JP2017150840A - Preparation method of sample for transmission electron microscope and confirmation method thereof - Google Patents

Preparation method of sample for transmission electron microscope and confirmation method thereof Download PDF

Info

Publication number
JP2017150840A
JP2017150840A JP2016031089A JP2016031089A JP2017150840A JP 2017150840 A JP2017150840 A JP 2017150840A JP 2016031089 A JP2016031089 A JP 2016031089A JP 2016031089 A JP2016031089 A JP 2016031089A JP 2017150840 A JP2017150840 A JP 2017150840A
Authority
JP
Japan
Prior art keywords
sample
sample piece
ion
ions
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016031089A
Other languages
Japanese (ja)
Other versions
JP6634871B2 (en
Inventor
健寿 森本
Takehisa Morimoto
健寿 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016031089A priority Critical patent/JP6634871B2/en
Publication of JP2017150840A publication Critical patent/JP2017150840A/en
Application granted granted Critical
Publication of JP6634871B2 publication Critical patent/JP6634871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of removing a damaged layer of a sample piece as a sample for a transmission electron microscope (TEM) while a removal state of the damaged layer is accurately grasped, before TEM observation is performed.SOLUTION: A preparation method and a confirmation method of a sample for TEM include: a removal step of removing a portion containing predetermined ions X in a sample piece which is extracted from a sample by a focused ion beam device using the ions X; and a confirmation step of detecting Auger electrons generated when an electron beam is applied to the sample piece in the removal step, so as to confirm the presence or absence or the content of the ions X in the sample piece.SELECTED DRAWING: Figure 2

Description

本発明は、透過型電子顕微鏡用試料の作製方法および確認方法に属する。   The present invention belongs to a preparation method and a confirmation method of a sample for a transmission electron microscope.

透過型電子顕微鏡(Transmission Electron Microscope:TEM。以降、TEM装置とも称する。)観察に供するTEM用試料は、電子線が透過する程度の厚さまで薄片化する必要がある。一般的な試料の薄片化方法には、試料を乳鉢で粉砕する粉砕法、ダイヤモンドナイフなどによって切削するミクロトーム法、酸やアルカリ溶液でエッチングする化学研磨法、電解液を用いて電解する電解研磨法、ArイオンやGaイオンを用いてイオンエッチングするイオン研磨法などが挙げられる。これらの薄片化方法の中でも、最近では、イオン研磨法に属する集束イオンビーム(Focused Ion Beam: FIB)装置が多用されている(例えば特許文献1参照)。   A TEM sample used for observation with a transmission electron microscope (TEM, hereinafter also referred to as a TEM apparatus) needs to be thinned to a thickness that allows transmission of an electron beam. General sample thinning methods include pulverization method in which a sample is crushed with a mortar, microtome method in which the sample is cut with a diamond knife, chemical polishing method in which etching is performed with an acid or alkali solution, and electropolishing method in which an electrolytic solution is used for electrolysis. An ion polishing method in which ion etching using Ar ions or Ga ions is performed. Among these thinning methods, recently, a focused ion beam (FIB) apparatus belonging to the ion polishing method has been widely used (see, for example, Patent Document 1).

FIB装置は、数nm〜数百nm径に集束したGaイオンビームを走査しながら試料表面に照射しており、試料表面に対する「見る」「削る」および「付ける」の機能を有している。具体的には、試料表面から発生する二次電子または二次イオンを検出器で捕捉することで走査イオン顕微鏡(Scanning Ion Microscope:SIM)像を観察したり(見る)、Gaイオンのスパッタリング現象を利用して特定領域をイオンエッチングしたり(削る)、さらには特定領域に炭素、タングステンあるいはプラチナ等を含むガスを吹き付け、それを分解・還元して堆積させたりする(付ける)ことが可能である。   The FIB apparatus irradiates a sample surface while scanning with a Ga ion beam focused to a diameter of several nanometers to several hundred nanometers, and has functions of “see”, “shave”, and “attach” to the sample surface. Specifically, secondary ions or secondary ions generated from the sample surface are captured by a detector to observe (see) a scanning ion microscope (SIM) image, and the Ga ion sputtering phenomenon is observed. It is possible to ion-etch (shave) a specific area by using it, or to spray a gas containing carbon, tungsten, platinum, etc. on the specific area, and to decompose (reduce) and deposit (attach) it. .

FIB装置は、前述のような機能を利用し、試料における任意の微小部位から試料片を採取し、これを薄片化することができるという大きな利点を有している。しかし、試料片の採取や薄片化においては通常、Gaイオンによるイオンエッチングを行っていることから、Gaイオンが試料片の表面に侵入してダメージ層(主に非晶質層)を形成することが知られている。このダメージ層は、TEM観察において像質の低下を招き、かつ、TEM観察における元素分析においてGaが汚染元素となるおそれもある。   The FIB apparatus has the great advantage that a sample piece can be collected from an arbitrary minute part of a sample and can be thinned using the function as described above. However, since sample etching or thinning usually involves ion etching with Ga ions, Ga ions can penetrate into the surface of the sample piece to form a damage layer (mainly an amorphous layer). It has been known. This damaged layer causes a decrease in image quality in TEM observation, and Ga may become a contaminating element in elemental analysis in TEM observation.

そのような問題を回避する方法としては、低加速Gaイオンビームでソフトにイオンエッチングする方法や、そもそもGaイオンを使用せずにArイオンでイオンエッチングする方法(イオンシニング法)などが採られる。特に、後者の方法は、Gaイオンを使用することなく、多くの材料に適用可能であることから広く利用される(非特許文献1参照)。   As a method of avoiding such a problem, a method of soft ion etching with a low acceleration Ga ion beam, a method of ion etching with Ar ions without using Ga ions in the first place (ion thinning method), etc. are adopted. . In particular, the latter method is widely used because it can be applied to many materials without using Ga ions (see Non-Patent Document 1).

その一方、FIB装置には、TEM用試料であるところの試料片を作製可能な機能を備え、かつ、FIBの鏡筒以外に走査型電子顕微鏡(Scanning Electron Microscope:SEM)の鏡筒およびArイオンビームを兼ね備えたトリプルビーム型FIB装置がある。当該装置ならば、Gaイオンによるイオンエッチングを行うことによってGaイオンが試料片の表面に侵入してダメージ層が形成されたとしても、Arイオンビームよって当該ダメージ層を除去することが可能となり、さらにはSEM機能によってダメージを与えること無く試料片を断面方向から観察し、試料片におけるダメージ層の存否を確認できる(非特許文献2参照)。
この確認後、試料片を当該FIB装置から取り出し、TEM装置内にセットし、当該試料片に対してTEM観察を行う。
On the other hand, the FIB apparatus has a function capable of producing a sample piece that is a TEM sample, and in addition to the FIB column, a scanning electron microscope (SEM) column and Ar ions There is a triple beam type FIB apparatus that also has a beam. With this apparatus, even if Ga ions enter the surface of the sample piece by performing ion etching with Ga ions and the damaged layer is formed, the damaged layer can be removed by the Ar ion beam. Can observe the sample piece from the cross-sectional direction without damaging it by the SEM function, and can confirm the presence or absence of a damaged layer in the sample piece (see Non-Patent Document 2).
After this confirmation, the sample piece is taken out from the FIB apparatus, set in the TEM apparatus, and TEM observation is performed on the sample piece.

特開2000−214056号公報Japanese Unexamined Patent Publication No. 2000-214056

佐々木宏和,加藤丈晴,松田竹善,平山司.FIBを用いたTEM試料作製技術.顕微鏡. 2011, vol 46, No. 3, p. 188-194.Hirokazu Sasaki, Takeharu Kato, Takeyoshi Matsuda, Tsukasa Hirayama. TEM sample preparation technology using FIB. microscope. 2011, vol 46, No. 3, p. 188-194. 高橋春男.トリプルビーム装置を用いたTEM試料作製.顕微鏡. 2008. vol 43, No. 2, p. 130-132.Haruo Takahashi. TEM sample preparation using a triple beam device. microscope. 2008.vol 43, No. 2, p. 130-132.

非特許文献1のイオンシニング法によるダメージ層の除去方法においては、試料の材質によって除去条件が異なることから、試料の材質ごとに最適条件を見出す必要があるため手間がかかる。
その一方で、非特許文献2のトリプルビーム型FIB装置によるダメージ層の除去方法を採用すれば、非特許文献1のイオンシニング法とは異なり、とにかくArイオンビームによって当該ダメージ層を除去するため試料の材質ごとに最適条件を見出す必要がなくなり、手間だけを鑑みると非特許文献1よりも効率的にTEM用試料を作製できる。
In the removal method of the damaged layer by the ion thinning method of Non-Patent Document 1, since the removal conditions differ depending on the material of the sample, it is necessary to find an optimum condition for each material of the sample, which is troublesome.
On the other hand, if the damage layer removal method by the triple beam type FIB apparatus of Non-Patent Document 2 is adopted, the damage layer is removed by an Ar ion beam anyway, unlike the ion thinning method of Non-Patent Document 1. There is no need to find an optimum condition for each material of the sample, and a TEM sample can be produced more efficiently than Non-Patent Document 1 in view of time and effort alone.

ところが、非特許文献2の試料片(TEM用試料)の作製に関して、本発明者によって以下の大きな知見が得られた。すなわち、TEM用試料としての試料片を実際に作製するにあたり、Arイオンビームによってダメージ層を除去したあとの確認手法において、大きな課題があるという知見が得られた。   However, regarding the production of the sample piece (TEM sample) of Non-Patent Document 2, the following great knowledge was obtained by the present inventor. That is, it has been found that there is a big problem in the confirmation method after removing the damaged layer with an Ar ion beam in actually producing a sample piece as a TEM sample.

例えば非特許文献2のようなトリプルビーム型FIB装置によって試料片を作製する場合を考える。当該FIB装置を用いてArイオンビームによって試料におけるダメージ層を除去し、試料片を得る。続いて、当該FIB装置におけるSEM機能によって試料片に対するSEM像を得る。そして、当該SEM像のコントラストからダメージ層の除去状態を確認する。   For example, consider a case where a sample piece is manufactured by a triple beam type FIB apparatus as in Non-Patent Document 2. Using the FIB apparatus, the damaged layer in the sample is removed with an Ar ion beam to obtain a sample piece. Subsequently, an SEM image of the sample piece is obtained by the SEM function in the FIB apparatus. And the removal state of a damage layer is confirmed from the contrast of the said SEM image.

この場合、SEM像のコントラストすなわち視覚情報だけに基づき、試料片におけるダメージ層(例えばGaイオンの存否)を確認しなければならなかった。例えば、SEM像のコントラストからダメージ層が存在しないものと判断した試料片をTEM装置内へとセットしてTEM観察を行った結果、実はGaイオンが試料片に残存しており、TEM観察結果に悪影響を及ぼすことも考えられる。   In this case, the damaged layer (for example, the presence or absence of Ga ions) in the sample piece had to be confirmed based only on the contrast of the SEM image, that is, the visual information. For example, as a result of TEM observation after setting a sample piece judged to have no damaged layer from the contrast of the SEM image in the TEM apparatus, Ga ions actually remain in the sample piece, It can also have an adverse effect.

なお、Gaイオンに起因して異常なTEM観察結果が出た場合、その都度上記のイオンシニング装置やFIB装置へと試料片を再セットして再びダメージ層の除去を行うことも確かに考えられる。しかしながら、そもそもイオンシニング装置、FIB装置およびTEM装置は、いずれの場合においても試料片を装置へ導入するためには試料片を真空状態にしなければならず、逆に装置から取り出すためには試料片を大気圧状態にしなければならない。つまり、再びダメージ層の除去を行わなければならない場合は、必然的に試料片を真空状態にする作業と大気圧状態にする作業を行わなければならず、効率的ではない。   In addition, when an abnormal TEM observation result is generated due to Ga ions, it is certainly considered that the damaged layer is removed again by resetting the sample piece to the above-described ion thinning apparatus or FIB apparatus. It is done. However, in any case, in any case, the ion thinning device, FIB device, and TEM device require that the sample piece be in a vacuum state in order to introduce the sample piece into the device, and conversely, in order to remove the sample piece from the device, The piece must be at atmospheric pressure. That is, when the damaged layer needs to be removed again, it is inevitably necessary to perform an operation for bringing the sample piece into a vacuum state and an atmospheric pressure state, which is not efficient.

上記の非効率な状況は、非特許文献2のようなトリプルビーム型FIB装置を用いて試料片に対するSEM観察を行う場合ですら生じる。SEM観察を想定していない非特許文献1に記載の技術だと、なおさらTEM観察にてダメージ層の存否を確認せねばならず、「TEM装置内を真空状態にする」「イオンシニング法を実施する」という組み合わせを二度、三度行わなければならないことも想定される。なお、嫌気性の試料片を取り扱う場合は、真空状態と大気圧状態を繰り返す操作で試料が変質する可能性があるため好ましくない。   The above inefficient situation occurs even when SEM observation is performed on a sample piece using a triple beam FIB apparatus as in Non-Patent Document 2. With the technique described in Non-Patent Document 1 that does not assume SEM observation, the presence or absence of a damaged layer must be confirmed by TEM observation. It is also envisaged that the combination “perform” must be performed twice or three times. In addition, when anaerobic sample pieces are handled, it is not preferable because the sample may be altered by an operation in which a vacuum state and an atmospheric pressure state are repeated.

本発明の目的は、TEM観察を行う前に、TEM用試料である試料片のダメージ層の除去状態を正確に把握しつつ当該ダメージ層の除去が可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of removing a damaged layer while accurately grasping a removed state of a damaged layer of a sample piece that is a TEM sample before performing TEM observation.

上記の課題を解決すべく、本発明者は鋭意検討を行った。その結果、本発明者は、TEM観察を行う前の段階において、
・試料片からダメージ層の基となったGaイオンを除去する工程
・試料片の表面においてダメージ層の基となったGaイオンの存否を正確に確認する工程
を実行可能な手法を模索した。
In order to solve the above problems, the present inventor has intensively studied. As a result, the present inventor, in the stage before performing TEM observation,
-Step of removing Ga ions that became the basis of the damaged layer from the sample piece-We sought a method capable of executing a step of accurately confirming the presence or absence of Ga ions that became the basis of the damaged layer on the surface of the sample piece.

本発明者の試行錯誤の結果、ダメージ層を除去する工程を施した後の試料片に対し、電子線を照射し、その際に生じるオージェ電子を検出することにより、試料片におけるGaイオンの有無または含有量を確認するという手法を想到した。当該手法ならば、ダメージ層を除去する工程を施した後の試料片におけるGaイオンを元素分析として定性的またはスペクトルから定量的に把握しつつ当該ダメージ層の除去が可能であり、ひいてはTEM用試料である試料片のダメージ層の除去状態を正確に把握しつつ当該ダメージ層の除去が可能であるという知見を得た。   As a result of trial and error by the present inventors, the sample piece after the step of removing the damaged layer is irradiated with an electron beam, and the presence of Ga ions in the sample piece is detected by detecting Auger electrons generated at that time. Or the method of confirming content was invented. With this technique, it is possible to remove the damaged layer while qualitatively or quantitatively grasping the Ga ions in the sample piece after performing the step of removing the damaged layer as an elemental analysis. It was found that the damaged layer can be removed while accurately grasping the removed state of the damaged layer of the sample piece.

上記の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の態様は、
透過型電子顕微鏡用試料の作製方法であって、
所定のイオンXを用いた集束イオンビーム装置により試料から摘出された試料片において当該イオンXを含有する部分を除去する除去工程と、
前記除去工程に際し、前記試料片に対して電子線を照射した際に生じるオージェ電子を検出することにより、前記試料片における前記イオンXの有無または含有量を確認する確認工程と、
を有する、透過型電子顕微鏡用試料の作製方法である。
The embodiments of the present invention made based on the above findings are as follows.
The first aspect of the present invention is:
A method for preparing a sample for a transmission electron microscope,
A removing step of removing a portion containing the ion X in the sample piece extracted from the sample by the focused ion beam apparatus using the predetermined ion X;
A confirmation step of confirming the presence or content of the ions X in the sample piece by detecting Auger electrons generated when the sample piece is irradiated with an electron beam during the removing step;
This is a method for manufacturing a sample for a transmission electron microscope.

本発明の第2の態様は、第1の態様に記載の発明において、
前記除去工程および前記確認工程は、前記イオンXとは異なるイオンYを用いたイオンエッチング機能を備えた一つのオージェ電子分光装置内に配置したまま行う。
According to a second aspect of the present invention, in the invention according to the first aspect,
The removal step and the confirmation step are performed while being arranged in one Auger electron spectrometer having an ion etching function using ions Y different from the ions X.

本発明の第3の態様は、第1または第2の態様に記載の発明において、
前記イオンXはGaイオンであり、前記イオンYは希ガスのイオンである。
According to a third aspect of the present invention, in the invention according to the first or second aspect,
The ions X are Ga ions, and the ions Y are rare gas ions.

本発明の第4の態様は、
透過型電子顕微鏡用試料の確認方法であって、
所定のイオンXを用いた集束イオンビーム装置により試料から摘出された試料片において当該イオンXを含有する部分が除去された試料片を透過型電子顕微鏡に設置する前に、前記試料片に対して電子線を照射した際に生じるオージェ電子を検出することにより、前記試料片における前記イオンXの有無または含有量を確認する確認工程と、
を有する、透過型電子顕微鏡用試料の確認方法である。
The fourth aspect of the present invention is:
A method for confirming a sample for a transmission electron microscope,
Before the sample piece from which the part containing the ion X is removed from the sample piece extracted from the sample by the focused ion beam apparatus using the predetermined ion X is placed on the sample piece, A confirmation step of confirming the presence or content of the ions X in the sample piece by detecting Auger electrons generated when the electron beam is irradiated;
This is a method for confirming a sample for a transmission electron microscope.

本発明によれば、TEM観察を行う前に、TEM用試料である試料片のダメージ層の除去状態を正確に把握しつつ当該ダメージ層の除去が可能となる。   According to the present invention, it is possible to remove the damaged layer while accurately grasping the removed state of the damaged layer of the sample piece, which is a TEM sample, before performing TEM observation.

FIB装置を使用して試料から試料片を摘出する様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that a sample piece is extracted from a sample using a FIB apparatus. 本実施形態におけるオージェ分光装置を示す概略断面図である。It is a schematic sectional drawing which shows the Auger spectroscopy apparatus in this embodiment.

以下、本発明の実施の形態について、以下の順に説明する。
1.TEM用試料の作製方法
1−1.準備工程
1−2.除去工程
1−3.確認工程(確認方法)
2.実施の形態における効果
なお、本明細書におけるTEM装置は、透過型電子顕微鏡に係る装置を含むことはもちろん、同じく透過型を採用した技術(例えば走査透過型電子顕微鏡(STEM))を採用した装置を含む。
Hereinafter, embodiments of the present invention will be described in the following order.
1. 1. Preparation method of TEM sample 1-1. Preparation process 1-2. Removal step 1-3. Confirmation process (confirmation method)
2. Effects in the Embodiments The TEM apparatus in the present specification includes an apparatus related to a transmission electron microscope, as well as an apparatus that employs a technique that employs a transmission type (for example, a scanning transmission electron microscope (STEM)). including.

<1.TEM用試料の作製方法>
本実施形態においては、主に以下の工程を行う。以下、各工程について説明する。
<1. Preparation method of TEM sample>
In the present embodiment, the following steps are mainly performed. Hereinafter, each step will be described.

1−1.準備工程
本工程においては、上記の除去工程および確認工程を行うまでの段階、具体的に言うと、所定のイオンX(例えばGaイオン)を用いた集束イオンビーム装置により試料から試料片を摘出し、当該試料片に対して電子線が透過するまで薄片化する工程を行う。なお、この薄片化に係る工程は、上述の特許文献1や後述の実施例の項目に記載の装置を使用すればよく、詳細については省略する。
1-1. Preparatory process In this process, a stage until the above-described removal process and confirmation process are performed. Specifically, a sample piece is extracted from a sample by a focused ion beam apparatus using predetermined ions X (for example, Ga ions). Then, the step of thinning is performed until the electron beam is transmitted through the sample piece. In addition, what is necessary is just to use the apparatus as described in the above-mentioned patent document 1 or the item of the below-mentioned Example for the process which concerns on this thinning, and abbreviate | omits for details.

念のため、この薄片化に係る工程を列挙すれば、以下のようになる。
(1)試料をFIB用試料ホルダーに固定する工程
(2)FIB用試料ホルダーをFIBに導入する工程
(3)試料の任意の場所にデポジションによる保護膜を形成する工程
(4)高エネルギー(エッチングレートの早い)のGaイオンビームを用いて保護膜の周囲を加工(粗加工)する工程
(5)粗加工した試料を60°傾斜して断面方向から試料の下部をエッチングする工程
(6)傾斜を0°に戻してマイクロサンプリング装置によって試料片を吊り上げる工程
(7)吊り上げた試料片をTEM観察用の試料固定台(以降、単にTEM用試料固定台。)に接着する工程
(8)接着した試料片を電子線が透過するまで薄片化する工程
As a precaution, the steps related to thinning are listed as follows.
(1) A step of fixing the sample to the FIB sample holder (2) A step of introducing the FIB sample holder into the FIB (3) A step of forming a protective film by deposition at an arbitrary position of the sample (4) High energy ( (5) Process of roughing the periphery of the protective film using a Ga ion beam with a high etching rate (5) Process of tilting the rough sample by 60 ° and etching the lower part of the sample from the cross-sectional direction (6) A step of lifting the sample piece with the micro-sampling device after returning the inclination to 0 ° (7) A step of bonding the lifted sample piece to a sample fixing base for TEM observation (hereinafter simply referred to as a TEM sample fixing base) (8) Bonding The thinned sample piece until the electron beam is transmitted

ちなみに、上記の工程(3)から(4)を断面概略的に描いたのが図1(a)であり、工程(5)を断面概略的に描いたのが図1(b)である。工程(4)において、保護膜pが形成された試料Sから形成されつつある試料片sが上に向けたテーパ形状を有しているのは、イオンビームX(すなわちGaイオンビーム)が下方に行けばいくほどビーム幅が広がって強度が弱くなるため下方に行けばいくほどエッチングを行いにくくなるせいである。また、工程(5)において60°傾斜して試料の下部をエッチングするため、後述の図2に示すような形状の試料片sを得ることになる。ただ、Gaイオンビームにより、試料片sの表面はダメージを受け、Gaイオンに由来するダメージ層dが形成されている。   Incidentally, FIG. 1A is a schematic cross-sectional view of steps (3) to (4), and FIG. 1 (b) is a schematic cross-sectional view of step (5). In the step (4), the sample piece s that is being formed from the sample S on which the protective film p is formed has a taper shape with the ion beam X (that is, Ga ion beam) downward. This is because the beam width becomes wider and the intensity becomes weaker as it goes, so that it becomes harder to etch as it goes down. Further, in the step (5), the lower part of the sample is etched by tilting 60 °, so that a sample piece s having a shape as shown in FIG. However, the surface of the sample piece s is damaged by the Ga ion beam, and a damaged layer d derived from Ga ions is formed.

また、所定のイオンXとして上記の例ではGaイオンを挙げたが、それ以外の元素に係るイオン(例えば、Iイオン、Csイオン等)を採用しても構わない。   Moreover, although Ga ion was mentioned as said predetermined | prescribed ion X in said example, you may employ | adopt the ion (for example, I ion, Cs ion, etc.) concerning other elements.

1−2.除去工程
本工程においては、所定のイオンXを用いた集束イオンビーム装置により試料から摘出された試料片において当該イオンXを含有する部分を除去する。こうすることにより、FIB装置による試料片sの採取に伴うダメージ層dを除去することができ、TEM観察において像質を低下させずに済む。
1-2. Removal Step In this step, the portion containing the ion X is removed from the sample piece extracted from the sample by the focused ion beam apparatus using the predetermined ion X. By doing so, it is possible to remove the damaged layer d accompanying the collection of the sample piece s by the FIB apparatus, and it is not necessary to deteriorate the image quality in the TEM observation.

なお、イオンXを含有する部分の除去方法としては特に限定はない。例えば、イオンXとは異なるイオンYを用いたイオンエッチング機能を備えた装置により試料片sにおけるダメージ層dをエッチングする手法を採用しても構わない。イオンXとは異なるイオンYを用いれば、イオンXにより形成されたダメージ層dの除去度合いを問題なく確認可能である。このイオンYとしては特に限定はないが、例えば希ガス(Ar、Xe等)のイオンが挙げられる。   In addition, there is no limitation in particular as a removal method of the part containing the ion X. FIG. For example, a method of etching the damaged layer d in the sample piece s by an apparatus having an ion etching function using ions Y different from the ions X may be employed. If an ion Y different from the ion X is used, the degree of removal of the damaged layer d formed by the ion X can be confirmed without any problem. The ion Y is not particularly limited, and examples thereof include rare gas (Ar, Xe, etc.) ions.

ただし、本実施形態において非常に好適な例は、イオンXとは異なるイオンYを用いたイオンエッチング機能と元素分析機能とを兼ね備えた装置内にて、本工程である除去工程と、後述の確認工程とを、当該装置内に試料片sをセットしたまま行うことである。
具体例を挙げると、ArやXeを用いたイオンエッチング機能を備えた一つのオージェ電子分光(Auger Electron Spectroscopy:AES)装置1内に試料片sを配置したまま、上記の除去工程と後述の確認工程とを行うのが非常に好ましい。
However, a very suitable example in this embodiment is that the removal step, which is this step, and the confirmation described later in an apparatus having an ion etching function using an ion Y different from the ion X and an element analysis function. The process is performed while the sample piece s is set in the apparatus.
As a specific example, the above-described removal process and the confirmation described later are performed while the sample piece s is placed in one Auger Electron Spectroscopy (AES) apparatus 1 having an ion etching function using Ar or Xe. It is highly preferred to carry out the process.

1−3.確認工程(確認方法)
上記の除去工程に引き続き、本工程であるところの確認工程を行うことに、本実施形態の特徴の一つがある。本工程においては、先の除去工程に際し、試料片sに対して電子線を照射した際に生じるオージェ電子を検出することにより、試料片sにおけるイオンXの有無または含有量を確認する。
1-3. Confirmation process (confirmation method)
One of the features of the present embodiment is to perform the confirmation process, which is the present process, following the above-described removal process. In this step, the presence or content of ions X in the sample piece s is confirmed by detecting Auger electrons generated when the sample piece s is irradiated with an electron beam in the previous removal step.

この確認工程のタイミングとしては、除去工程をひとまず予定通りに完了した後に行うことが挙げられる。
このタイミングで確認工程を行い、試料片sにおいてダメージ層dが想定通りに除去されていれば、当該試料片sをTEM用試料固定台ごとTEM装置内に設置する。
もし想定通りに除去されておらずダメージ層dが残存していれば、再び上記の除去工程を行うことになる。ただ、再び除去工程を行うにしても、本実施形態ならば、オージェ電子分光装置内にてこれらの作業を行うことができる。そのため、TEM装置にていちいち確認する作業(ひいては試料片をいちいち真空引きする作業)が不要となり、手間が相当省ける。
As the timing of this confirmation process, it may be performed after the removal process is completed as scheduled.
A confirmation process is performed at this timing, and if the damaged layer d is removed as expected in the sample piece s, the sample piece s is installed in the TEM apparatus together with the TEM sample fixing base.
If it is not removed as expected and the damaged layer d remains, the above removal process is performed again. However, even if the removal step is performed again, according to the present embodiment, these operations can be performed in the Auger electron spectrometer. For this reason, the work of checking each time with the TEM device (and the work of evacuating the sample pieces one by one) becomes unnecessary, and the labor can be saved considerably.

また、ダメージ層d(イオンX)の確認方法としては、試料片sに対して電子線を照射して得られるオージェ電子分光スペクトルから確認することが挙げられる。例えば、オージェ電子分光スペクトルにおけるイオンX(例えばGa)由来のピークの有無をもってダメージ層dの有無を判断しても構わないし、イオンX由来のピークが確認できたとしても、ピークの面積からイオンXの定量化を図り、イオンXの量が所定値以下ならば、当該試料片sをTEM用試料固定台ごとTEM装置内に設置する作業へと移行しても構わない。逆に、上記の除去工程と本工程である確認工程を細かく交互に行い、その都度、ダメージ層dの除去度合いを確認しても構わない。例えば、確認工程のタイミングとして、除去工程を度々中断して本工程である確認工程をその都度行い、ダメージ層dの量(すなわちGaの量)を定量的に把握しても構わない。
さらに、ダメージ層d(Gaイオン)の確認方法としては、もちろん元素分析という観点から定性的に確認しても構わない。例えば、後述のAES検出器(図2の符号4)における定性分析機能や、同じく後述のエネルギー分散型X線分析(Energy Dispersive X-ray Spectroscopy:EDS)検出器(不図示)から元素分布写真を得、これを基にGaイオンの有無を確認しても構わない。
また、上記の各確認方法に加え、後述の二次電子検出器(図2の符号3)にて試料片sを撮像し、その結果からダメージ層dの除去の状況を確認しても構わない。
Moreover, as a confirmation method of the damage layer d (ion X), confirming from the Auger electron spectroscopy spectrum obtained by irradiating the sample piece s with an electron beam is mentioned. For example, the presence or absence of the damage layer d may be determined based on the presence or absence of a peak derived from the ion X (for example, Ga) in the Auger electron spectroscopy spectrum. Even if the peak derived from the ion X can be confirmed, the ion X is determined from the peak area. If the amount of ions X is equal to or less than a predetermined value, the sample piece s may be moved to the work for installing the sample piece s together with the TEM sample fixing base in the TEM apparatus. Conversely, the removal step and the confirmation step which is the main step may be alternately performed finely, and the degree of removal of the damaged layer d may be confirmed each time. For example, as the timing of the confirmation process, the removal process may be interrupted frequently, the confirmation process which is the main process is performed each time, and the amount of damage layer d (that is, the amount of Ga) may be grasped quantitatively.
Furthermore, as a method for confirming the damaged layer d (Ga ions), of course, it may be confirmed qualitatively from the viewpoint of elemental analysis. For example, an element distribution photograph can be obtained from a qualitative analysis function in an AES detector (reference numeral 4 in FIG. 2) to be described later or an energy dispersive X-ray spectroscopy (EDS) detector (not shown) in the same manner to be described later. The presence or absence of Ga ions may be confirmed based on this.
In addition to the above confirmation methods, a sample piece s may be imaged with a secondary electron detector (reference numeral 3 in FIG. 2) described later, and the removal status of the damaged layer d may be confirmed from the result. .

いずれにしても本実施形態ならば、試料片sにおけるダメージ層dを試料Sの材質によらず一度の処理によって除去すると共に、その除去状態を定性的または定量的に把握しつつダメージ層dの除去が可能となる。もちろん、除去状態を定性的かつ定量的に把握しても構わないし、正確さを向上させたいのならその方が好ましい。   In any case, in the present embodiment, the damaged layer d in the sample piece s is removed by a single process regardless of the material of the sample S, and the removed state of the damaged layer d is grasped qualitatively or quantitatively. Removal is possible. Of course, the removal state may be grasped qualitatively and quantitatively, and it is preferable to improve the accuracy.

なお、本実施形態にて挙げたオージェ電子分光装置1としては公知のものを用いても構わないが、念のために概要を図2にて説明する。図2に示すように、試料片sに対して電子線Eを放出する電子銃2、試料片sから発生した二次電子を検出して試料片sの撮像を可能とする二次電子検出器3、試料片sから発生したオージェ電子を検出するAES検出器4およびイオンエッチング機能を有するArイオンビームYを照射可能なArイオンビーム銃5、試料片sを固定する台であって将来はTEM装置内へと試料片sごと配置されることになるTEM用試料固定台6などで構成される。以降、符号は省略する。
なお、イオンエッチングに用いるイオン源は、Arが繁用的で入手しやすく、材料においても通常含有されていないことから元素分析の観点からも好ましい。
Note that a known device may be used as the Auger electron spectroscopy apparatus 1 mentioned in the present embodiment, but the outline will be described with reference to FIG. As shown in FIG. 2, an electron gun 2 that emits an electron beam E to a sample piece s, and a secondary electron detector that enables imaging of the sample piece s by detecting secondary electrons generated from the sample piece s. 3. An AES detector 4 for detecting Auger electrons generated from the sample piece s, an Ar ion beam gun 5 capable of irradiating an Ar ion beam Y having an ion etching function, and a table for fixing the sample piece s, and in the future TEM The TEM sample fixing base 6 and the like are arranged in the apparatus together with the sample pieces s. Hereinafter, the reference numerals are omitted.
An ion source used for ion etching is preferable from the viewpoint of elemental analysis because Ar is frequently used and easily available, and is not usually contained in the material.

当該装置によるダメージ層の除去工程および確認工程は、次の工程から構成される。
(9)薄片化した試料をTEM用試料固定台ごと、イオンエッチング機能を備えた分析装置用試料ホルダーに固定する工程
(10)試料ホルダーをイオンエッチング機能を備えたオージェ電子分光装置に導入する工程
(11)試料片の表面をArイオンにてイオンエッチングしてダメージ層を除去すると共に試料片に対して電子線を照射して生じたオージェ電子分光のスペクトルからGaについての元素分析を行い、ダメージ層の除去が完了しているか否かを判断する工程
The damage layer removal step and the confirmation step by the apparatus include the following steps.
(9) The step of fixing the sliced sample together with the TEM sample fixing base to the sample holder for an analyzer equipped with an ion etching function (10) The step of introducing the sample holder into an Auger electron spectrometer equipped with an ion etching function (11) The surface of the sample piece is ion-etched with Ar ions to remove the damaged layer, and the elemental analysis is performed on Ga from the spectrum of Auger electron spectroscopy generated by irradiating the sample piece with an electron beam. Determining whether the removal of the layer is complete

なお、上記の除去工程および本工程である確認工程を行うことができる装置であれば、オージェ電子分光装置以外のものを使用しても構わない。また、上記の両工程を別々の装置にて行っても構わない(例えば除去工程をFIB装置にて行い、確認工程を別装置であるEDS検出器にて行う)。ただ、上記の両工程を共に装置内にて行える点や使いやすさと言う点でオージェ電子分光装置が非常に好ましい。   In addition, as long as it is an apparatus which can perform said removal process and the confirmation process which is this process, you may use things other than an Auger electron spectrometer. Moreover, you may perform both said processes with a separate apparatus (For example, a removal process is performed with a FIB apparatus, and a confirmation process is performed with the EDS detector which is another apparatus). However, an Auger electron spectrometer is very preferable in that both of the above steps can be performed in the apparatus and it is easy to use.

以上の工程を実施してダメージ層を除去した薄片試料をTEM装置内へと配置して断面観察を行う。観察に供するTEM装置には特に限定はなく、公知のものを採用しても構わない。   The thin film sample from which the damaged layer has been removed by performing the above steps is placed in the TEM apparatus and the cross section is observed. There is no particular limitation on the TEM apparatus used for observation, and a known TEM apparatus may be adopted.

<2.実施の形態における効果>
本実施形態によれば、主に以下の効果を奏する。
上記手段を利用した本発明によれば、イオンエッチング機能によってダメージ層を除去することができ、元素分析機能によってダメージ層由来のイオンX(例えばGaイオン)を追跡することができる。
また、ダメージ層の除去状態を経時的に捉えられること、二次電子検出器によって像観察することによって試料の状態を確認できること、定量的にダメージ層の除去が判断できること、等から、試料の材質ごとに条件検討や再処理をする必要が無くなり、著しい時間的効率の向上も望める。
さらには、残存したダメージ層の除去に伴う真空状態と大気圧状態の繰り返しも避けられる。例えば、試料片が嫌気性である場合等において、試料の変質を抑制するという効果も得られる。
<2. Effect in Embodiment>
According to this embodiment, there are mainly the following effects.
According to the present invention using the above means, the damaged layer can be removed by the ion etching function, and ions X (for example, Ga ions) derived from the damaged layer can be traced by the elemental analysis function.
In addition, it is possible to grasp the removal state of the damaged layer over time, to confirm the state of the sample by observing an image with a secondary electron detector, and to determine the removal of the damaged layer quantitatively. There is no need to examine conditions and reprocess each time, and a significant improvement in time efficiency can be expected.
Furthermore, the repetition of the vacuum state and the atmospheric pressure state accompanying the removal of the remaining damaged layer can be avoided. For example, in the case where the sample piece is anaerobic, an effect of suppressing deterioration of the sample is also obtained.

以上の結果、本実施形態によれば、TEM観察を行う前に、TEM用試料である試料片のダメージ層の除去状態を正確に把握しつつ当該ダメージ層の除去が可能となる。   As a result, according to the present embodiment, it is possible to remove the damaged layer while accurately grasping the removed state of the damaged layer of the sample piece, which is a TEM sample, before performing TEM observation.

上記の効果を奏するという意味では、本発明は、TEM用試料の確認方法という意味でも技術的意義がある。つまり、上記の確認工程を確認方法とした発明においても技術的意義がある。   In the sense that the above effects are achieved, the present invention is also technically significant in terms of a method for confirming a TEM sample. In other words, the invention using the above confirmation process as a confirmation method is also technically significant.

以下、本実施例について説明する。なお、本発明の技術的範囲は以下の実施例に限定されるものではない。   Hereinafter, this embodiment will be described. The technical scope of the present invention is not limited to the following examples.

(実施例1)
TEM観察用の試料としてはSiウェハを用い、薄片化処理には日立製FIB装置(FB−2000A)を用いた。また、当該装置のデポジション源としてはカーボン系材料を用いた。
当該装置によって試料片を摘出し、当該試料片を電子線が透過する程度の厚さ(厚さ100nm以下)まで薄片化した。その試料片をAES専用ホルダーに張り付けてAES装置(JEOL製JAMP/9500)内に導入した。
ついで、Arイオン銃によって試料片の表面をエッチングすると共にAESの定性分析(オージェ電子分光スペクトルによるGa由来のピークの有無)によってGaを追跡して検出した。
その結果、Gaの量は、エッチング時間が数十から数分程度で検出下限以下となった。また、本手法によってダメージ層を除去した後の試料片をTEM観察(日立製HF−2200)したところ、ダメージ層由来のコントラストが無くなったことから良質なTEM像が得られた。
なお、TEM観察後、TEM装置に付属していたEDS検出器によって当該試料片に対して元素分析を実施したところ、Gaが検出下限であった。
Example 1
A Si wafer was used as a sample for TEM observation, and a Hitachi FIB apparatus (FB-2000A) was used for the thinning process. Moreover, a carbon-based material was used as a deposition source of the apparatus.
The sample piece was extracted by the apparatus, and the sample piece was thinned to a thickness (thickness of 100 nm or less) enough to transmit the electron beam. The sample piece was attached to an AES dedicated holder and introduced into an AES apparatus (JAMP / 9500 manufactured by JEOL).
Next, the surface of the sample piece was etched with an Ar ion gun, and Ga was tracked and detected by qualitative analysis of AES (presence or absence of Ga-derived peak by Auger electron spectroscopy spectrum).
As a result, the amount of Ga was below the lower limit of detection after an etching time of about several tens to several minutes. Moreover, when the sample piece after removing the damage layer by this method was observed with a TEM (Hitachi HF-2200), a high quality TEM image was obtained because the contrast derived from the damage layer disappeared.
In addition, when the elemental analysis was implemented with respect to the said sample piece with the EDS detector attached to the TEM apparatus after TEM observation, Ga was a detection minimum.

(比較例1)
FIB装置による薄片化した試料片に対し、AES装置でのArイオンエッチングを未実施の状態で、実施例と同様の操作を行った。その結果、ダメージ層由来のコントラストのためにTEM像が不明瞭となり、EDS分析においてGaが顕著に検出された。
(Comparative Example 1)
The same operation as in the example was performed on the sample piece thinned by the FIB apparatus in a state where Ar ion etching by the AES apparatus was not performed. As a result, the TEM image became unclear due to the contrast derived from the damaged layer, and Ga was remarkably detected in the EDS analysis.

(まとめ)
以上の結果、本実施例においては、TEM観察を行う前に、TEM用試料である試料片のダメージ層の除去状態を正確に把握できていることがわかった。
(Summary)
As a result, in this example, it was found that the removal state of the damaged layer of the sample piece, which is a sample for TEM, could be accurately grasped before TEM observation.

以上、本発明の詳細について説明したが、本発明は、実施例に限定されず、本発明の要旨を逸脱しない範囲において、上記に記載の内容に対して各種の改良や変更、組み合わせを行っても良いのは、もちろんである。また、本発明はTEM用試料の作製に限定されず、例えば電子顕微鏡分野などにおけるダメージ層の除去などにも利用可能である。
また、本発明は、従来とは異なり、TEM観察を行うにあたりいきなりTEM装置内に試料片を配置するのではなく、TEM装置以外にてダメージ層の除去状況を確認したことに技術的意義がある。
上記の内容を鑑みた構成は以下のようになる。
「(電子顕微鏡用の)試料の作製方法であって、
所定のイオンXを用いた集束イオンビーム装置により試料から摘出された試料片において当該イオンXを含有する部分を除去する除去工程と、
前記試料片を分析装置に設置する前に、前記試料片における前記イオンXの有無または含有量を確認する確認工程と、
を有する、(電子顕微鏡用の)試料の作製方法。」
上記の構成ならば、例えば電子顕微鏡等による観察を行う前に、電子顕微鏡用試料である試料片のダメージ層の除去状態を正確に把握しつつ当該ダメージ層の除去が可能となる。また、残存したダメージ層の除去に伴う真空状態と大気圧状態の繰り返しも避けられ、ひいては試料の変質を抑制するという効果があり、別の言い方をすると当該往復に係る試料の変質に係る課題を解決可能となる。
The details of the present invention have been described above. However, the present invention is not limited to the embodiments, and various improvements, changes, and combinations are made to the contents described above without departing from the gist of the present invention. Of course it is also good. Further, the present invention is not limited to the preparation of a TEM sample, and can be used for removing a damaged layer in the field of electron microscopes, for example.
In addition, unlike the conventional case, the present invention has technical significance in that the state of removal of the damaged layer is confirmed by using a device other than the TEM device, instead of placing the sample piece in the TEM device suddenly. .
The configuration in view of the above contents is as follows.
"This is a method for preparing a sample (for an electron microscope)
A removing step of removing a portion containing the ion X in the sample piece extracted from the sample by the focused ion beam apparatus using the predetermined ion X;
A confirmation step of confirming the presence or content of the ions X in the sample piece before installing the sample piece in the analyzer;
A method for preparing a sample (for an electron microscope). "
With the above configuration, for example, before performing observation with an electron microscope or the like, it is possible to remove the damaged layer while accurately grasping the removed state of the damaged layer of the sample piece that is the sample for the electron microscope. In addition, the repetition of the vacuum state and the atmospheric pressure state accompanying the removal of the remaining damaged layer can be avoided, and as a result, there is an effect of suppressing the deterioration of the sample. In other words, there is a problem related to the deterioration of the sample related to the reciprocation. It can be solved.

1……オージェ電子分光装置
2……電子銃
3……二次電子検出器
4……AES検出器
5……Arイオンビーム銃
6……TEM用試料固定台
S……試料
s……試料片
d……ダメージ層
p……保護膜
X……(Ga)イオンビーム
Y……(Ar)イオンビーム
E……電子線
DESCRIPTION OF SYMBOLS 1 ... Auger electron spectrometer 2 ... Electron gun 3 ... Secondary electron detector 4 ... AES detector 5 ... Ar ion beam gun 6 ... TEM sample fixing stand S ... Sample s ... Sample piece d ... Damaged layer p ... Protective film X ... (Ga) Ion beam Y ... (Ar) Ion beam E ... Electron beam

Claims (4)

透過型電子顕微鏡用試料の作製方法であって、
所定のイオンXを用いた集束イオンビーム装置により試料から摘出された試料片において当該イオンXを含有する部分を除去する除去工程と、
前記除去工程に際し、前記試料片に対して電子線を照射した際に生じるオージェ電子を検出することにより、前記試料片における前記イオンXの有無または含有量を確認する確認工程と、
を有する、透過型電子顕微鏡用試料の作製方法。
A method for preparing a sample for a transmission electron microscope,
A removing step of removing a portion containing the ion X in the sample piece extracted from the sample by the focused ion beam apparatus using the predetermined ion X;
A confirmation step of confirming the presence or content of the ions X in the sample piece by detecting Auger electrons generated when the sample piece is irradiated with an electron beam during the removing step;
A method for producing a sample for a transmission electron microscope having:
前記除去工程および前記確認工程は、前記イオンXとは異なるイオンYを用いたイオンエッチング機能を備えた一つのオージェ電子分光装置内に配置したまま行う、請求項1に記載の透過型電子顕微鏡用試料の作製方法。   2. The transmission electron microscope according to claim 1, wherein the removing step and the confirmation step are performed while being arranged in one Auger electron spectrometer having an ion etching function using an ion Y different from the ion X. Sample preparation method. 前記イオンXはGaイオンであり、前記イオンYは希ガスのイオンである、請求項1または2に記載の透過型電子顕微鏡用試料の作製方法。   The method for manufacturing a sample for a transmission electron microscope according to claim 1, wherein the ions X are Ga ions, and the ions Y are rare gas ions. 透過型電子顕微鏡用試料の確認方法であって、
所定のイオンXを用いた集束イオンビーム装置により試料から摘出された試料片において当該イオンXを含有する部分が除去された試料片を透過型電子顕微鏡に設置する前に、前記試料片に対して電子線を照射した際に生じるオージェ電子を検出することにより、前記試料片における前記イオンXの有無または含有量を確認する確認工程と、
を有する、透過型電子顕微鏡用試料の確認方法。
A method for confirming a sample for a transmission electron microscope,
Before the sample piece from which the part containing the ion X is removed from the sample piece extracted from the sample by the focused ion beam apparatus using the predetermined ion X is placed on the sample piece, A confirmation step of confirming the presence or content of the ions X in the sample piece by detecting Auger electrons generated when the electron beam is irradiated;
A method for confirming a sample for a transmission electron microscope.
JP2016031089A 2016-02-22 2016-02-22 Method for preparing and confirming sample for transmission electron microscope Active JP6634871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031089A JP6634871B2 (en) 2016-02-22 2016-02-22 Method for preparing and confirming sample for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031089A JP6634871B2 (en) 2016-02-22 2016-02-22 Method for preparing and confirming sample for transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2017150840A true JP2017150840A (en) 2017-08-31
JP6634871B2 JP6634871B2 (en) 2020-01-22

Family

ID=59739007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031089A Active JP6634871B2 (en) 2016-02-22 2016-02-22 Method for preparing and confirming sample for transmission electron microscope

Country Status (1)

Country Link
JP (1) JP6634871B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167807A (en) * 1993-12-14 1995-07-04 Sony Corp Analyzing method of sample
JPH08327514A (en) * 1995-06-05 1996-12-13 Nippondenso Co Ltd Preparation of sample for transmission electron microscope and device therefor
JP2002277364A (en) * 2001-03-19 2002-09-25 Seiko Epson Corp Method of working thin sample piece, and method of preparing thin sample piece
JP2006100788A (en) * 2004-07-14 2006-04-13 Applied Materials Israel Ltd Method and apparatus for sample formation and microanalysis in vacuum chamber
JP2007108105A (en) * 2005-10-17 2007-04-26 Renesas Technology Corp Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
US20100276607A1 (en) * 2009-02-10 2010-11-04 Carl Zeiss Nts Gmbh Method of depositing protective structures
JP2012018800A (en) * 2010-07-07 2012-01-26 Hitachi High-Technologies Corp Charged particle beam device, and method of preparing sample
JP2012073069A (en) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd Preparation method of specimen for observing defective part of semiconductor device substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167807A (en) * 1993-12-14 1995-07-04 Sony Corp Analyzing method of sample
JPH08327514A (en) * 1995-06-05 1996-12-13 Nippondenso Co Ltd Preparation of sample for transmission electron microscope and device therefor
JP2002277364A (en) * 2001-03-19 2002-09-25 Seiko Epson Corp Method of working thin sample piece, and method of preparing thin sample piece
JP2006100788A (en) * 2004-07-14 2006-04-13 Applied Materials Israel Ltd Method and apparatus for sample formation and microanalysis in vacuum chamber
JP2007108105A (en) * 2005-10-17 2007-04-26 Renesas Technology Corp Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
US20100276607A1 (en) * 2009-02-10 2010-11-04 Carl Zeiss Nts Gmbh Method of depositing protective structures
JP2012018800A (en) * 2010-07-07 2012-01-26 Hitachi High-Technologies Corp Charged particle beam device, and method of preparing sample
JP2012073069A (en) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd Preparation method of specimen for observing defective part of semiconductor device substrate

Also Published As

Publication number Publication date
JP6634871B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US20130209701A1 (en) Method of preparing sample for tem observation
US10529538B2 (en) Endpointing for focused ion beam processing
US8168948B2 (en) Method of machining a work piece with a focused particle beam
Munroe The application of focused ion beam microscopy in the material sciences
US7442924B2 (en) Repetitive circumferential milling for sample preparation
JP6586261B2 (en) Large-capacity TEM grid and sample mounting method
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
EP2233906A1 (en) Forming an image while milling a work piece
EP1998356A2 (en) In-Situ STEM Sample Preparation
TW201432242A (en) Method for preparing samples for imaging
JP4205992B2 (en) Sample processing method using ion beam, ion beam processing apparatus, ion beam processing system, and method of manufacturing electronic component using the same
CN106252187B (en) Method for analyzing sample surface modification in charged particle microscope
KR20180132546A (en) Face-on, gas-assisted etching for plan-view lamellae preparation
JP2000035391A (en) Method for eliminating distortion of sample in thin-piece preparation machining
JP2004087174A (en) Ion beam device, and working method of the same
JP2006226970A (en) Sample support built by semiconductor silicon process technique
CN102013379B (en) Section processing observational technique and device
Li Advanced techniques in TEM specimen preparation
JP6634871B2 (en) Method for preparing and confirming sample for transmission electron microscope
CN105097580A (en) Focused ion beam analysis method
JP4644470B2 (en) Ion beam processing apparatus and sample preparation method
JP4483957B2 (en) Sample preparation device
JP6658354B2 (en) Method for preparing sample surface, method for analyzing sample surface, probe for electric field assisted oxidation, and scanning probe microscope equipped with the same
JP2004069628A (en) Method for producing in-line test sample
JP2012057945A (en) Method for creating sample for electron microscope observation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190827

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6634871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150