JP2012073069A - Preparation method of specimen for observing defective part of semiconductor device substrate - Google Patents

Preparation method of specimen for observing defective part of semiconductor device substrate Download PDF

Info

Publication number
JP2012073069A
JP2012073069A JP2010216972A JP2010216972A JP2012073069A JP 2012073069 A JP2012073069 A JP 2012073069A JP 2010216972 A JP2010216972 A JP 2010216972A JP 2010216972 A JP2010216972 A JP 2010216972A JP 2012073069 A JP2012073069 A JP 2012073069A
Authority
JP
Japan
Prior art keywords
sample
defect portion
observation
minute defect
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010216972A
Other languages
Japanese (ja)
Inventor
Shuzo Waratani
藁谷修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010216972A priority Critical patent/JP2012073069A/en
Publication of JP2012073069A publication Critical patent/JP2012073069A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a preparation method of a specimen for observing a defective part of a semiconductor device substrate, which enables the fine defective part of the semiconductor device substrate to be easily specified in a short time, so that a thin specimen suitable for transmission electron microscope observation can be made.SOLUTION: A method comprises: a first step of marking an upper surface of a fine defective part in a semiconductor device formed on a silicon semiconductor substrate as an observation object with electron beams or laser beams for location specification using an optical microscope; a second step of fixing the specified location on a support base; a third step of making a specimen for plane observation by thinning the substrate through pruning both surfaces with FIB processing to such an extent that an electron penetrates the substrate; a fourth step of specifying the fine defective part with STEM observation; a fifth step of newly marking the defective part after specifying the fine defective part; and a sixth step of cutting the specimen with FIB to make a specimen for section observation.

Description

本発明は、透過形電子顕微鏡(以降、TEMという)などを用いた半導体デバイスの不良箇所の評価方法に関し、特には、シリコン基板上に作り込まれた半導体デバイス(以降、半導体デバイス基板と称する)の微小欠陥部を精度良く観察し評価するための半導体デバイス基板の欠陥部観察用試料の作製方法に関する。   The present invention relates to a method of evaluating a defective portion of a semiconductor device using a transmission electron microscope (hereinafter referred to as TEM), and more particularly, a semiconductor device fabricated on a silicon substrate (hereinafter referred to as a semiconductor device substrate). The present invention relates to a method for producing a defect portion observation sample of a semiconductor device substrate for accurately observing and evaluating a minute defect portion.

半導体デバイス基板の内部構造の極く微小な欠陥部などを観察する方法としては、断面試料の観察面に電子線を照射し、透過または走査透過した電子線から物質の結晶構造の違いなどを反映した画像を形成して内部構造の像を得る透過形電子顕微鏡(TEM)または走査透過形電子顕微鏡(以降、STEMという)を挙げることができる。通常、これらの装置は、総称してTEMと分類される。これらの手法を用いて半導体デバイス基板内部の欠陥部を観察するためには、半導体デバイス基板の観察面での厚さを、電子線が透過する程度に極めて薄く加工する必要がある。   As a method of observing extremely minute defects in the internal structure of a semiconductor device substrate, the observation surface of a cross-sectional sample is irradiated with an electron beam, and the difference in the crystal structure of the material is reflected from the transmitted or scanned electron beam. Examples thereof include a transmission electron microscope (TEM) or a scanning transmission electron microscope (hereinafter referred to as STEM) which forms an image of the internal structure to obtain an image of the internal structure. Usually, these devices are collectively classified as TEM. In order to observe a defect inside the semiconductor device substrate using these methods, it is necessary to process the thickness of the semiconductor device substrate on the observation surface so as to be thin enough to transmit an electron beam.

図2は、FIB(Forcused Ion Beam;集束イオンビーム)加工法を用いた従来の、TEM、STEM観察用断面試料の作製手順を示す試料部分の斜視図である。(a)はプロセスフロー説明図、(b)は(a)のプロセスフローに対応する作製試料の斜視図である。まず、ウエハ状態の半導体デバイス基板(図示せず)を準備し、観察対象である微小欠陥部を光学顕微鏡で観察し、欠陥部の上部表面に特定場所をレーザーマーキング102などで目印をつける。欠陥部が確実に含まれるようにレーザーマーキング102よりはるかに大きい300μm×300μm程度の大きさの試料ブロック101として図示しないダイサー、FIBなどで切り出すか、または前記欠陥部がへき開面に支障なく取り出せる場合は、へき開法で取り出す(手順A1)。大型の試料室を有するFIB装置では元のウエハの大きさの半導体デバイス基板を直接試料室に持ち込んで、観察対象である微小欠陥部近傍をイオンビーム加工できるので、この手順A1による試料ブロック101の切り出し処理を省略できる。   FIG. 2 is a perspective view of a sample portion showing a conventional procedure for producing a cross-sectional sample for TEM and STEM observation using a FIB (Focused Ion Beam) processing method. (A) is process flow explanatory drawing, (b) is a perspective view of the preparation sample corresponding to the process flow of (a). First, a semiconductor device substrate (not shown) in a wafer state is prepared, a minute defect portion to be observed is observed with an optical microscope, and a specific place is marked on the upper surface of the defect portion with a laser marking 102 or the like. When the sample block 101 having a size of about 300 μm × 300 μm, which is much larger than the laser marking 102, is cut out with a dicer (not shown), FIB, or the like so that the defective portion is surely included Is removed by a cleavage method (procedure A1). In an FIB apparatus having a large sample chamber, a semiconductor device substrate having the size of the original wafer can be directly brought into the sample chamber, and the vicinity of a minute defect portion to be observed can be subjected to ion beam processing. Cutout processing can be omitted.

次に、手順A1で切り出した欠陥部が含まれる試料ブロック101をFIB装置内の試料室に導入して、細く絞ったイオンビームにより、レーザーマーキング102を目印にし、観察の対象となる欠陥部が確実に含まれる特定場所103(サイズ;厚さ5μm×長さ20μm×幅20μm程度の大きさ)の外周辺部分をボックス状に深堀りし、最後に、特定場所103の底面を5μmの深さで切断して特定試料103aを切り離し取り出す。前述の手順A1で切り出した試料ブロック101から取り出した特定試料103aには、観察対象の欠陥部が含まれるので、その後のイオンビーム加工の際の熱などで変質、変形しないように、同じFIB装置内で金属薄膜(デポ膜と呼ばれる)のタングステン膜(図示せず)などで被覆して保護する(手順A2)。この特定試料103aを別に準備した支持台104に固定する。  Next, the sample block 101 including the defective portion cut out in the procedure A1 is introduced into the sample chamber in the FIB apparatus, and the laser marking 102 is used as a mark by the narrowed ion beam, and the defective portion to be observed is observed. The outer peripheral part of the specific location 103 (size: thickness 5 μm × length 20 μm × width 20 μm) is surely included in a box shape, and finally the bottom of the specific location 103 is 5 μm deep. To cut out the specific sample 103a. Since the specific sample 103a taken out from the sample block 101 cut out in the above-described procedure A1 includes a defect portion to be observed, the same FIB apparatus is used so that it is not altered or deformed by heat or the like during subsequent ion beam processing. Then, it is covered and protected with a tungsten film (not shown) of a metal thin film (called a deposition film) (procedure A2). This specific sample 103a is fixed to the support 104 prepared separately.

または、FIB装置に図示しないマイクロサンプリング法と呼ばれる周知の機能が付属している場合は特定試料103aに、細線状のプローブを付着させて特定試料103aを吊り上げて、前述と同様に支持台104の一種である銅メッシュに固定する。次に、該支持台104に固定した前記特定試料103aをFIBで更に、TEMの電子線が透過できる程度の薄さ(サイズ(薄膜化した箇所);5μm×0.1μm×5μm程度)に加工すると、TEM観察に用いられるために薄片化された観察用断面試料105の作製が完了する(手順A3)。前述の特定試料103aを薄片化された観察用断面試料105に加工する方法は、FIBで加工するか、またはさらにオージェ電子分光装置を用いてアルゴンイオンエッチングにより薄膜化する。なお、FIB装置にマイクロサンプリング機能が無い場合には、手順A1の後に、前述の手順A2のボックス状加工から底面を切り離さずにそのままの状態で、更に手順A3の断面薄片加工までをFIBにて行い、その後に先を細くしたガラス棒の先端に静電力で特定場所103を含む薄片状の観察用断面試料105を付けて吊り上げ、銅メッシュなどの支持台104に固定して薄片化された観察用断面試料105の作製が完了となる(特許文献2、3、4、5、非特許文献1、2)。  Alternatively, when a well-known function called a microsampling method (not shown) is attached to the FIB apparatus, a thin wire probe is attached to the specific sample 103a and the specific sample 103a is lifted, and the support base 104 is Fix to a kind of copper mesh. Next, the specific sample 103a fixed on the support base 104 is further processed by FIB into a thin enough thickness (size (thinned portion); about 5 μm × 0.1 μm × 5 μm) to transmit a TEM electron beam. Then, the production of the observation cross-section sample 105 that has been thinned for use in TEM observation is completed (procedure A3). As the method for processing the specific sample 103a into the sliced cross-section sample 105 for observation, the specific sample 103a is processed by FIB or further thinned by argon ion etching using an Auger electron spectrometer. If the FIB apparatus does not have a micro-sampling function, after the procedure A1, the FIB process from the box-like process of the above-described procedure A2 is performed without removing the bottom surface and further to the cross-section slice processing of the procedure A3. And then suspending the tip of a tapered glass rod with an electrostatic force and attaching a flaky cross-section sample 105 including a specific location 103 to a support base 104 such as a copper mesh. Production of the cross-sectional sample 105 for use is completed (Patent Documents 2, 3, 4, 5, Non-Patent Documents 1 and 2).

図3は、前記図2の手順A3で作製され、銅メッシュなどの支持台104に固定された薄片状の観察用断面試料105の内部構造観察を行うための、TEMを用いた観察装置の概略構成図を示す。この観察装置は観察用断面試料105に照射するTEM(図示せず)の電子線3、観察用断面試料105を透過した電子線4、この透過した電子線4を検出する電子線検出器5、画像観察用のCRT(Cthode Ray Tube)6などから構成される。しかし、前述した手順A1〜手順A3で説明した従来の観察用断面試料105の作製方法によると、半導体デバイス基板の表面にあるミクロンオーダー以上の大きな欠陥に対しては適用できる。しかし、図4に示すように、半導体デバイス基板の内部のドープドポリシリコン膜9の下層のシリコン基板7との界面またはゲート絶縁膜11上にあるナノメーターオーダーの微小欠陥部10に対しては、半導体デバイス基板上に形成された層間絶縁膜8やメタルからなる電極および配線(図示せず)が邪魔になるので、観察対象の微小欠陥部10を光学顕微鏡で観察ができない。さらに、図2で説明した、対応する基板表面の特定場所103へのレーザーマーキング102もできないという問題がある。   FIG. 3 is an outline of an observation apparatus using a TEM for observing the internal structure of the flaky observation cross-section sample 105 manufactured in the procedure A3 of FIG. 2 and fixed to a support base 104 such as a copper mesh. A block diagram is shown. The observation apparatus includes an electron beam 3 of a TEM (not shown) that irradiates the observation cross-section sample 105, an electron beam 4 that has passed through the observation cross-section sample 105, an electron beam detector 5 that detects the transmitted electron beam 4, A CRT (Cathode Ray Tube) 6 for image observation is used. However, the conventional method for producing the cross-sectional sample for observation 105 described in the procedure A1 to the procedure A3 can be applied to a large defect on the surface of the semiconductor device substrate of the order of microns or more. However, as shown in FIG. 4, for the nanometer-order minute defect portion 10 on the interface with the silicon substrate 7 below the doped polysilicon film 9 inside the semiconductor device substrate or on the gate insulating film 11. Since the interlayer insulating film 8 formed on the semiconductor device substrate and the electrodes and wirings (not shown) made of metal are in the way, the minute defect portion 10 to be observed cannot be observed with an optical microscope. Furthermore, there is a problem that the laser marking 102 to the specific location 103 on the corresponding substrate surface described in FIG. 2 cannot be performed.

特に、微小欠陥部10の上方に層間絶縁膜8が何層か積層されている場合、層間絶縁膜8の厚さは通常1〜2μmの厚さがあり、光学顕微鏡で観察できる大きさは、数μm程度の大きさまでである。層間絶縁膜8の上にあるメタルなどの電極および配線材料(図示せず)はエッチングなどにより容易に除去できるが、層間絶縁膜8の下層であってシリコン基板7との間にある微小な異物や欠陥などは、光学顕微鏡で表面から観察することはできない。また、これらの微小欠陥部10が半導体デバイス基板の表面に存在する場合は比較的、光学顕微鏡でも識別させ易いが、特にその欠陥がシリコン基板7の材料に関連した内部欠陥、たとえば結晶欠陥の場合には、欠陥に影響が出ない方法で露出させないと、光学顕微鏡では識別できないという問題があった。その対策として、走査形電子顕微鏡(以降、SEM)を用いて内部にある結晶欠陥を観察する方法やFIB内でマーキングすることにより、観察対象とする欠陥を確実に観察する装置などが考案されている。また、欠陥部を含む特定場所をサンプリングして、FIB装置内のホルダーに取り付け、FIB内で観察しながら2方向以上から加工して薄膜試料を作成する方法も提案されている。また、欠陥部を電気的に検知する手法として、エミッション顕微鏡法があり、レーザー照射により欠陥部が発光し、その近傍にレーザーマーカーでマーキングして、FIBとSEMを組み合わせた装置によってマーキング個所の近傍を薄片加工しながら欠陥部を観察する方法も近年行われているが、この手法によっても欠陥部を特定および観察できない場合があるという問題がある。   In particular, when several layers of the interlayer insulating film 8 are stacked above the minute defect portion 10, the thickness of the interlayer insulating film 8 is usually 1 to 2 μm, and the size that can be observed with an optical microscope is The size is about several μm. Electrodes such as metal and wiring material (not shown) on the interlayer insulating film 8 can be easily removed by etching or the like, but minute foreign matters that are under the interlayer insulating film 8 and between the silicon substrate 7 And defects cannot be observed from the surface with an optical microscope. In addition, when these minute defect portions 10 are present on the surface of the semiconductor device substrate, it is relatively easy to identify them with an optical microscope. However, in particular, when the defect is an internal defect related to the material of the silicon substrate 7, for example, a crystal defect. Has a problem that it cannot be identified by an optical microscope unless it is exposed by a method that does not affect the defects. As countermeasures, a method for observing crystal defects inside using a scanning electron microscope (hereinafter referred to as SEM) or a device for observing defects to be observed reliably by marking in the FIB have been devised. Yes. In addition, a method has been proposed in which a specific place including a defective portion is sampled, attached to a holder in the FIB apparatus, and processed from two or more directions while being observed in the FIB to create a thin film sample. In addition, there is an emission microscope method as a method for electrically detecting a defective portion. The defective portion emits light by laser irradiation, and the vicinity thereof is marked with a laser marker, and the vicinity of the marking portion by an apparatus combining FIB and SEM. In recent years, a method of observing a defective portion while processing a thin piece is also performed, but there is a problem that the defective portion may not be identified and observed even by this method.

特開2008−14899号公報JP 2008-14899 A 特許第3965761号公報Japanese Patent No. 3965761 特開平8−327514号公報JP-A-8-327514 特開2004−245660号公報JP 2004-245660 A 特許第3843637号公報Japanese Patent No. 3843637 発明協会公開技報公技番号2006−504555号Japan Society for Invention and Innovation Open Technical Bulletin No. 2006-504555 発明協会公開技報公技番号2006−503669号Japan Society for Invention and Innovation Open Technical Bulletin No. 2006-503669

しかしながら、前述のTEM観察用断面試料の作製方法は、いずれも欠陥部の大きさがミクロンオーダーであって、光学顕微鏡による観察対象の欠陥場所が特定できる場合のものであり、ナノメーターオーダーの微小欠陥部の試料作製法としては適さない。もし、観察対象とする欠陥部の近傍をサンプリング試料として採取できたとしても、サンプリング試料の観察により、存在する欠陥部を特定して判別することが煩雑である。たとえば、欠陥部を判別可能にするために、相当な加工時間を要し、作業効率が悪いという課題がある。場合によっては欠陥部を見逃して消失してしまうことも多い。また、特許文献1の段落0022には欠陥位置を2次元的にTEM/STEMで観察し同定する、と記載されているのみである。   However, all of the above-described methods for producing the cross-sectional sample for TEM observation are those in which the size of the defect portion is on the order of microns and the defect location to be observed by the optical microscope can be specified. It is not suitable as a sample preparation method for defective portions. Even if the vicinity of the defect portion to be observed can be collected as a sampling sample, it is complicated to identify and determine the existing defect portion by observing the sampling sample. For example, in order to make it possible to determine a defective portion, there is a problem that a considerable processing time is required and work efficiency is poor. In some cases, the defect part is often overlooked and disappears. Further, paragraph 0022 of Patent Document 1 only describes that a defect position is observed and identified two-dimensionally with a TEM / STEM.

本発明は、以上説明した点に鑑みてなされたものであり、本発明の目的は、短時間で容易に、半導体デバイス基板の微小な欠陥部を特定でき、透過形電子顕微鏡観察に適した薄片試料とすることが可能な半導体デバイス基板の欠陥部観察用試料の作製方法を提供することである。   The present invention has been made in view of the above-described points, and an object of the present invention is to easily identify a minute defect portion of a semiconductor device substrate in a short time and to be a thin piece suitable for observation with a transmission electron microscope. It is an object of the present invention to provide a method for producing a defect observation sample of a semiconductor device substrate that can be used as a sample.

前記本発明の目的はを達成するために、半導体デバイス基板の内部に含まれる微小欠陥部の近傍部分を、前記半導体デバイス基板から切り出して試料ブロックとし、該試料ブロック中の前記微小欠陥部を光学顕微鏡で特定して、前記微小欠陥部の上部の基板表面にレーザーマーキングする第1工程、前記試料ブロックから、前記レーザーマーキングにより特定された前記微小欠陥部を含む基板部分を集束イオンビームにより切り取り、切り取った前記レーザーマーキングにより特定された微小欠陥部を含む基板部分を支持台に固定する第2工程、前記支持台に固定された微小欠陥部を含む基板部分を集束イオンビームにより前記電子線が透過する程度の厚さの薄片に削って平面観察用試料とする第3工程、該平面観察用試料を透過形走査形電子顕微鏡の走査二次電子像で拡大観察して前記微小欠陥部を特定するとともに、前記二次電子の走査により発生するコンタミネーション膜を前記微小欠陥部上部の前記平面観察用試料表面に堆積してマーキングする第4工程、該マーキングにより特定される前記微小欠陥部上部の前記平面観察試料表面で、前記平面観察用試料を集束イオンビームにより切断して断面観察用試料とする第5工程を有する半導体デバイス基板の欠陥部観察用試料の作製方法とする。前記第3工程で作製される平面観察用試料は、前記支持台に固定された微小欠陥部を含む基板部分を集束イオンビームにより両面から削られて、電子線が透過する程度の厚さにされるとともに、前記微小欠陥部が表面に露出されていることが好ましい。また、前記第3工程が、前記支持台に固定された微小欠陥部を含む基板部分に対して、集束イオンビームおよび低加速アルゴンエッチングをこの順に実施して両面から電子線が透過する程度の厚さに削るとともに、前記微小欠陥部が基板表面に露出する平面観察用試料とする工程とすることもできる。前記低加速アルゴンエッチングがオージェ電子分光装置を用いるエッチングであることが望ましい。   In order to achieve the object of the present invention, a portion near a minute defect portion included in a semiconductor device substrate is cut out from the semiconductor device substrate as a sample block, and the minute defect portion in the sample block is optically formed. First step of laser marking on the surface of the substrate above the microdefect portion specified by a microscope, the substrate block including the microdefect portion specified by the laser marking is cut out from the sample block by a focused ion beam, A second step of fixing the substrate portion including the minute defect portion identified by the cut laser marking to a support base; the electron beam is transmitted by the focused ion beam through the substrate portion including the micro defect portion fixed to the support base; A third step of cutting into a thin piece having a thickness sufficient to obtain a flat observation sample, The micro defect portion is specified by magnifying and observing with a scanning secondary electron image of a microscope, and a contamination film generated by scanning the secondary electron is deposited on the surface of the planar observation sample above the micro defect portion. A semiconductor having a fourth step of marking, and a fifth step of cutting the planar observation sample with a focused ion beam on the surface of the planar observation sample above the minute defect portion specified by the marking to obtain a sectional observation sample A method for producing a defect observation sample of a device substrate is used. The sample for plane observation produced in the third step is made thick enough to allow the electron beam to pass through the substrate portion including the minute defect portion fixed to the support base by scraping from both sides with a focused ion beam. In addition, it is preferable that the minute defect portion is exposed on the surface. In addition, the third step is such that a focused ion beam and low-acceleration argon etching are performed in this order on the substrate portion including the minute defect portion fixed to the support base in order to transmit the electron beam from both sides. It can also be a step of making a flat observation sample in which the minute defect portion is exposed on the substrate surface. The low acceleration argon etching is preferably etching using an Auger electron spectrometer.

前記本発明の目的は、シリコン基板上に形成される半導体デバイス内の微小欠陥部近傍部分を、集束イオンビームを用いて前記半導体デバイス基板から切り取って支持台に固定し、支持台に固定された前記微小欠陥部近傍部分の表面をウェットエッチングして削り前記微小欠陥部を表面に露出させる第1工程、露出した前記微小欠陥部を走査形電子顕微鏡の走査二次電子像で拡大観察し、露出した前記微小欠陥部上に前記走査二次電子像の観察時に発生するコンタミネーション膜を堆積させてマーキングとする第2工程、マーキングにより特定される前記微小欠陥部を集束イオンビームを用いて切断し薄片化して平面観察用試料とする第3工程を有する半導体デバイス基板の欠陥部観察用試料の作製方法とすることによっても達成される。前記ウェットエッチングとして、前記微小欠陥部近傍部分の表面のアルミニウム電極のエッチングに塩酸溶液、シリコン酸化膜にフッ酸溶液、ポリシリコン膜にTMAH(テトラメチルアンモニウムハイドロオキサイド)溶液を用いることが好ましい。   The object of the present invention is to cut a portion near a micro-defect portion in a semiconductor device formed on a silicon substrate from the semiconductor device substrate using a focused ion beam and fix it to a support table, and then fix to the support table. First step of wet etching the surface of the vicinity of the micro defect portion to expose the micro defect portion on the surface, the exposed micro defect portion is enlarged and observed with a scanning secondary electron image of a scanning electron microscope, and exposed. A second step of depositing a contamination film generated at the time of observation of the scanning secondary electron image on the minute defect portion to form a marking; cutting the minute defect portion specified by the marking using a focused ion beam; It is also achieved by making a method for producing a defect portion observation sample of a semiconductor device substrate having a third step of making a thin piece to obtain a flat observation sample. As the wet etching, it is preferable to use a hydrochloric acid solution for etching the aluminum electrode in the vicinity of the minute defect portion, a hydrofluoric acid solution for the silicon oxide film, and a TMAH (tetramethylammonium hydroxide) solution for the polysilicon film.

本発明によれば、短時間で容易に、半導体デバイス基板の微小な欠陥部を特定でき、透過形電子顕微鏡観察に適した薄片試料とすることが可能な半導体デバイス基板の欠陥部観察用試料の作製方法を提供することができる。   According to the present invention, a minute defect portion of a semiconductor device substrate can be easily identified in a short time, and a defect observation sample of a semiconductor device substrate that can be made into a thin piece sample suitable for transmission electron microscope observation A manufacturing method can be provided.

本発明の実施例1にかかるTEM、STEM観察用断面試料の作製工程を示す試料部分の斜視図である。It is a perspective view of the sample part which shows the preparation processes of the cross-sectional sample for TEM concerning SEM and the STEM observation concerning Example 1 of this invention. 従来の、TEM、STEM観察用断面試料の作製工程を示す試料部分の斜視図である。It is a perspective view of the sample part which shows the preparation process of the cross-sectional sample for the conventional TEM and STEM observation. 前記図2の手順A3で作製され、銅メッシュに固定された観察用断面試料の内部を観察するための、TEMを用いた観察装置の概略構成図を示す。The schematic block diagram of the observation apparatus using TEM for observing the inside of the cross-sectional sample for observation produced by the procedure A3 of the said FIG. 2, and being fixed to the copper mesh is shown. 従来の図2の手順で作製された観察用断面試料の欠陥部近傍の模式的断面図である。It is typical sectional drawing of the defect part vicinity of the cross-sectional sample for observation produced in the procedure of the conventional FIG. 本発明の実施例1にかかる前記図1に示す作製工程により作製された断面観察用試料の模式的断面図である。It is typical sectional drawing of the sample for cross-sectional observation produced by the production process shown in the said FIG. 1 concerning Example 1 of this invention. 本発明の実施例1にかかる試料の作製工程を示す概略図である。It is the schematic which shows the preparation process of the sample concerning Example 1 of this invention. 本発明の実施例2にかかるTEM、STEM断面観察用試料の作製工程を示す試料部分の斜視図である。It is a perspective view of the sample part which shows the preparation processes of the sample for TEM and STEM cross section observation concerning Example 2 of this invention. 本発明の実施例2にかかる前記図1に示す作製工程により作製された断面観察用試料の模式的断面図である。It is typical sectional drawing of the sample for cross-sectional observation produced by the production process shown in the said FIG. 1 concerning Example 2 of this invention.

以下、本発明の半導体デバイス基板の欠陥部観察用試料の作製方法の実施例について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Embodiments of a method for producing a defect observation sample of a semiconductor device substrate according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

以下、本発明の実施例1にかかる半導体デバイス基板の欠陥部観察用試料の作製方法の好適な実施形態を、図面を参照しながら詳細に説明する。図1は、TEM,STEM観察用の、実施例1による欠陥部観察用試料の作製手順を示すものである。(a)は第1工程〜第5工程のフローの説明図であり、(b)は(a)に対応する作製工程段階の試料の斜視図である。なお、分析対象となる微小欠陥は、図4に示した、半導体デバイス基板の内部のドープドポリシリコン膜9のゲート絶縁膜11との界面にあるナノメーターオーダーの微小欠陥部10とする。   Hereinafter, a preferred embodiment of a method for producing a defect observation sample of a semiconductor device substrate according to Example 1 of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a procedure for producing a defect observation sample according to Example 1 for TEM and STEM observation. (A) is explanatory drawing of the flow of a 1st process-a 5th process, (b) is a perspective view of the sample of the production process step corresponding to (a). Note that the minute defect to be analyzed is the minute defect portion 10 in the nanometer order at the interface between the doped polysilicon film 9 and the gate insulating film 11 inside the semiconductor device substrate shown in FIG.

(第1工程)
まず、第1工程として、エミッション顕微鏡(図示しない)などによって、半導体デバイス基板の、電気的に不良になった場所を見つけて、その不良場所(微小欠陥部)に対応する表面に、付属のレーザーマーカーで第1のレーザーマーキングを付けたウエハ(図示せず)を準備する。前記図2に示した従来の試料作製手順と同様、ダイサーまたはFIBを用いて観察対象である微小欠陥部(前記不良場所)に対応する第1のレーザーマーキング(図示せず)を目印にして大きめのサイズで試料ブロック20を切り出すか、観察対象である前記微小欠陥部を含む特定場所が、その結晶面に影響することなく割れる場合は、へき開して試料ブロック20を取り出す。大型の試料室を有するFIB装置では、元のウエハで直接、微小欠陥部を含む特定試料23をFIB加工で切り出せるので、この操作は省略できる。次に、切り出した試料ブロック20を光学顕微鏡で拡大観察し、おおよその微小欠陥部の位置の確認をし、レーザーマーカーで、前記微小欠陥部のさらに近くに対応する表面に第2のレーザーマーキング21を付けた後、試料ブロック20の基板表面に設けられているメタルなどの電極および配線をエッチングなどで除去する。前記光学顕微鏡は倍率が低いので、微小欠陥部の位置を確認することができ、第2のレーザーマーキング21も付けることができるが、微小欠陥部の詳細までは不明である。前記メタルエッチング後に必要な場合は再度第2のレーザーマーキング21を付ける。
(First step)
First, as a first step, an emission microscope (not shown) or the like is used to find a place where the semiconductor device substrate has become electrically defective, and the attached laser is applied to the surface corresponding to the defective place (small defect portion). A wafer (not shown) on which a first laser marking is attached with a marker is prepared. As with the conventional sample preparation procedure shown in FIG. 2, the first laser marking (not shown) corresponding to the minute defect portion (the defective place) to be observed is enlarged using a dicer or FIB as a mark. If the sample block 20 is cut out with a size of 1 mm, or if the specific location including the minute defect portion to be observed is cracked without affecting the crystal plane, the sample block 20 is removed by cleaving. In the FIB apparatus having a large sample chamber, this operation can be omitted because the specific sample 23 including the minute defect portion can be cut out directly from the original wafer by FIB processing. Next, the cut-out sample block 20 is enlarged and observed with an optical microscope, the approximate position of the minute defect portion is confirmed, and the second laser marking 21 is formed on the surface corresponding to the minute defect portion with a laser marker. After that, electrodes such as metal and wiring provided on the substrate surface of the sample block 20 are removed by etching or the like. Since the optical microscope has a low magnification, the position of the minute defect portion can be confirmed, and the second laser marking 21 can be attached, but the details of the minute defect portion are unknown. If necessary after the metal etching, the second laser marking 21 is attached again.

(第2工程)
次に、第2工程として、図示しないFIB装置内の試料室に前記試料ブロック20を、基板の主面に平行な面がイオンビーム(FIB)の出射方向に垂直となる方向に配置する。細く絞ったFIBにより、第2のレーザーマーキング21を目印にして微小欠陥部が含まれる特定場所22(サイズ;5μm×20μm×20μm程度)の外周辺部分をボックス状に、樹木の根を掘り起こすように深堀りし、最後に、前記試料ブロック20を傾斜させて前記特定場所22の底面を切断して切り離して特定試料23を取り出す。前記特定場所22内の微小欠陥部の上部に対応する表面には、後工程のFIBで加工されないように、同じFIB装置内で金属薄膜(デポ膜と呼ばれる)のタングステン膜(図示せず)などを保護膜として被覆し、前記図2と同様に、別に準備した銅製またはモリブデン製の半円状のメッシュなどの支持台104に固定する。またはFIB装置にマイクロサンプリング法と呼ばれる機能が付属している場合は、特定場所22に細線状のプローブを付着させてから底面を切り離して特定試料23を吊り上げて、前述と同様のメッシュ104に固定する。
(Second step)
Next, as a second step, the sample block 20 is placed in a sample chamber in an FIB apparatus (not shown) in a direction in which a plane parallel to the main surface of the substrate is perpendicular to the ion beam (FIB) emission direction. Using a finely squeezed FIB, the outer periphery of the specific location 22 (size: about 5 μm × 20 μm × 20 μm) where the minute defect portion is included is boxed with the second laser marking 21 as a mark so as to dig up the root of the tree Finally, the sample block 20 is inclined and the bottom surface of the specific location 22 is cut and separated to take out the specific sample 23. A tungsten film (not shown) of a metal thin film (called a deposition film) is formed on the surface corresponding to the upper portion of the minute defect portion in the specific location 22 in the same FIB apparatus so as not to be processed by the FIB in a later process. As a protective film, it is fixed to a support base 104 such as a semi-circular mesh made of copper or molybdenum prepared separately. Or, when a function called microsampling method is attached to the FIB apparatus, a thin wire-like probe is attached to the specific location 22 and then the bottom surface is cut off, and the specific sample 23 is lifted and fixed to the mesh 104 as described above. To do.

(第3工程)
次に、支持台104に固定した特定試料23をデポ膜部分を中心に、STEM観察の際の電子線が透過することができる程度に薄く、FIBで加工することにより、平面観察用試料24の作製が完了する。FIBによる加工は、両面から削り薄くする。薄膜化する箇所のサイズは、5μm×0.1μm×20μm程度とする。
(Third step)
Next, the specific sample 23 fixed to the support base 104 is thin enough to allow transmission of an electron beam at the time of STEM observation centering on the deposition film portion, and is processed by the FIB. Production is complete. Processing by FIB is performed by thinning from both sides. The size of the portion to be thinned is about 5 μm × 0.1 μm × 20 μm.

(第4工程)
この第3工程後、平面観察用試料24を90°回転させSTEM室内に導入し、この試料に加速電圧200kVで電子線を透過させ、透過電子による明視野像および暗視野像を観察すると、微小欠陥部は、半導体デバイスの本来の構成物質とは異なるコントラストで観察される。よって、微小欠陥部は、半導体デバイスの本来の構成物質と区別することが可能となる。例えば、図4に示したような半導体デバイスにおいて、ゲート絶縁膜11とドープドポリシリコン膜9の界面などに微小欠陥部10がある場合、前工程のウエハでの電気特性試験やエミッション顕微鏡での発光操作などで微小欠陥部は多くは溶けた状態になっている。この微小欠陥部は、その上層にあるドープドポリシリコン膜9の薄く加工された結晶によるコントラストとは異なるアモルファス状のコントラストとして観察される。微小欠陥部10がシリコン基板7とゲート絶縁膜11の界面にある場合においても、シリコン基板7とは異なるアモルファス状のコントラストとして観察される。
(4th process)
After this third step, the planar observation sample 24 is rotated by 90 ° and introduced into the STEM chamber, an electron beam is transmitted through the sample at an acceleration voltage of 200 kV, and a bright field image and a dark field image by transmitted electrons are observed. The defect is observed with a contrast different from that of the original constituent material of the semiconductor device. Therefore, the minute defect portion can be distinguished from the original constituent material of the semiconductor device. For example, in the semiconductor device as shown in FIG. 4, when there is a minute defect portion 10 at the interface between the gate insulating film 11 and the doped polysilicon film 9, an electrical characteristic test on a wafer in a previous process or an emission microscope Many micro-defects are in a melted state due to the light emission operation. This minute defect portion is observed as an amorphous contrast different from the contrast due to the thinly processed crystal of the doped polysilicon film 9 in the upper layer. Even when the minute defect portion 10 is at the interface between the silicon substrate 7 and the gate insulating film 11, it is observed as an amorphous contrast different from that of the silicon substrate 7.

第4工程において、透過電子による明視野像および暗視野像の観察により微小欠陥部が特定できない場合は、再度第3工程を行う。必要に応じて第3工程と第4工程を繰り返し行うことにより、微小欠陥部の平面方向の位置を特定する。   In the fourth step, when the minute defect portion cannot be specified by observation of the bright field image and the dark field image by transmission electrons, the third step is performed again. By repeating the third step and the fourth step as necessary, the position of the minute defect portion in the plane direction is specified.

このSTEM観察により、従来のような断面方向でFIBのみで長時間かけて行う加工やFIBで加工しながらSEMで観察して欠陥部を特定する方法(デュアルビーム加工法)に比べて、平面方向で観察できるため微小欠陥部の見落としが少なくなり、微小欠陥部全体も詳細に観察できる。微小欠陥部の中に原因となるような特定物質が存在する場合には、その部分がその周辺部よりも更に異なるコントラストを示すことで判別することができる。   Compared to conventional STEM observation, processing performed over a long period of time only with FIB in the cross-sectional direction as in the past, or a method of identifying a defective portion by observing with SEM while processing with FIB (dual beam processing method) Therefore, the oversight of the minute defect portion is reduced, and the entire minute defect portion can be observed in detail. In the case where a specific substance that causes a problem exists in the minute defect portion, it can be determined that the portion shows a different contrast than the peripheral portion.

また、二次電子像により微小欠陥部を観察する場合、微小欠陥部の種類によっては、ドープドポリシリコン膜9のコントラストにより微小欠陥部のコントラストが相対的に小さくなり明瞭に見えない場合もある。その場合は低加速電圧でアルゴンイオンを照射するエッチング装置で微小欠陥部を覆っているドープドポリシリコン膜9を除去して、微小欠陥部を明瞭に露出させることが有効である。具体的方法については後述する。
(第5工程)
一方、不良解析としては、不良の原因となる前記特定物質の同定と構成物質層などの存在位置などを知るためには、前述の平面観察用試料の観察だけでなく、試料の断面方向でも観察する必要がある。
Further, when observing a minute defect portion by a secondary electron image, depending on the type of the minute defect portion, the contrast of the minute defect portion may be relatively small due to the contrast of the doped polysilicon film 9 and may not be clearly visible. . In that case, it is effective to remove the doped polysilicon film 9 covering the minute defect portion with an etching apparatus that irradiates argon ions at a low acceleration voltage so that the minute defect portion is clearly exposed. A specific method will be described later.
(5th process)
On the other hand, in the defect analysis, in order to identify the specific substance that causes the defect and know the position of the constituent material layer, etc., not only the observation of the sample for plane observation described above, but also the observation in the cross-sectional direction of the sample. There is a need to.

その断面観察用試料26を作成するため、まず、前記特定物質の断面観察位置をマーキングする。マーキングは、第4工程において特定した微小欠陥部に対して、同じSTEM装置内で加速電圧200kVで電子線を照射させ、透過電子による明視野像および暗視野像の観察から走査二次電子像の観察に切り替える。通常の走査二次電子像の観察は10万倍程度までであるが、目印となるマーキング用のコンタミネーションを蓄積するには、単位面積あたりの電子線照射量を増やし、倍率は100万倍以上にして数分間観察する。倍率で電子線照射量を大きくできない場合は、一次電子電流量を増やすか、コンデンサーレンズ電流量を更に増やす、電子ビームを絞って対物可動絞り穴を大きくして、電子ビーム照射量を大きくするなどして、目的箇所の断面観察位置の表面にコンタミネーションによるマーキング25を付ける。このマーキング25は、後で行うFIB加工時に十分見える数μmの大きさにすると都合がよい。   In order to create the cross-sectional observation sample 26, first, the cross-sectional observation position of the specific substance is marked. The marking is performed by irradiating a minute defect identified in the fourth step with an electron beam at an acceleration voltage of 200 kV in the same STEM apparatus, and observing a bright-field image and a dark-field image by transmitted electrons, Switch to observation. Normal scanning secondary electron image observation is up to about 100,000 times, but in order to accumulate the contamination for marking that serves as a mark, the electron beam irradiation amount per unit area is increased, and the magnification is 1 million times or more. Observe for a few minutes. If the electron beam dose cannot be increased by the magnification, increase the primary electron current amount, further increase the condenser lens current amount, increase the electron beam irradiation amount by narrowing the electron beam to enlarge the objective movable aperture hole, etc. Then, the marking 25 by contamination is attached to the surface of the cross-sectional observation position of the target location. The marking 25 is convenient to have a size of several μm that can be sufficiently seen during the FIB processing to be performed later.

第5工程において、走査二次電子像を観察する場合、効率的に微小欠陥部を特定するために倍率を段階的に高くすることが望ましい。例えば、最初は、数万倍の倍率とし、より正確な微小欠陥部の位置を特定し、次にその特定した箇所に対して倍率を数十万倍とし、さらに正確な微小欠陥部の位置を特定し、さらに100万倍以上とする。このように3段階とする。もちろん4段階以上とすることもできる。
(第6工程)
次に、第6工程として、装置内の試料室に、マーキング25を付けた前記平面観察用試料24を導入して、微小欠陥部の位置(マーキング25)には、イオンビームで加工されないように、同じFIB内で金属薄膜(デポ膜と呼ばれる)のタングステン膜(図示せず)などを付ける。FIB装置にマイクロサンプリング法と呼ばれる機能が付属している場合は、微小欠陥部と同じ面に細線状のプローブを付着させてから底部を切断して形成された特定試料24を吊り上げて、別に準備した銅製またはモリブデン製の半円状のメッシュなどの支持台104に断面方向で固定し、加工面にタングステン膜をデポする。次に、メッシュなどの支持台104に固定した特定試料24にマーキング25を付けた平面観察用試料24をデポ膜部分を中心に、FIBで切断加工して、TEM観察に用いられる断面観察用試料26の作製が完了する。薄膜化した箇所のサイズは、5μm×0.1μm×0.1μm程度とする。
In the fifth step, when a scanning secondary electron image is observed, it is desirable to increase the magnification stepwise in order to efficiently identify the minute defect portion. For example, first, the magnification is several tens of thousands of times, the position of a more accurate minute defect portion is specified, then the magnification is several hundred thousand times with respect to the specified portion, and the more accurate position of the minute defect portion is determined. Specify 1 million times more. In this way, there are three stages. Of course, it is possible to have four or more stages.
(Sixth step)
Next, as a sixth step, the planar observation sample 24 with the marking 25 is introduced into the sample chamber in the apparatus so that the position of the minute defect (marking 25) is not processed by the ion beam. Then, a tungsten film (not shown) of a metal thin film (called a deposition film) is attached in the same FIB. When a function called microsampling method is attached to the FIB apparatus, a specific sample 24 formed by attaching a thin wire probe to the same surface as the minute defect and then cutting the bottom is prepared separately. It is fixed in a cross-sectional direction to a support base 104 such as a semicircular mesh made of copper or molybdenum, and a tungsten film is deposited on the processed surface. Next, the cross-sectional observation sample used for the TEM observation is obtained by cutting the flat observation sample 24 with the marking 25 on the specific sample 24 fixed to the support base 104 such as a mesh with a FIB around the deposition film portion. 26 is completed. The size of the thinned portion is about 5 μm × 0.1 μm × 0.1 μm.

この後に、FIB装置から薄膜化した断面観察用試料26が載った試料ホルダーを外に出して、STEM装置内に試料ホルダーを載せ換えて、前記断面観察用試料26の微小欠陥部の断面観察位置を観察する。
(コンタミネーション膜12の形成について)
図5は、前記図1に示す作製工程により作製された断面観察用試料26の模式的断面図である。第4工程で形成されたコンタミネーション膜12によるマーキングを見ることができる。
Thereafter, the sample holder on which the thinned cross-sectional observation sample 26 is mounted is removed from the FIB apparatus, and the sample holder is replaced in the STEM apparatus, so that the cross-sectional observation position of the minute defect portion of the cross-sectional observation sample 26 is obtained. Observe.
(Regarding the formation of the contamination film 12)
FIG. 5 is a schematic cross-sectional view of the cross-sectional observation sample 26 manufactured by the manufacturing process shown in FIG. Marking by the contamination film 12 formed in the fourth step can be seen.

このように、第3工程で作製された平面観察用試料24をSTEM装置内で透過電子像(明視野像や暗視野像)により微小欠陥部10の平面方向での位置を特定した後に、この特定した位置の走査二次電子像を観察するだけで、観察部には電子ビームによるコンタミネーション膜12によるマーキングの形成が進行するので、ナノメーターオーダーの微小欠陥部10の特定を短時間で極めて容易にすることができる。通常、STEMは薄膜化試料表面に電子線を照射して得られる、物質内部からの走査透過電子(明視野像信号)または環状走査透過電子(暗視野像信号)を画像化して観察することが主目的であるが、STEMには一般に薄膜試料の表面状態を観察するために走査二次電子像の電子検出器も備えている。前者の明視野像または暗視野像は物質内部に関する結晶情報などを観察するもので、後者の走査二次電子像は表面の凹凸などの情報を示すものである。従って、微小欠陥部10について、内部と表面の両方の情報が得ることができ、しかも照射電子電流量を増やすために観察倍率を高くすることなどで、目印となるコンタミネーション膜12によるマーキングも同時に施すことが可能である。コンタミネーション量は、断面観察用試料26の表面における照射電子電流量と時間の積が観察領域(倍率)に比例して多くなるが、走査透過電子像または環状走査透過電子像よりも走査二次電子像を観察する場合の方が、断面観察用試料26表面により多くのコンタミネーション膜12が付着する。このコンタミネーション膜12の成分は、一般的にアモルファス状のカーボンであるため、周辺の構成物質であるタングステン膜などのデポ膜13などとは組成のコントラストが明らかに異なり、マーキング物質としての目印として好都合である。   As described above, after the plane observation sample 24 manufactured in the third step is specified in the plane direction of the minute defect portion 10 by the transmission electron image (bright field image or dark field image) in the STEM apparatus, Only by observing the scanning secondary electron image at the specified position, the formation of the marking by the contamination film 12 by the electron beam proceeds in the observation portion. Therefore, the minute defect portion 10 of the nanometer order can be identified in a short time. Can be easily. Usually, STEM images and observes scanning transmission electrons (bright-field image signals) or annular scanning transmission electrons (dark-field image signals) from the inside of a material obtained by irradiating the surface of a thinned sample with an electron beam. Although it is the main purpose, the STEM generally includes an electron detector for scanning secondary electron images in order to observe the surface state of the thin film sample. The former bright-field image or dark-field image is for observing crystal information and the like regarding the inside of the substance, and the latter scanning secondary electron image is for showing information such as surface irregularities. Accordingly, both the information on the inside and the surface of the minute defect portion 10 can be obtained, and the marking by the contamination film 12 serving as a mark is simultaneously performed by increasing the observation magnification in order to increase the amount of irradiation electron current. It is possible to apply. As for the amount of contamination, the product of the irradiation electron current amount and the time on the surface of the cross-sectional observation sample 26 increases in proportion to the observation region (magnification), but the scanning secondary electron image is larger than the scanning transmission electron image or the annular scanning transmission electron image. In the case of observing an electronic image, more contamination film 12 adheres to the surface of the cross-sectional observation sample 26. Since the component of the contamination film 12 is generally amorphous carbon, the composition contrast is clearly different from that of the deposition film 13 such as a tungsten film which is a peripheral constituent material. Convenient.

前述した、低加速電圧でアルゴンイオンを照射するエッチング装置で微小欠陥部を覆っているドープドポリシリコン膜9を除去して、微小欠陥部を露出させる方法について以下に記載する。   A method for exposing the minute defect portion by removing the doped polysilicon film 9 covering the minute defect portion with the above-described etching apparatus that irradiates argon ions at a low acceleration voltage will be described below.

FIBで平面方向に薄片加工してドープドポリシリコン膜9を僅かに残した段階、または、ウェットエッチングでドープドポリシリコン膜9をエッチングしてドープドポリシリコン膜9を僅かに残した段階、まで行った後に、アルゴンポリッシャーなどの低加速電圧装置でエッチングする方法がよい。   A step of thinly processing the thin film in the planar direction by FIB to leave the doped polysilicon film 9 slightly, or a step of etching the doped polysilicon film 9 by wet etching to leave the doped polysilicon film 9 slightly. Then, the etching is preferably performed with a low acceleration voltage device such as an argon polisher.

しかし、微小欠陥部を観察しながらエッチング可能なオージェ電子分光装置( Auger Electron Spectroscopy、AESと略記する)内に平面観察試料24を配置し、アルゴンイオンを照射してドープドポリシリコンを除去して微小欠陥部を露出させることが確実な方法であるので好ましい。具体的方法としては、図6に示した。STEM装置内に平面観察試料24を配置し透過電子像を観察し微小欠陥部10と他の領域とのコントラストの差により微小欠陥部10を特定し、STEM装置内で透過電子像の観察から二次電子像の観察に切り替え微小欠陥部10の上方にコンタミネーション膜12を形成する工程(図6(a)、図6(c))と、オージェ電子分光装置でドープドポリシリコン膜9をエッチングする工程(図6(b)、図6(d)とを繰り返すことにより、微小欠陥部10を露出させる。その後、上記第4工程および第5工程を行い図6(e)コンタミネーション膜12を形成する。そして、上記第6工程を行い断面試料26を作製する。   However, a planar observation sample 24 is placed in an Auger Electron Spectroscope (abbreviated as AES) that can be etched while observing minute defects, and the doped polysilicon is removed by irradiation with argon ions. Since it is a reliable method to expose a minute defect part, it is preferable. A specific method is shown in FIG. The planar observation sample 24 is placed in the STEM apparatus, the transmission electron image is observed, the micro defect part 10 is specified by the difference in contrast between the micro defect part 10 and another region, and the transmission electron image is observed in the STEM apparatus. Switching to the observation of the next electron image Step of forming the contamination film 12 above the minute defect portion 10 (FIGS. 6A and 6C), and etching the doped polysilicon film 9 with an Auger electron spectrometer 6 (b) and 6 (d) are repeated to expose the minute defect portion 10. Thereafter, the fourth step and the fifth step are performed, and the contamination film 12 shown in FIG. Then, the sixth step is performed to produce the cross-sectional sample 26.

このAESでは、アルゴンイオン照射により深さ方向へ掘り下げることができ、極く表面の元素分析が可能なため、ほとんどの欠陥部の解析を行うことができる。なお、FIBでは大きなエネルギー(加速電圧30〜40kV)のアルゴンイオンで加工するために、エッチングレートが早く、観察対象である欠陥部面でエッチングを止めることが困難であるが、低エネルギー(加速電圧5〜10kV)のアルゴンイオンを用いたAESによるエッチングでは、エッチング速度が遅いため、欠陥部の見落としが少ないことが特徴である。   In this AES, since it can be dug down in the depth direction by argon ion irradiation and the elemental analysis of the surface is possible, most of the defect portions can be analyzed. In FIB, since processing is performed with argon ions having a large energy (acceleration voltage 30 to 40 kV), the etching rate is fast and it is difficult to stop etching on the surface of the defect to be observed. Etching by AES using argon ions of 5 to 10 kV) is characterized in that the defect rate is less overlooked because the etching rate is slow.

図7に本発明の実施例2にかかる半導体デバイス基板の欠陥部観察用試料の作製方法を示す。(a)は第1工程〜第3工程のフローの説明図であり、(b)は(a)に対応する作製工程段階の試料の斜視図である。
(第1工程)
実施例1(図1)の第2工程までと同様にして特定試料23をメッシュなどの支持台104に固定する。その後、TMAH(テトラメチルアンモニウムハイドロオキサイド)などを用いて前記特定試料23の表面をエッチングして、微小欠陥部10を露出させる。
(第2工程)
次に、この特定試料23をSEM装置の試料室に入れて、微小欠陥部10を平面観察する。観察は、加速電圧25kVで電子線を照射し、走査二次電子像にて微小欠陥部10を特定する。特定した微小欠陥部10に対して倍率数万倍以上で、数分でコンタミネーション膜12が微小欠陥部10の露出部上に直接、蓄積されマーキング25となる。
FIG. 7 shows a method for producing a defect observation sample of a semiconductor device substrate according to Example 2 of the present invention. (A) is explanatory drawing of the flow of a 1st process-a 3rd process, (b) is a perspective view of the sample of the production process step corresponding to (a).
(First step)
The specific sample 23 is fixed to the support base 104 such as a mesh in the same manner as in the first step of the first embodiment (FIG. 1). Thereafter, the surface of the specific sample 23 is etched using TMAH (tetramethylammonium hydroxide) or the like to expose the minute defect portion 10.
(Second step)
Next, this specific sample 23 is put into the sample chamber of the SEM apparatus, and the micro defect portion 10 is observed in a plane. In the observation, an electron beam is irradiated at an acceleration voltage of 25 kV, and the minute defect portion 10 is specified by a scanning secondary electron image. The contamination film 12 is directly accumulated on the exposed portion of the microdefect 10 and becomes the marking 25 in a few minutes at a magnification of several tens of thousands of times with respect to the specified microdefect 10.

SEMによる不良解析では、走査二次電子像を観察するが、試料の極く表面から発生する二次電子は、微小欠陥部とベースのシリコン基板とで、材料がわずかに異なるために、その二次電子発生量が異なり、その結果、異なったコントラスト像として観察される。また、走査二次電子像を高倍率で観察するため、単位面積あたりの照射する電子電流量が高くなり、周辺部に対して電子ビーム照射によりコンタミネーションが局部的に付着することから、ナノオーダーの微小な欠陥部の保護と目印であるマーキングを施すことが可能となる。   In the defect analysis by SEM, a scanning secondary electron image is observed. The secondary electrons generated from the very surface of the sample are slightly different from each other in the minute defect portion and the base silicon substrate. The amount of secondary electrons generated is different, and as a result, different contrast images are observed. In addition, since the scanning secondary electron image is observed at a high magnification, the amount of electron current to be irradiated per unit area is increased, and contamination is locally attached to the peripheral part by electron beam irradiation. It is possible to protect the minute defect portion and to mark the mark.

しかし、実施例1のように、平面観察のためにFIBによる平面加工を行わないため、STEM装置を用いた透過電子像の観察を行えない。よって、走査二次電子像のみにより微小欠陥部を特定する必要があり、微笑欠陥部を特定するまで時間を要する。
(第3工程)
この後、FIB装置に特定試料23を載せ換えて、微小欠陥部10の周辺加工、プローブによる吊り上げ、メッシュなどの支持台104への固定など行い、FIBによる断面加工および薄膜化を行う。
However, as in the first embodiment, the FIB plane processing is not performed for plane observation, so that the transmission electron image cannot be observed using the STEM apparatus. Therefore, it is necessary to specify the minute defect portion only by the scanning secondary electron image, and it takes time until the smile defect portion is specified.
(Third step)
Thereafter, the specific sample 23 is placed on the FIB apparatus, the peripheral processing of the minute defect portion 10, the lifting by the probe, the fixing of the mesh or the like to the support base 104, etc. are performed, and the cross-section processing and thinning by the FIB are performed.

以上で断面観察用試料26の作製が完了する。この後に、FIB装置から薄膜化した断面観察用試料26が載った試料ホルダーを外に出して、STEM装置内に試料ホルダーを載せ換えて、前記断面観察用試料26の微小欠陥部の断面観察位置を観察する。   Thus, the production of the cross-sectional observation sample 26 is completed. Thereafter, the sample holder on which the thinned cross-sectional observation sample 26 is mounted is removed from the FIB apparatus, and the sample holder is replaced in the STEM apparatus, so that the cross-sectional observation position of the minute defect portion of the cross-sectional observation sample 26 is obtained. Observe.

図8に実施例2により作製した断面観察用試料26の模式的断面図を示す。前記実施例1で説明した断面観察用試料26と異なるのは、FIBにより薄片化を行わない点である。本実施例では、平面観察試料24により透過電子像の観察を行わないため、実施例1に比べ微小欠陥部10を見つけることが困難となる。しかし、微小欠陥部10を露出した後にSEM観察することにより、微小欠陥部の表面に直接コンタミネーション膜12が蓄積されるため、前記図5で説明したポリシリコン膜9を介してコンタミネーション膜12を蓄積するよりも、熱などに対して微小欠陥部10を保護できるメリットがある。符号13はデポ膜である。   FIG. 8 shows a schematic cross-sectional view of a cross-sectional observation sample 26 produced in Example 2. FIG. The difference from the cross-sectional observation sample 26 described in Example 1 is that the thinning is not performed by FIB. In this embodiment, since the transmission electron image is not observed with the planar observation sample 24, it is difficult to find the minute defect portion 10 as compared with the first embodiment. However, since the contamination film 12 is directly accumulated on the surface of the minute defect portion by SEM observation after the minute defect portion 10 is exposed, the contamination film 12 is interposed via the polysilicon film 9 described with reference to FIG. There is an advantage that the minute defect portion 10 can be protected against heat or the like rather than accumulating. Reference numeral 13 denotes a deposition film.

3…TEMの電子線
4…透過した電子線
5…電子線検出器
6…画像観察用のCRT
7…シリコン基板
8…層間絶縁膜
9…ポリシリコン膜
10…微小欠陥部
11…ゲート絶縁膜
12…コンタミネーション膜
13…デポ膜
20…試料ブロック
21…レーザーマーキング
22…特定場所
23…特定試料
24…平面観察用試料
25…マーキング
26…断面観察用試料
101…試料ブロック
102…レーザーマーキング
103…特定場所
103a…特定試料
104…支持台
105…観察用断面試料
3 ... TEM electron beam 4 ... Transmitted electron beam 5 ... Electron beam detector 6 ... CRT for image observation
DESCRIPTION OF SYMBOLS 7 ... Silicon substrate 8 ... Interlayer insulating film 9 ... Polysilicon film 10 ... Minute defect part 11 ... Gate insulating film 12 ... Contamination film 13 ... Deposition film 20 ... Sample block 21 ... Laser marking 22 ... Specific place 23 ... Specific sample 24 ... Planar observation sample 25 ... Marking 26 ... Cross-section observation sample 101 ... Sample block 102 ... Laser marking 103 ... Specific place 103a ... Specific sample 104 ... Support base 105 ... Cross-section sample for observation

Claims (4)

半導体デバイス基板の内部に含まれる微小欠陥部の近傍部分を、前記半導体デバイス基板から切り出して試料ブロックとし、該試料ブロック中の前記微小欠陥部を光学顕微鏡で特定して、前記微小欠陥部の上部の基板表面にレーザーマーキングする第1工程、
前記試料ブロックから、前記レーザーマーキングにより特定された前記微小欠陥部を含む基板部分を集束イオンビームにより切り取り、切り取った前記レーザーマーキングにより特定された微小欠陥部を含む基板部分を支持台に固定する第2工程、
前記支持台に固定された微小欠陥部を含む基板部分を集束イオンビームにより前記電子線が透過する程度の厚さの薄片に削って平面観察用試料とする第3工程、
該平面観察用試料を透過形走査形電子顕微鏡の透過電子像で観察して微小欠陥部を特定する第4工程、
前記第4工程で特定された微小欠陥部に対して前記平面観察試料を二次電子像で拡大観察して、前記電子線の走査により発生するコンタミネーション膜を前記微小欠陥部上部の前記平面観察用試料表面に堆積してマーキングする第5工程、
該マーキングにより特定される前記微小欠陥部上部の前記平面観察試料表面で、前記平面観察用試料を集束イオンビームにより切断して断面観察用試料とする第6工程を有することを特徴とする半導体デバイス基板の欠陥部観察用試料の作製方法。
A portion near the minute defect portion included in the semiconductor device substrate is cut out from the semiconductor device substrate as a sample block, and the minute defect portion in the sample block is identified with an optical microscope, and an upper portion of the minute defect portion A first step of laser marking on the substrate surface of
A substrate portion including the minute defect portion specified by the laser marking is cut out from the sample block by a focused ion beam, and the substrate portion including the minute defect portion specified by the cut laser marking is fixed to a support base. 2 steps,
A third step in which a substrate portion including a minute defect portion fixed to the support base is cut into a thin piece having a thickness enough to transmit the electron beam by a focused ion beam to obtain a planar observation sample;
A fourth step of observing the planar observation sample with a transmission electron image of a transmission scanning electron microscope to identify a minute defect portion;
The planar observation sample is magnified and observed with a secondary electron image with respect to the minute defect portion specified in the fourth step, and the contamination film generated by scanning the electron beam is observed on the planar surface of the minute defect portion. A fifth step of depositing and marking on the sample surface
A semiconductor device comprising: a sixth step of cutting the planar observation sample with a focused ion beam on the surface of the planar observation sample above the minute defect portion specified by the marking to obtain a sectional observation sample A method for manufacturing a defect observation sample of a substrate.
前記第3工程で作製される平面観察用試料は、前記支持台に固定された微小欠陥部を含む基板部分を集束イオンビームにより両面から削られて、電子線が透過する程度の厚さにされるとともに、前記微小欠陥部が表面に露出されていることを特徴とする請求項1記載の半導体デバイス基板の欠陥部観察用試料の作製方法。 The sample for plane observation produced in the third step is made thick enough to allow the electron beam to pass through the substrate portion including the minute defect portion fixed to the support base by scraping from both sides with a focused ion beam. The method for manufacturing a sample for observing a defect portion of a semiconductor device substrate according to claim 1, wherein the minute defect portion is exposed on the surface. 前記第3工程が、前記支持台に固定された微小欠陥部を含む基板部分に対して、集束イオンビームおよび低加速アルゴンエッチングをこの順に実施して両面から電子線が透過する程度の厚さに削るとともに、前記微小欠陥部が基板表面に露出する平面観察用試料とする工程であることを特徴とする請求項2記載の半導体デバイス基板の欠陥部観察用試料の作製方法。 In the third step, a focused ion beam and a low-acceleration argon etching are performed in this order on the substrate portion including the micro defect portion fixed to the support base so as to transmit the electron beam from both sides. 3. The method for producing a defect portion observation sample of a semiconductor device substrate according to claim 2, wherein the method is a step of forming a flat observation sample in which the minute defect portion is exposed to the substrate surface while being sharpened. 前記低加速アルゴンエッチングがオージェ電子分光装置を用いるエッチングであることを特徴とする請求項3記載の半導体デバイス基板の欠陥部観察用試料の作製方法。 4. The method for producing a defect observation sample of a semiconductor device substrate according to claim 3, wherein the low acceleration argon etching is etching using an Auger electron spectrometer.
JP2010216972A 2010-09-28 2010-09-28 Preparation method of specimen for observing defective part of semiconductor device substrate Pending JP2012073069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216972A JP2012073069A (en) 2010-09-28 2010-09-28 Preparation method of specimen for observing defective part of semiconductor device substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216972A JP2012073069A (en) 2010-09-28 2010-09-28 Preparation method of specimen for observing defective part of semiconductor device substrate

Publications (1)

Publication Number Publication Date
JP2012073069A true JP2012073069A (en) 2012-04-12

Family

ID=46169411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216972A Pending JP2012073069A (en) 2010-09-28 2010-09-28 Preparation method of specimen for observing defective part of semiconductor device substrate

Country Status (1)

Country Link
JP (1) JP2012073069A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216365A (en) * 2013-04-23 2014-11-17 大日本印刷株式会社 Method for manufacturing nanoimprint lithography mask
CN104155319A (en) * 2014-07-25 2014-11-19 胜科纳米(苏州)有限公司 Method utilizing FIB cutting to achieve stereoscopic observation of nanoscale sample
CN104198213A (en) * 2014-08-20 2014-12-10 黄武 Method for slicing mobile phone shell
JP2015143688A (en) * 2014-01-30 2015-08-06 エフ・イ−・アイ・カンパニー Surface delayering using programmed manipulator
CN105486553A (en) * 2014-09-01 2016-04-13 力晶科技股份有限公司 Preparation method of transmission electron microscope test piece
CN105842045A (en) * 2016-03-22 2016-08-10 西安交通大学 Method for preparation of large-size transmission sample with focused ion beam
JP2017150840A (en) * 2016-02-22 2017-08-31 住友金属鉱山株式会社 Preparation method of sample for transmission electron microscope and confirmation method thereof
CN107167485A (en) * 2017-04-14 2017-09-15 广西大学 A kind of preparation method of the power-up transmission electron microscope cross-sectional sample in situ of hetero-junction thin-film
CN107160881A (en) * 2017-05-19 2017-09-15 哈焊所华通(常州)焊业股份有限公司 The steel impression mark method of processing sample
JP2018100953A (en) * 2016-12-16 2018-06-28 住友金属鉱山株式会社 Method for marking and method for preparing analyzing sample
CN111366428A (en) * 2020-03-03 2020-07-03 上海华力集成电路制造有限公司 Method for preparing TEM sample by FIB back cut

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216365A (en) * 2013-04-23 2014-11-17 大日本印刷株式会社 Method for manufacturing nanoimprint lithography mask
JP2015143688A (en) * 2014-01-30 2015-08-06 エフ・イ−・アイ・カンパニー Surface delayering using programmed manipulator
CN104155319A (en) * 2014-07-25 2014-11-19 胜科纳米(苏州)有限公司 Method utilizing FIB cutting to achieve stereoscopic observation of nanoscale sample
CN104198213A (en) * 2014-08-20 2014-12-10 黄武 Method for slicing mobile phone shell
CN105486553A (en) * 2014-09-01 2016-04-13 力晶科技股份有限公司 Preparation method of transmission electron microscope test piece
JP2017150840A (en) * 2016-02-22 2017-08-31 住友金属鉱山株式会社 Preparation method of sample for transmission electron microscope and confirmation method thereof
CN105842045A (en) * 2016-03-22 2016-08-10 西安交通大学 Method for preparation of large-size transmission sample with focused ion beam
JP2018100953A (en) * 2016-12-16 2018-06-28 住友金属鉱山株式会社 Method for marking and method for preparing analyzing sample
CN107167485A (en) * 2017-04-14 2017-09-15 广西大学 A kind of preparation method of the power-up transmission electron microscope cross-sectional sample in situ of hetero-junction thin-film
CN107160881A (en) * 2017-05-19 2017-09-15 哈焊所华通(常州)焊业股份有限公司 The steel impression mark method of processing sample
CN107160881B (en) * 2017-05-19 2019-01-22 哈焊所华通(常州)焊业股份有限公司 The steel impression mark method of processing sample
CN111366428A (en) * 2020-03-03 2020-07-03 上海华力集成电路制造有限公司 Method for preparing TEM sample by FIB back cut
CN111366428B (en) * 2020-03-03 2023-06-09 上海华力集成电路制造有限公司 Method for preparing TEM sample by FIB (fiber reinforced plastic) inverted cutting

Similar Documents

Publication Publication Date Title
JP2012073069A (en) Preparation method of specimen for observing defective part of semiconductor device substrate
JP5711204B2 (en) Methods and apparatus for sample extraction and handling
JP6356397B2 (en) Substrate outside position analysis system and method
JP4947965B2 (en) Preparation method, observation method and structure of sample for transmission electron microscope
US8729469B1 (en) Multiple sample attachment to nano manipulator for high throughput sample preparation
TW201643927A (en) Pattern matching using a lamella of known shape for automated S/TEM acquisition and metrology
EP1592056B1 (en) Method for inspection, process for making analytic piece, method for analysis, analyzer, process for producing soi wafer, and soi wafer
CN102062710A (en) Preparation method of observation sample for transmission electron microscope
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP2004245660A (en) Manufacture of chip sample, and method and system for observing wall surface of the same
JP2012168027A (en) Method of preparing sample for electron microscope
JP2015004514A (en) Analysis method for defect in substrate
KR20080058682A (en) Method for manufacturing specimen for analyzing by transmission electron microscope
JP2003156418A (en) Method of preparing analytical sample, analytical method, and analytical sample therefor
JP4644470B2 (en) Ion beam processing apparatus and sample preparation method
JP2008014899A (en) Sample preparing method
KR100694580B1 (en) method for manufacturing Transmission Electron Microscope of Specimen for Analyzing
JP7468402B2 (en) How to make a sample
KR20110024545A (en) Method for fabricating fib-tem sample
KR100655581B1 (en) Device for Coating Specimen for Analyzing by Transmission Electron Microscope and Method for Coating it using the same
KR100826763B1 (en) Manufacturing method for vertical analysis piece and analysis method thereby
KR20000020989A (en) Method for manufacturing specimen used for tem
US10895538B2 (en) Method of preparing sample surface, method of analyzing sample surface, field-enhanced oxidation probe, and scanning probe microscope including field-enhanced oxidation probe
KR100676613B1 (en) Manufacturing Method of Semiconductor Specimen by Using Paraffin
TW202238652A (en) Sample holder and system and method for sample modification