JP4483957B2 - Sample preparation device - Google Patents

Sample preparation device Download PDF

Info

Publication number
JP4483957B2
JP4483957B2 JP2008057169A JP2008057169A JP4483957B2 JP 4483957 B2 JP4483957 B2 JP 4483957B2 JP 2008057169 A JP2008057169 A JP 2008057169A JP 2008057169 A JP2008057169 A JP 2008057169A JP 4483957 B2 JP4483957 B2 JP 4483957B2
Authority
JP
Japan
Prior art keywords
sample
observation
processing chamber
sample piece
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008057169A
Other languages
Japanese (ja)
Other versions
JP2008151805A (en
Inventor
立春 山本
馨 梅村
聡 富松
勝 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008057169A priority Critical patent/JP4483957B2/en
Publication of JP2008151805A publication Critical patent/JP2008151805A/en
Application granted granted Critical
Publication of JP4483957B2 publication Critical patent/JP4483957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、微細構造が形成された半導体ウエハ、磁気ヘッド等の表面から、透
過型電子顕微鏡(Transmission Electron Microscope:以下TEMと略記)、走査
型電子顕微鏡(Scanning Electron Microscope:以下SEMと略記)による観察に
必要な微細寸法の試料片を、集束イオンビーム(Focused Ion Beam:以下FIBと
略記)を用いて加工、採取する試料作成方法および試料作成装置に関する。
The present invention uses a transmission electron microscope (hereinafter abbreviated as TEM) and a scanning electron microscope (hereinafter abbreviated as SEM) from the surface of a semiconductor wafer, magnetic head or the like on which a fine structure is formed. The present invention relates to a sample preparation method and a sample preparation device for processing and collecting a sample piece having a fine dimension necessary for observation using a focused ion beam (hereinafter abbreviated as FIB).

FIBを用いたTEMの観察試料の作成方法には、例えば、E.C.G.Kirkらが、論文集
Microscopy of Semiconducting Materials 1989, Institute of Physics No.1
00, p.501−506 において説明されているような方法がある。
For example, ECG Kirk et al.
Microscopy of Semiconducting Materials 1989, Institute of Physics No.1
00, pages 501-506.

図9でこの従来の技術を説明する。観察対象となるウエハ101から短冊状ペレ
ット102(試料)をダイシングによって、およそ3×0.1×0.5mm(ウエハの厚み)
に切り出す(ペレット切り出し工程)。次に半円形金属板103の端面に短冊状ペ
レット102を固定する(ペレット固定工程)。この状態でFIBによって厚さ100nm
程度の薄膜状に加工する(ペレット成形工程)。これを図示したのが短冊状ペレ
ット102′である。そして、TEM観察用ホルダ104に半円形金属板103を人手によっ
て設置して(試料設置工程)TEM観察を行なう。
論文集 Microscopy of Semiconducting Materials 1989, Institute of Physics No.100, p.501−506
This prior art will be described with reference to FIG. Approximately 3 x 0.1 x 0.5 mm (wafer thickness) by dicing the strip-shaped pellet 102 (sample) from the wafer 101 to be observed
To cut out (pellet cutting step). Next, the strip-shaped pellet 102 is fixed to the end surface of the semicircular metal plate 103 (pellet fixing step). In this state, the thickness is 100 nm by FIB
It is processed into a thin film to the extent (pellet molding process). This is illustrated as a strip-shaped pellet 102 '. Then, the semicircular metal plate 103 is manually set on the TEM observation holder 104 (sample setting step), and TEM observation is performed.
Proceedings Microscopy of Semiconducting Materials 1989, Institute of Physics No.100, p.501-506

まず上記の従来技術において、ペレット切り出し工程から始まって試料設置工
程を完了するまでに3〜5時間という長時間の処理を行なわなければならないとい
うことがある。また、ペレットや半円形金属板は非常に小さく、人手で扱うには
熟練が要求され、試料作成のためのコストが高くなる要因となっている。
First, in the above-described prior art, it may be necessary to perform a long process of 3 to 5 hours from the pellet cutting process to the completion of the sample setting process. In addition, pellets and semicircular metal plates are very small, and skill is required to handle them manually, which increases the cost for sample preparation.

本発明ではこの問題を解決するため、一連の試料作成工程を簡略化するとともに
、作成作業の殆どを自動化可能な試料作成装置および方法を提供することによっ
て、時間短縮およびコストの低減を行なうことを目的としている。
In order to solve this problem, the present invention simplifies a series of sample preparation processes and provides a sample preparation apparatus and method capable of automating most of the preparation work, thereby reducing time and cost. It is aimed.

上記目的を達成するために、本発明においては次のような手段を講じる。本発
明による試料作成装置は、試料処理室にFIBと、二次電子検出器と、デポジショ
ン用ガス源と、試料移動機構と、試料片を採取するための試料片プローブと、試
料片プローブを着脱可能な試料片プローブホルダおよび試料片プローブ移動機構
と、試料片プローブ単体を搭載する観察用試料ホルダおよび観察用試料ホルダ移
動機構を設置することで構成される。
In order to achieve the above object, the following measures are taken in the present invention. A sample preparation apparatus according to the present invention includes an FIB, a secondary electron detector, a deposition gas source, a sample moving mechanism, a sample piece probe for collecting a sample piece, and a sample piece probe in a sample processing chamber. The sample piece probe holder and the sample piece probe moving mechanism which can be attached and detached, and the observation sample holder and the observation sample holder moving mechanism on which the sample piece probe alone is mounted are provided.

次に、上記の試料作成装置の構成要素による試料作成方法を説明する。本発明
による試料作成の一連の工程は、元試料にレーザ等で加工目標位置をマーキング
を行なうマーキング工程、試料処理室内においてあらかじめ観察用試料ホルダに
設置されている試料片プローブをFIBによる視野観察によって、試料片プローブ
ホルダに持ち替える試料片プローブ持ち替え工程、所望の形状に元試料から試料
片を成形する試料片成形工程、成形後の試料片に試料片プローブ先端を接触させ
るための試料片プローブ接触工程、集束イオンビームとデポジション用ガスの照
射による試料片と試料片プローブ先端の試料片接続工程、集束イオンビームの照
射によって試料片と元試料を分離する試料片分離工程、試料片プローブを観察用
試料ホルダ10に移載する試料片プローブ移載工程によって行われる。
Next, a sample preparation method using the components of the sample preparation apparatus will be described. A series of steps for sample preparation according to the present invention includes a marking step in which a processing target position is marked on the original sample with a laser or the like, and a sample piece probe previously installed in an observation sample holder in a sample processing chamber is observed by visual field observation by FIB. , Sample piece probe holding step for changing to a sample piece probe holder, sample piece forming step for forming a sample piece from an original sample into a desired shape, sample piece probe contact step for bringing the tip of the sample piece probe into contact with the formed sample piece , Sample piece connection process of sample piece and sample piece probe tip by irradiation of focused ion beam and deposition gas, sample piece separation process of separating sample piece and original sample by irradiation of focused ion beam, for observation of sample piece probe This is performed by a sample piece probe transfer process of transferring to the sample holder 10.

また、以上説明したような試料作成方法において、TEM観察のための試料を作
成する場合は、上記工程に加えて、試料片分離工程と試料片プローブ移載工程の
間に試料片の中央部に集束イオンビームを照射することによって、100nm程度の
厚みの薄壁部を形成する薄壁部形成工程を付加する。
In addition, in the sample preparation method as described above, when preparing a sample for TEM observation, in addition to the above steps, the sample piece is placed in the center of the sample piece between the sample piece separation step and the sample piece probe transfer step. By irradiating the focused ion beam, a thin wall portion forming step of forming a thin wall portion having a thickness of about 100 nm is added.

本発明によると、微少な試料片の一連のハンドリングに人手をほとんど介さず
、しかも、試料処理室内の真空環境での一貫した試料作成処理が可能となり、従
来の方式に対し、時間およびコストを削減できるばかりか、観察試料面の汚染や
ダメージの可能性を無くすことができる。
According to the present invention, it is possible to perform a consistent sample preparation process in a vacuum environment in a sample processing chamber with little manual intervention for handling a series of minute sample pieces, which saves time and cost compared to the conventional method. In addition, the possibility of contamination and damage to the observation sample surface can be eliminated.

図1および図2は本発明による試料作成装置の基本構成を示す概略図である。
図1において真空排気機能を有する試料処理室1には、試料片の加工および加工
部近傍の画像観察を行なうための集束イオンビーム(FIB)照射光学系2および二
次電子検出器3と、集束イオンビームの照射領域にデポジション膜を形成するた
めのデポジション用ガス源4と、元試料5が設置され、イオンビームに対する相対
変位を与えるための試料移動機構6と、試料片を採取するための試料片プローブ7
と、試料片プローブ7を着脱可能な試料片プローブホルダ8および試料片プローブ
移動機構9と、試料片プローブ7単体を搭載する観察用試料ホルダ10および観察用
試料ホルダ移動機構11が設置されている。
1 and 2 are schematic views showing a basic configuration of a sample preparation apparatus according to the present invention.
In FIG. 1, a sample processing chamber 1 having an evacuation function includes a focused ion beam (FIB) irradiation optical system 2 and a secondary electron detector 3 for processing a sample piece and observing an image of the vicinity of the processed portion, and a focusing point. A deposition gas source 4 for forming a deposition film in the ion beam irradiation area, an original sample 5 is installed, a sample moving mechanism 6 for giving a relative displacement with respect to the ion beam, and a sample piece are collected. Sample piece probe 7
A sample piece probe holder 8 and a sample piece probe moving mechanism 9 to which the sample piece probe 7 can be attached and detached, and an observation sample holder 10 and an observation sample holder moving mechanism 11 for mounting the sample piece probe 7 alone are installed. .

また、図2において、試料片プローブ7は、試料片プローブホルダ8との結合部
となるチャックプレート12と、傾斜スペーサ13と、試料片15を保持するカンチレ
バー14が一体として結合されることによって構成される。ここで、カンチレバー
14は傾斜スペーサ13によってチャックプレート12と15〜20°の逃げ角を持ってい
ることが必要である。これは、TEMの電子線が図面上で垂直に照射される場合、
試料片プローブ7も垂直に設置されなければならず、適当な逃げ角がないとカン
チレバー14によって透過電子線の散乱が妨げられるためである。
In FIG. 2, the sample piece probe 7 is configured by integrally connecting a chuck plate 12 serving as a connecting portion with the sample piece probe holder 8, an inclined spacer 13, and a cantilever 14 holding the sample piece 15. Is done. Where the cantilever
14 needs to have a clearance angle of 15 to 20 ° with the chuck plate 12 by the inclined spacer 13. This is because when the electron beam of TEM is irradiated vertically on the drawing,
This is because the sample probe 7 must also be installed vertically, and the cantilever 14 prevents the transmission electron beam from being scattered unless there is an appropriate clearance angle.

次に、上記の試料作成装置の構成要素による第1の試料作成方法について説明
する。図3、図4および図5は本発明による第1試料作成方法の概略を示した図
である。
Next, the 1st sample preparation method by the component of said sample preparation apparatus is demonstrated. 3, 4 and 5 are diagrams showing an outline of the first sample preparation method according to the present invention.

図3(a)は集束イオンビームによって試料片15を成形加工する方法を示した
ものである。まず、あらかじめ元試料5にレーザ等で加工目標位置のマーキング
を行なう(マーキング工程、図示せず)。一方、図5で示すように、試料処理室
1内においてあらかじめ観察用試料ホルダ10に設置されている試料片プローブ7を
集束イオンビームによる視野観察によって、試料片プローブホルダ8に持ち替え
る(試料片プローブ持ち替え工程)。ここでの、試料片プローブホルダ8および
観察用試料ホルダ10の位置合わせのための移動は、図1の試料片プローブ移動機
構9および観察用試料ホルダ移動機構11によって行なう。
FIG. 3 (a) shows a method of forming the sample piece 15 with a focused ion beam. First, a processing target position is marked on the original sample 5 with a laser or the like in advance (marking step, not shown). On the other hand, as shown in FIG.
1, the sample piece probe 7 installed in the observation sample holder 10 in advance is transferred to the sample piece probe holder 8 by visual field observation using a focused ion beam (sample piece probe changing step). Here, the movement for positioning the sample piece probe holder 8 and the observation sample holder 10 is performed by the sample piece probe moving mechanism 9 and the observation sample holder moving mechanism 11 of FIG.

元試料5を試料処理室1に搬送し、試料移動機構6によってマーキング位置とビ
ーム位置を合わせる。次に集束イオンビームの照射によって、図3(a)の円内
を拡大して示す加工部平面図に示すような矩形の垂直加工部および傾斜加工部の
組み合わせにより、ハッチングを施した領域で元試料5の除去加工を行なう。こ
の傾斜加工の場合は試料移動機構6を傾斜させて行なう。これによって、片持ち
状態の部分でつながった試料片15を形成することができる(試料片成形工程)。
The original sample 5 is transported to the sample processing chamber 1, and the marking position and the beam position are aligned by the sample moving mechanism 6. Next, by irradiation with a focused ion beam, a hatched region is originally formed in a hatched region by a combination of a rectangular vertical processing unit and an inclined processing unit as shown in a plan view of the processing unit enlarged in a circle in FIG. Sample 5 is removed. In the case of this tilting process, the sample moving mechanism 6 is tilted. As a result, the sample pieces 15 connected in a cantilevered state can be formed (sample piece forming step).

図3(b)は成形後の試料片15に試料片プローブ7を接近させ、カンチレバー14
の先端を接触させた状態を示すものである。ここでの接近方法は、あくまで視野
の中心に試料片15を固定し、試料片プローブ移動機構9の三次元的な精密移動に
よって接近および接触を行なう。カンチレバー14の先端形状は試料片15の両端と
垂直加工部を渡って元試料5の表面に接触させることができる形状にする。これ
は、カンチレバー14の接触端が元試料5に接触したとき、元試料5の表面に支持さ
れ、片持ち状態の試料片15を押さえすぎて上記片持ち状部分を破損しないように
するためである(試料片プローブ接触工程)。
FIG. 3 (b) shows the cantilever 14 when the sample piece probe 7 is brought close to the sample piece 15 after molding.
The state which made the front-end | tip contact is shown. In this approach, the sample piece 15 is fixed at the center of the field of view, and the approach and contact are performed by three-dimensional precision movement of the sample piece probe moving mechanism 9. The tip of the cantilever 14 is shaped so that it can be brought into contact with the surface of the original sample 5 across both ends of the sample piece 15 and the vertical processing portion. This is because when the contact end of the cantilever 14 comes into contact with the original sample 5, it is supported by the surface of the original sample 5, and the sample piece 15 in the cantilever state is pressed down too much so that the cantilevered portion is not damaged. Yes (sample piece probe contact step).

図4(a)ではカンチレバー14の接触端と試料片15を接続し、試料片15を元試
料5から分離する方法をに示す。集束イオンビームの照射領域をカンチレバー14
の接触端と試料片15に渡る領域(黒丸指示部)に設定する。そして、上記照射領
域にデポジション用ガス源4から、例えばヘキサカルボニルタングステン(W(CO
6)などのデポジション用ガスを照射し、上記接触端と試料片15上にタングス
テン膜を形成することによって両者を接続する(試料片接続工程)。
FIG. 4A shows a method of connecting the contact end of the cantilever 14 and the sample piece 15 and separating the sample piece 15 from the original sample 5. Cantilever 14 focused ion beam irradiation area
Is set to an area (black circle indicating portion) extending over the contact end of the sample piece 15 and the sample piece 15. Then, for example, hexacarbonyl tungsten (W (CO
6 ) The deposition gas such as 6 ) is irradiated and a tungsten film is formed on the contact end and the sample piece 15 to connect them (sample piece connecting step).

次に、集束イオンビームの照射によって前記片持ち状態部分の除去加工を行な
い、試料片15を元試料5から分離する(試料片分離工程)。
Next, the cantilever portion is removed by irradiation with a focused ion beam to separate the sample piece 15 from the original sample 5 (sample piece separation step).

次に、図5で示すように、試料片プローブホルダ8で保持されている試料片プ
ローブ7を集束イオンビームによる視野観察によって観察用試料ホルダ10に移載
する(試料片プローブ移載工程)。
Next, as shown in FIG. 5, the sample piece probe 7 held by the sample piece probe holder 8 is transferred to the observation sample holder 10 by visual field observation using a focused ion beam (sample piece probe transfer step).

以上説明したような試料作成方法において、TEM観察のための試料を作成する場
合は、上記工程に加えて、試料片分離工程と試料片プローブ移載工程の間に図4
(b)に示すように、試料片15の中央部に集束イオンビームを照射することによ
って、100nm程度の厚みの薄壁部を形成する(薄壁部形成工程)。
In the sample preparation method as described above, when preparing a sample for TEM observation, in addition to the above steps, a sample piece separation step and a sample piece probe transfer step are performed as shown in FIG.
As shown in (b), the central portion of the sample piece 15 is irradiated with a focused ion beam to form a thin wall portion having a thickness of about 100 nm (thin wall portion forming step).

以上説明した試料作成装置および試料作成方法は、ウエハ(6〜12inサイズ)
等のように比較的大きな元試料を試料移動機構に設置して試料片を作成する場合
に好適であるが、チップ(5mm角程度)等の比較的小さい元試料を取り扱う場合
は、以下に説明する試料作成装置を用いた試料作成方法を行なうことが効果的で
ある。
The sample preparation apparatus and sample preparation method described above are for wafers (6 to 12 inches in size).
This is suitable when a relatively large original sample is placed on the sample moving mechanism to create a sample piece. However, when a relatively small original sample such as a tip (about 5 mm square) is handled, the explanation is given below. It is effective to perform a sample preparation method using a sample preparation device.

図6は本発明による第2の試料作成装置の基本構成を示す概略図である。図6
において真空排気機能を有する試料処理室1には、試料片の加工および加工部近
傍の画像観察を行なうための集束イオンビーム(FIB)照射光学系2および二次電
子検出器3と、集束イオンビームの照射領域にデポジション膜を形成するための
デポジション用ガス源4と、試料片15を採取するための試料片プローブ7と、試料
片プローブ7を着脱可能な試料片プローブホルダ8および試料片プローブ移動機構
9と、試料片プローブ7単体と元試料17を搭載する観察用試料ホルダ16および観察
用試料ホルダ移動機構18が設置されている。
FIG. 6 is a schematic diagram showing the basic configuration of the second sample preparation apparatus according to the present invention. FIG.
In the sample processing chamber 1 having a vacuum evacuation function, a focused ion beam (FIB) irradiation optical system 2 and a secondary electron detector 3 for processing a sample piece and observing an image in the vicinity of the processed portion, a focused ion beam A deposition gas source 4 for forming a deposition film in the irradiation region, a sample piece probe 7 for collecting a sample piece 15, a sample piece probe holder 8 and a sample piece to which the sample piece probe 7 can be attached and detached Probe moving mechanism
9, an observation sample holder 16 on which the sample piece probe 7 alone and the original sample 17 are mounted, and an observation sample holder moving mechanism 18 are installed.

次に、上記の第2の試料作成装置の構成要素による第2の試料作成方法を第1
の試料作成方法と比較しながら図7で説明する。あらかじめ元試料17にレーザ等
で加工目標位置のマーキングを行ない(マーキング工程)、元試料17を試料片プ
ローブ7とともに観察用試料ホルダ16に設置した後、試料処理室1に導入する。
Next, a second sample preparation method using the constituent elements of the second sample preparation apparatus described above is the first.
This will be described with reference to FIG. A processing target position is marked on the original sample 17 with a laser or the like in advance (marking step), and the original sample 17 is placed in the observation sample holder 16 together with the sample piece probe 7 and then introduced into the sample processing chamber 1.

次に、図7(a)で示すように、観察用試料ホルダ16に設置されている試料片
プローブ7を集束イオンビームによる視野観察によって、試料片プローブホルダ8
に持ち替える(試料片プローブ持ち替え工程)。ここでの、試料片プローブホル
ダ8および観察用試料ホルダ16の位置合わせのための移動は、図6の試料片プロ
ーブ移動機構9および観察用試料ホルダ移動機構18によって行なう。
Next, as shown in FIG. 7 (a), the sample piece probe 7 placed on the observation sample holder 16 is observed by visual field observation using a focused ion beam, and then the sample piece probe holder 8 is used.
(Sample piece probe change process). Here, the movement for alignment of the sample piece probe holder 8 and the observation sample holder 16 is performed by the sample piece probe moving mechanism 9 and the observation sample holder moving mechanism 18 of FIG.

次に、観察用試料ホルダ移動機構18によって観察用試料ホルダ16に設置されて
いる元試料17のマーキング位置とビーム位置を合わせる。以下、試料片成形工程
、試料片プローブ接触工程、試料片接続工程、試料片分離工程は、図7(b)に
示すように、観察用試料ホルダ16上で行われること以外は前記第1の試料作成方
法と同じである。
Next, the marking position and the beam position of the original sample 17 installed on the observation sample holder 16 are matched by the observation sample holder moving mechanism 18. Hereinafter, the sample piece forming step, the sample piece probe contacting step, the sample piece connecting step, and the sample piece separating step are performed on the observation sample holder 16 as shown in FIG. This is the same as the sample preparation method.

次に、図7(c)に示すように、試料片プローブホルダ8で保持されている試料
片プローブ7を集束イオンビームによる視野観察によって観察用試料ホルダ16に
移載する(試料片プローブ移載工程)。
Next, as shown in FIG. 7C, the sample piece probe 7 held by the sample piece probe holder 8 is transferred to the observation sample holder 16 by visual field observation using a focused ion beam (sample piece probe transfer). Process).

以上説明したような第2の試料作成方法においても、TEM観察のための試料を
作成する場合は、上記工程に加えて、試料片分離工程と試料片プローブ移載工程
の間に図4(b)に示すように、試料片15の中央部に集束イオンビームを照射す
ることによって、100nm程度の厚みの薄壁部を形成する(薄壁部形成工程)。
Even in the second sample preparation method as described above, when preparing a sample for TEM observation, in addition to the above-described steps, the sample piece separation step and the sample piece probe transfer step are performed as shown in FIG. ), A thin wall portion having a thickness of about 100 nm is formed by irradiating the central portion of the sample piece 15 with a focused ion beam (thin wall portion forming step).

ところで、上記第1の試料作成方法および第2の試料作成方法における試料片
プローブ接触工程では、視野観察によって試料片プローブ7の先端を平面的に位
置合わせすることは比較的正確に行なえるが、垂直方向の位置情報が得にくいた
め、正確に接触させることが困難である。
By the way, in the sample piece probe contact step in the first sample preparation method and the second sample preparation method, it is possible to relatively accurately align the tip of the sample piece probe 7 by visual field observation. Since it is difficult to obtain position information in the vertical direction, it is difficult to make accurate contact.

そのため視野観察に加えて、試料片プローブ7の先端が元試料5または17の表面
に接触したことを検知する手段を備えることが望ましい。
Therefore, in addition to visual field observation, it is desirable to provide means for detecting that the tip of the sample piece probe 7 is in contact with the surface of the original sample 5 or 17.

図8は試料片プローブの先端の接触検知の手段の一例を示した図である。第1
の手段は図8(a)に示すように、試料片プローブホルダ8の裏面に圧電素子23を
設置し、試料片プローブホルダ8の共振状態の超音波振動を圧電素子23によって
与え、試料片プローブ7の先端の接触による共振状態の乱れを測定することによ
って接触検知を行なうことができる。
FIG. 8 is a diagram showing an example of means for detecting contact of the tip of the sample piece probe. First
As shown in FIG. 8 (a), a piezoelectric element 23 is installed on the back surface of the sample piece probe holder 8, and the ultrasonic vibration in the resonance state of the sample piece probe holder 8 is applied by the piezoelectric element 23 as shown in FIG. The contact detection can be performed by measuring the disturbance of the resonance state due to the contact of the tip of 7.

また、図8(b)に示すように、接触によって発生する試料片プローブホルダ8
の弾性変形を、試料片プローブホルダ8の裏面に歪みゲージ25を貼付け抵抗変化
を測定することによって接触検知を行なうことである。
Further, as shown in FIG. 8 (b), the sample piece probe holder 8 generated by the contact is provided.
The elastic deformation is detected by touching a strain gauge 25 on the back surface of the sample piece probe holder 8 and measuring a change in resistance.

さらに図8で、本発明による第1、第2の試料作成装置における試料片プロー
ブホルダ8が試料片プローブ7を保持する手段として、試料片プローブホルダ8の
表面に窒化アルミ等を絶縁膜としジョンソンラーベック力による吸着力を発生す
る双極型の静電チャック24を形成する。
Further, in FIG. 8, as a means for the sample piece probe holder 8 to hold the sample piece probe 7 in the first and second sample preparation apparatuses according to the present invention, aluminum nitride or the like is used as an insulating film on the surface of the sample piece probe holder 8 and Johnson. A bipolar electrostatic chuck 24 that generates an attracting force due to the Labebeck force is formed.

さて、上記の第1、第2の試料作成装置の観察用試料ホルダ10と観察用試料ホ
ルダ16の取り扱い方法であるが、処理毎に観察用試料ホルダは交換しなければな
らないが、これを試料処理室1を毎回大気状態にして交換することは時間的に効
率的ではない。これを改善するために、観察用試料ホルダ移動機構にエアーロッ
ク構造を備えることによって、観察用試料ホルダを挿入および抜き取りの際に試
料処理室を大気にさらさないことが必要である。
Now, it is a method of handling the observation sample holder 10 and the observation sample holder 16 of the first and second sample preparation apparatuses described above. The observation sample holder must be exchanged for each processing, but this is the sample. It is not efficient in terms of time to exchange the processing chamber 1 in the atmospheric state every time. In order to improve this, it is necessary to provide the observation sample holder moving mechanism with an air lock structure so that the sample processing chamber is not exposed to the atmosphere when the observation sample holder is inserted and removed.

以下、手段そのものは公知であるが、観察用試料ホルダのエアーロックをいか
にして行なうかを図6で説明する。このエアーロック構造は前方軸シール21、後
方軸シール20と遮断弁19および前方軸シール21、後方軸シール20の間の空間を真
空排気する手段として真空ポンプ22を備えることによって構成される。ここで、
例えば、観察用試料ホルダ16を挿入する場合、前方軸シール21を観察用試料ホル
ダ16が通過する段階では、遮断弁19は後方軸シール20に当たった状態で閉じてい
る。
Hereinafter, although the means itself is publicly known, how to perform the air lock of the observation sample holder will be described with reference to FIG. This air lock structure is configured by including a vacuum pump 22 as means for evacuating the space between the front shaft seal 21, the rear shaft seal 20, the shutoff valve 19, the front shaft seal 21, and the rear shaft seal 20. here,
For example, when the observation sample holder 16 is inserted, the shutoff valve 19 is closed in contact with the rear shaft seal 20 when the observation sample holder 16 passes through the front shaft seal 21.

また、前方軸シール21、後方軸シール20の間の空間は真空排気されているため
、試料処理室1は真空状態を保持できている。次に、後方軸シール20を観察用試
料ホルダ16が通過する段階では、すでに、前方軸シール21によって観察用試料ホ
ルダ16の通過部分は真空状態であるため、遮断弁19を開放しても、試料処理室1
は真空状態を保持できている。逆に、観察用試料ホルダ16を抜き取る際も同様な
真空保持ができるため試料処理室1を大気にさらすことはない。
Further, since the space between the front shaft seal 21 and the rear shaft seal 20 is evacuated, the sample processing chamber 1 can maintain a vacuum state. Next, at the stage where the observation sample holder 16 passes through the rear shaft seal 20, the passage portion of the observation sample holder 16 is already in a vacuum state by the front shaft seal 21, so even if the shutoff valve 19 is opened, Sample processing chamber 1
Can maintain a vacuum state. Conversely, when the observation sample holder 16 is extracted, the same vacuum can be maintained, so that the sample processing chamber 1 is not exposed to the atmosphere.

本発明による第1の試料作成装置の基本構成を示す概略図。Schematic which shows the basic composition of the 1st sample preparation apparatus by this invention. 本発明による第1の試料作成装置の基本構成を示す要部概略図。The principal part schematic which shows the basic composition of the 1st sample preparation apparatus by this invention. 本発明による第1の試料作成方法を示す説明図。Explanatory drawing which shows the 1st sample preparation method by this invention. 本発明による第1の試料作成方法を示す説明図。Explanatory drawing which shows the 1st sample preparation method by this invention. 本発明による第1の試料作成方法を示す斜視図。The perspective view which shows the 1st sample preparation method by this invention. 本発明による第2の試料作成装置の基本構成を示す概略図。Schematic which shows the basic composition of the 2nd sample preparation apparatus by this invention. 本発明による第2の試料作成方法を示す斜視図。The perspective view which shows the 2nd sample preparation method by this invention. 本発明による試料片プローブの先端の接触検知の手段を示した側面図。The side view which showed the means of contact detection of the front-end | tip of the sample piece probe by this invention. 従来の技術の説明図。Explanatory drawing of a prior art.

符号の説明Explanation of symbols

1…試料処理室、2…集束イオンビーム照射光学系、3…二次電子検出器、4…デポ
ジション用ガス源4、5…元試料、6…試料移動機構、7…試料片プローブ、8…試
料片プローブホルダ、9…試料片プローブ移動機構、10…観察用試料ホルダ、11
…観察用試料ホルダ移動機構、12…チャックプレート、13…傾斜スペーサ、14…
カンチレバー、15…試料片、16…観察用試料ホルダ、17…元試料、18…観察用試
料ホルダ移動機構、19…遮断弁、20…後方軸シール、21…前方軸シール、22…真
空ポンプ、23…圧電素子、24…静電チャック、25…歪みゲージ、101…ウエハ、1
02…短冊状ペレット、103…半円形金属板、104…TEM観察用ホルダ。
DESCRIPTION OF SYMBOLS 1 ... Sample processing chamber, 2 ... Focused ion beam irradiation optical system, 3 ... Secondary electron detector, 4 ... Deposition gas source 4, 5 ... Original sample, 6 ... Sample moving mechanism, 7 ... Sample piece probe, 8 ... Sample piece probe holder, 9 ... Sample piece probe moving mechanism, 10 ... Sample holder for observation, 11
... Observation sample holder moving mechanism, 12 ... Chuck plate, 13 ... Inclined spacer, 14 ...
Cantilever, 15 ... sample piece, 16 ... observation sample holder, 17 ... original sample, 18 ... observation sample holder moving mechanism, 19 ... shutoff valve, 20 ... rear shaft seal, 21 ... front shaft seal, 22 ... vacuum pump, 23 ... piezoelectric element, 24 ... electrostatic chuck, 25 ... strain gauge, 101 ... wafer, 1
02 ... Strip pellet, 103 ... Semicircular metal plate, 104 ... Holder for TEM observation.

Claims (9)

真空排気機能を有する試料処理室と、
前記試料処理室に設置された、試料を載置する試料移動機構と、
集束イオンビームを前記試料に照射する集束イオンビーム照射光学系と、
前記試料処理室内で前記試料から試料片を採取する、歪みゲージを備えた試料片プローブと、
前記試料片プローブを前記試料処理室内で、前記集束イオンビーム照射系の光軸方向に移動させる試料片プローブ移動機構と
前記試料処理室内に設置された、前記試料片プローブを介して採取された前記試料片を保持する観察用試料ホルダと、
前記観察用試料ホルダの位置あわせの移動を行ない、前記観察用試料ホルダの挿入および抜き取りの際に前記試料処理室を大気にさらすことなく行える構造を備えた観察用試料ホルダ移動機構と、を備えることを特徴とする試料作成装置。
A sample processing chamber having a vacuum exhaust function;
A sample moving mechanism for placing a sample installed in the sample processing chamber;
A focused ion beam irradiation optical system for irradiating the sample with a focused ion beam;
A sample piece probe with a strain gauge for collecting a sample piece from the sample in the sample processing chamber;
A sample piece probe moving mechanism for moving the sample piece probe in the optical axis direction of the focused ion beam irradiation system in the sample processing chamber ;
An observation sample holder installed in the sample processing chamber and holding the sample piece collected via the sample piece probe;
An observation sample holder moving mechanism having a structure for moving the position of the observation sample holder and performing the movement without exposing the sample processing chamber to the atmosphere when the observation sample holder is inserted and removed. The sample preparation apparatus characterized by the above-mentioned.
試料に集束イオンビームを照射して透過電子顕微鏡または走査電子顕微鏡による観察のための試料片を試料処理装置内で作成できる試料作成装置であって、
前記集束イオンビームを前記試料に照射する集束イオンビーム照射光学系と、
前記試料を載置する試料移動機構と、
真空排気機能を有する試料処理室と、を有し、
前記試料処理室は、
前記試料処理室内で前記試料から前記試料片を採取する、歪ゲージを備えた試料片プローブと、
前記試料片プローブを介して前記試料片が移載可能な可動の観察用試料ホルダとを更に前記試料処理室内部に備え、
前記観察用試料ホルダは前記試料処理室内を大気にさらすことなく抜き差し可能な構造であることを特徴とする試料作成装置。
A sample preparation device capable of irradiating a sample with a focused ion beam and preparing a sample piece for observation with a transmission electron microscope or a scanning electron microscope in a sample processing apparatus,
A focused ion beam irradiation optical system for irradiating the sample with the focused ion beam;
A sample moving mechanism for placing the sample;
A sample processing chamber having a vacuum exhaust function,
The sample processing chamber is
A sample piece probe with a strain gauge for collecting the sample piece from the sample in the sample processing chamber;
A movable observation sample holder to which the sample piece can be transferred via the sample piece probe is further provided in the sample processing chamber,
The sample preparation apparatus, wherein the observation sample holder has a structure that can be inserted and removed without exposing the sample processing chamber to the atmosphere .
請求項1又は2に記載の試料作成装置において、
前記歪みゲージは、前記試料片プローブの前記集束イオンビーム照射光学系に面して配置されていることを特徴とする試料作成装置。
In the sample preparation device according to claim 1 or 2,
The sample preparation apparatus according to claim 1, wherein the strain gauge is arranged to face the focused ion beam irradiation optical system of the sample piece probe .
請求項1又は2記載の試料作成装置において、
前記歪みゲージにより、前記試料片プローブが前記試料に接触したことを検知することを特徴とする試料作成装置。
In the sample preparation device according to claim 1 or 2,
A sample preparation device , wherein the strain gauge detects that the sample piece probe is in contact with the sample.
請求項4記載の試料作成装置において、
該接触したことを検知するのは、前記歪みゲージの抵抗変化の測定により検知されることを特徴とする試料作成装置。
In the sample preparation device according to claim 4,
It is detected by measuring the resistance change of the strain gauge that the contact is detected .
請求項1に記載の試料作成装置において、
前記試料片プローブ移動機構は、前記光軸方向を1軸とする直交3軸方向に移動可能な構造であることを特徴とする試料作成装置。
In the sample preparation device according to claim 1,
The sample piece probe moving mechanism has a structure capable of moving in three orthogonal directions with the optical axis direction as one axis .
請求項1又は2に記載の試料作成装置において、
前記試料はウエハであることを特徴とする試料作成装置。
In the sample preparation device according to claim 1 or 2,
The sample preparation apparatus , wherein the sample is a wafer .
請求項1又は2に記載の試料作成装置において、
さらに、前記試料処理室内に配置された、前記試料片プローブを介して採取された前記試料片を保持する観察用試料ホルダを備えることを特徴とする試料作成装置。
In the sample preparation device according to claim 1 or 2,
Furthermore, the sample preparation apparatus further comprises an observation sample holder disposed in the sample processing chamber for holding the sample piece collected via the sample piece probe .
請求項8記載の試料作成装置において、
前記観察用試料ホルダは、エアーロック構造を備えることを特徴とする試料作成装置。
In the sample preparation device according to claim 8,
The sample preparation apparatus , wherein the observation sample holder includes an air lock structure .
JP2008057169A 2008-03-07 2008-03-07 Sample preparation device Expired - Fee Related JP4483957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057169A JP4483957B2 (en) 2008-03-07 2008-03-07 Sample preparation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057169A JP4483957B2 (en) 2008-03-07 2008-03-07 Sample preparation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33223798A Division JP4126786B2 (en) 1998-11-24 1998-11-24 Sample preparation apparatus and method

Publications (2)

Publication Number Publication Date
JP2008151805A JP2008151805A (en) 2008-07-03
JP4483957B2 true JP4483957B2 (en) 2010-06-16

Family

ID=39654079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057169A Expired - Fee Related JP4483957B2 (en) 2008-03-07 2008-03-07 Sample preparation device

Country Status (1)

Country Link
JP (1) JP4483957B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025580A1 (en) * 2008-08-01 2010-02-04 Omniprobe, Inc. Grid holder for stem analysis in a charged particle instrument
JP5281024B2 (en) * 2010-01-29 2013-09-04 株式会社日立ハイテクノロジーズ Sample stage and electron microscope apparatus using the same stage
JP5481401B2 (en) * 2011-01-14 2014-04-23 株式会社日立ハイテクノロジーズ Scanning electron microscope

Also Published As

Publication number Publication date
JP2008151805A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4126786B2 (en) Sample preparation apparatus and method
JP5711204B2 (en) Methods and apparatus for sample extraction and handling
US8723144B2 (en) Apparatus for sample formation and microanalysis in a vacuum chamber
JP6586261B2 (en) Large-capacity TEM grid and sample mounting method
US8389955B2 (en) Method for thinning a sample and sample carrier for performing said method
JP4185604B2 (en) Sample analysis method, sample preparation method and apparatus therefor
TWI687671B (en) Method for preparing a sample for microstructure diagnostics, and sample for microstructure diagnostics
EP2778652B1 (en) Multiple Sample Attachment to Nano Manipulator for High Throughput Sample Preparation
EP3195343B1 (en) Total release method for sample extraction in an energetic-beam instrument
US7112790B1 (en) Method to prepare TEM samples
JPH11108810A (en) Method and device for analyzing sample
JP4483957B2 (en) Sample preparation device
JPH11108813A (en) Method and device for preparing sample
US8759765B2 (en) Method for processing samples held by a nanomanipulator
US7394075B1 (en) Preparation of integrated circuit device samples for observation and analysis
JP2008014899A (en) Sample preparing method
JP2004309499A (en) Apparatus for preparing testpiece and method for preparing testpiece
JP2009014734A5 (en)
JP2008014631A (en) Method and device for sample formation and microanalysis in vacuum chamber
JP2004301853A (en) Device and method for preparing sample
JP6634871B2 (en) Method for preparing and confirming sample for transmission electron microscope

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees