とする孔の粗加工と観察断面をきれいに
切り出す仕上げ加工から成り、該仕上げ加工時に該可動
マスクを利用することを特徴とする請求項1記載の断面
加工方法。
2. The cross-section processing comprises at least rough processing of a hole that enables observation from an oblique direction of the cross section and finish processing for cutting out the observation cross section neatly, and the movable mask is used during the finish processing. The cross-section processing method according to claim 1.
【請求項3】該可動マスク端面が結晶の劈開面であるこ
とを特徴とする請求項1又は2記載の断面加工方法。
3. The cross-section processing method according to claim 1, wherein the end face of the movable mask is a cleavage plane of a crystal.
【請求項4】イオン源と該イオン源から放出したイオン
ビームを試料上に集束・偏向するイオン光学系とイオン
ビームを所望の強度で所望場所に照射するFIB制御系
と可動マスクを搭載したマニピュレーターから成ること
を特徴とする断面加工装置。
4. A manipulator equipped with an ion source, an ion optical system for focusing and deflecting an ion beam emitted from the ion source on a sample, a FIB control system for irradiating the ion beam at a desired location with a desired intensity, and a movable mask. A cross-section processing device comprising:
JP18225991A 1991-07-23 1991-07-23 Method and device for machining cross section Pending JPH0528950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18225991A JPH0528950A (en) 1991-07-23 1991-07-23 Method and device for machining cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18225991A JPH0528950A (en) 1991-07-23 1991-07-23 Method and device for machining cross section

Publications (1)

Publication Number Publication Date
JPH0528950A true JPH0528950A (en) 1993-02-05

Family

ID=16115127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18225991A Pending JPH0528950A (en) 1991-07-23 1991-07-23 Method and device for machining cross section

Country Status (1)

Country Link
JP (1) JPH0528950A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115861A (en) * 1995-10-20 1997-05-02 Hitachi Ltd Machining system for sample
EP0703596A3 (en) * 1994-09-22 1999-01-07 Ebara Corporation Method and apparatus for energy beam machining
US5907157A (en) * 1996-02-01 1999-05-25 Jeol Ltd. Method and apparatus for preparing specimen
JP2007108042A (en) * 2005-10-14 2007-04-26 Hitachi High-Technologies Corp Sample analysis method, and sample machining device
DE102008013511A1 (en) 2007-03-12 2008-09-18 Sii Nano Technology Inc. Apparatus for processing and observing samples and methods for processing and observing cross-sections
JP2009074933A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Manufacturing method of section observation sample
JP2013205017A (en) * 2012-03-27 2013-10-07 Nippon Steel & Sumitomo Metal Apparatus and method for preparing minute thin film sample for transmission electron microscope

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703596A3 (en) * 1994-09-22 1999-01-07 Ebara Corporation Method and apparatus for energy beam machining
JPH09115861A (en) * 1995-10-20 1997-05-02 Hitachi Ltd Machining system for sample
US5907157A (en) * 1996-02-01 1999-05-25 Jeol Ltd. Method and apparatus for preparing specimen
JP2007108042A (en) * 2005-10-14 2007-04-26 Hitachi High-Technologies Corp Sample analysis method, and sample machining device
JP4520926B2 (en) * 2005-10-14 2010-08-11 株式会社日立ハイテクノロジーズ Sample analysis method
DE102008013511A1 (en) 2007-03-12 2008-09-18 Sii Nano Technology Inc. Apparatus for processing and observing samples and methods for processing and observing cross-sections
US7755044B2 (en) 2007-03-12 2010-07-13 Sii Nano Technology Inc. Apparatus for working and observing samples and method of working and observing cross sections
JP2009074933A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Manufacturing method of section observation sample
JP2013205017A (en) * 2012-03-27 2013-10-07 Nippon Steel & Sumitomo Metal Apparatus and method for preparing minute thin film sample for transmission electron microscope

Similar Documents

Publication Publication Date Title
US5270552A (en) Method for separating specimen and method for analyzing the specimen separated by the specimen separating method
US6497194B1 (en) Focused particle beam systems and methods using a tilt column
JP5033314B2 (en) Ion beam processing apparatus and processing method
US7094312B2 (en) Focused particle beam systems and methods using a tilt column
US8431891B2 (en) Dual beam apparatus with tilting sample stage
JPH10223574A (en) Machining observation device
US7528394B2 (en) Focused ion beam system
JP2003520409A (en) Shaped, low-density focused ion beam
JPH11108813A (en) Method and device for preparing sample
JPH0528950A (en) Method and device for machining cross section
JP3060613B2 (en) Focused ion beam apparatus and cross-section processing method using focused ion beam
US6683305B1 (en) Method to obtain transparent image of resist contact hole or feature by SEM without deforming the feature by ion beam
JP4170048B2 (en) Ion beam apparatus and ion beam processing method
US6251782B1 (en) Specimen preparation by focused ion beam technique
JP3223431B2 (en) Thin film processing equipment
JPS60126834A (en) Ion beam processing method and device thereof
JPH10221046A (en) Charged particle microscope of scan type
JP3968144B2 (en) Focused ion beam processing method and processing apparatus
JP5792767B2 (en) Ion beam processing apparatus and processing method
JPH06134583A (en) Ion beam machine
JPH04373125A (en) Converged ion beam device and processing method using that
JPH11160210A (en) Observation sample for transmission electron microscope and its preparation
JP2912745B2 (en) Failure analysis method for semiconductor device
JP2947650B2 (en) Failure analysis method for semiconductor device
JPH02132345A (en) Manufacture of thin film specimen