JP2861449B2 - 光ヘッドおよび情報記録装置 - Google Patents

光ヘッドおよび情報記録装置

Info

Publication number
JP2861449B2
JP2861449B2 JP3077567A JP7756791A JP2861449B2 JP 2861449 B2 JP2861449 B2 JP 2861449B2 JP 3077567 A JP3077567 A JP 3077567A JP 7756791 A JP7756791 A JP 7756791A JP 2861449 B2 JP2861449 B2 JP 2861449B2
Authority
JP
Japan
Prior art keywords
diffraction grating
sub
signal
optical
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3077567A
Other languages
English (en)
Other versions
JPH04311828A (ja
Inventor
滋 中村
昭 有本
武司 仲尾
麻理子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3077567A priority Critical patent/JP2861449B2/ja
Priority to US07/865,114 priority patent/US5361244A/en
Publication of JPH04311828A publication Critical patent/JPH04311828A/ja
Application granted granted Critical
Publication of JP2861449B2 publication Critical patent/JP2861449B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Optical Head (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、光ディスク装置や光カ
−ド装置や光テープ装置などの光情報処理装置に用いる
光ヘッドおよび情報媒体に関する。
【0002】
【従来の技術】光ディスク装置などに用いる光ヘッドで
は、半導体レーザなどからの出射ビームをフォーカスレ
ンズにより光ディスクなどの情報媒体に照射し、ディス
ク反射ビームをフォーカスレンズで再度集光した後、ビ
ーム分離光学系でディスク反射ビームを半導体レーザ出
射ビームから分離し、分離されたディスク反射ビームを
光検出器で受光し、光検出器出力から焦点ずれ検出信号
やトラックずれ検出信号を生成し、これらの検出信号を
例えば二次元レンズアクチュエータに供給し、フォーカ
スレンズをレンズ光軸方向とディスク半径方向に動かし
て、焦点合わせ制御とトラック合わせ制御を行なう。同
時に、光検出器出力から情報再生信号も生成する。
【0003】通常、光源である半導体レーザのチップ
は、電極用のリード線が取り付けられたパッケージの基
板に固定され、ガラス窓付きのキャップで密封されてい
る。また、半導体レーザパッケージやビーム分離光学
系、光検出器、二次元レンズアクチュエータなどは、光
ヘッドの筺体(ボディー)にしっかりと固定されてい
る。しかし、フォーカスレンズは、焦点合わせ制御やト
ラック合わせ制御を達成するために、光ヘッド筺体に固
定された二次元レンズアクチュエータのバネを介して、
可動的に支持されている。よって、光ヘッド全体を密閉
することはない。
【0004】また、従来の光ディスクなどの光ヘッドに
用いられている焦点ずれ検出方式の多くは、ディスク反
射光の形状や光強度分布が焦点ずれによって変化するこ
とを用いて、多分割光検出器で受光し、その直流的出力
信号のアンバランスを焦点ずれ検出信号としていた。
【0005】例えば、特開昭59−58537 号公報に記載の
非点収差方式は、ディスク反射ビームに円柱レンズなど
の非点収差素子により非点収差を与えると、ディスク反
射ビームは互いに直交方向の2つの焦線ができ、そのほ
ぼ中央の最小錯乱円位置では円形になるので、そのディ
スク反射光を4分割光検出器で受光する。4分割光検出
器面上の反射ビーム形状は、ディスクが焦点位置にあれ
ばほぼ円形で、ディスクが焦点位置からずれるとずれた
方向によって互いに直交方向の線形になる。そこで、4
分割光検出器の互いに対角位置にある光検出素子同士の
直流的出力信号を加算し、2つの直流的加算信号の差を
とることにより焦点ずれ検出信号が得られる。
【0006】一方、上記第1の従来例のような、ディス
ク反射光の形状や光強度分布の変化を多分割光検出器で
受光し、その直流的出力信号のアンバランスを検出する
方式とは別に、焦点深さ方向の異なる位置に光スポット
を形成する回折格子を用いて焦点誤差検出を行う方式
が、特開平1−303632 号公報で提案されている。
【0007】特開平1−303632 号公報に開示されている
実施例によれば、その回折格子は、その格子溝間隔が順
次増加または減少する複数の同心円溝の集合の一部分で
あり、+1次ビームと−1次ビームに正と負の像点縦移
動の収差(焦点ずれの収差)を与える。また、その回折
格子は、同心円溝の中心位置がメインビームの主光線軸
の位置から偏心した領域を用いて、+1次ビームと−1
次ビームをメインビームの主光線軸に対して反対方向に
放射する。そこで、+1次ビームと−1次ビームは、フ
ォーカスレンズによりメインビームに対して焦点深さ方
向の異なる位置に2つのサイドスポットとして絞り込ま
れ、2つのサイドスポットからの反射光量は光ディスク
に記録された信号によって変調され、それらの変調度は
光検知素子と包絡線検波回路で検出される。2つのサイ
ドスポットによる変調度は光ディスクの焦点ずれによっ
て変化するので、2つの変調度の差をとることにより焦
点ずれ検出信号が得られる。
【0008】また、従来の光ヘッドに用いているビーム
分離光学系は、例えば、特開昭59−58537 号公報に記載
されているように、偏光プリズムと4分の1波長板を用
いる。このビーム分離光学系では、レーザビームが4分
の1波長板を往復すると直線偏光ビームの偏光方向が9
0度回転するので、偏光プリズムにより2つのビームを
完全に分離することができる。一般的に用いられている
偏光プリズムは、誘電体の積層膜を2つの三角プリズム
ではさんだ立方体の偏光ビームスプリッタで、反射ビー
ムを直角方向に分離する。
【0009】さらに、コンパクトディスクなどの光ヘッ
ドでは、光学部品数を低減するために、4分の1波長板
は使用せずに、ディスク反射ビームの約半分を直角方向
に分離するハーフプリズムやハーフミラーが用いられて
いる。
【0010】また最近では、特開平2−216629 号公報に
記載されているように、半導体レーザとフォーカスレン
ズの間に挿入した回折格子またはホログラム素子などで
ディスク反射ビームを半導体レーザとは微小角度異なる
方向に分離することにより、半導体レーザと光検出器を
隣接して実装した小形の光ヘッドも報告されている。
【0011】
【発明が解決しようとする課題】しかし、光ヘッドを小
形化しようとした場合、従来のケースに密閉された半導
体レーザでは光源部が大きくなる、という問題がある。
そこで、光ヘッド筺体に半導体レーザチップを直接取付
ることが考えられる。しかし、従来の光ヘッド筺体で
は、光ヘッド筺体の内部が密閉されておらず、光ヘッド
筺体の開放部分や二次元レンズアクチュエータのバネ部
分などから流入する湿気等を含んだ外気に半導体レーザ
チップが直接さらされる。そのため、長期間使用したり
多湿な環境で保存または使用すると、半導体レーザチッ
プの端面等が劣化してレーザ発振が不安定になり、さら
には光ヘッドの性能が不安定になる、とういう問題が生
じる。
【0012】また、前述の特開昭59−58537 号公報に記
載の非点収差方式などのように、ディスク反射光の形状
や光強度分布のアンバランスを多分割光検出器で検出し
て、焦点ずれ検出信号をえる方式では、例えば、焦点ず
れ検出光学系の焦点合せをするために、デ−タ信号等が
最大になるディスク位置、または光源に戻ってくる反射
光量が最大になるディスク位置、を焦点合せ系とは別の
測定系によって検出し、そのディスク位置において、4
分割光検出器の各々の光検出素子が光を等量に受光し、
各々の光検出素子が同レベルの直流信号を出力すること
により焦点ずれ検出信号がゼロレベルになるように、4
分割光検出器と検出用レンズの位置を調整しなければな
らない。そのために、光ヘッドの組立調整に時間がかか
り、光ヘッドが高価格になる、という問題があった。ま
た、光ヘッドに高精度の光学部品位置調整機構を設けな
くてはならず、光ヘッドの小型化が困難である、という
問題があった。
【0013】さらに、温度変化などによって光学部品の
取付け位置がずれると、多分割光検出器面上の光束位置
がずれるため、多分割光検出器の各々の光検出素子の出
力に直流的なアンバランスが生じ、焦点ずれ検出信号が
ゼロレベルなるディスク位置と焦点合せの目標点位置が
ずれてしまい、焦点ずれ検出信号にオフセットが生じ
る、という問題があった。
【0014】一方、前述の特開平1−303632 号公報に開
示されている実施例によれば、上述の問題点については
解決されているが、最も安定に焦点ずれ検出信号を得る
ためのピットの配置とサイドスポットの形状を決定する
回折格子の構造とに関しては十分に検討されておらず、
光ディスク半径方向のサイドスポットとピットの相対的
位置ずれによる変調度の低下によって、焦点制御引き込
み動作が不安定になる、という問題がある。通常、光デ
ィスク装置における自動焦点制御は、自動トラッキング
制御の前に行うべきものであるから、光ディスクの半径
方向のずれに影響されるものであってはならない。
【0015】これを、図18を用いて説明する。図18
の(1)と(2)は、特開平1−303632号公報に開示さ
れている複数の同心円溝の回折格子を用いた場合の、光
ディスク面上のスポット形状とピットを示す。350a
は光ディスク面上のメインスポット、350bと350
cは光ディスク面上のサブスポットで、351はトラッ
ク、352はトラック351上に記録されているピット
である。同心円溝の回折格子は、+1次ビームと−1次
ビームに正と負の像点縦移動の収差(焦点ずれの収差)
を与えるので、+1次ビームと−1次ビームは、フォー
カスレンズによって、メインビームに対して焦点深さ方
向の異なる位置に絞り込まる。図18の(1)と(2)
はともに、メインビームの焦点位置からずれた−1次ビ
ームの集束位置におけるスポット形状を示し、サブスポ
ット350cが最も小さい状態を示す。(1)は、3つ
のスポットがトラック351の上を通過する場合で、サ
ブスポット350cの反射光はピット352で大きく変
調される。図18には示さないが、光ディスクのずれが
反対方向でサブスポット350bが最も小さくなると、
サブスポット350bの反射光はピット352で大きく
変調される。よって、(1)の様に3つのスポットがト
ラック351の上を通過する場合、焦点ずれ検出信号は
図18の(3)の実線353で示す曲線になる。一方、
(2)は3つのスポットがトラック351の間を通過す
る場合で、サブスポット350cの反射光はピット35
2では余り変調されず、例えば(1)の場合の半分以下
に減少する。図18には示さないが、光ディスクのずれ
が反対方向でサブスポット350bが最も小さくなる場
合も、サブスポット350bの反射光のピット352によ
る変調度は例えば(1)の場合の半分以下に減少する。
よって、図18の(2)の様に3つのスポットがトラッ
ク351の間を通過する場合、焦点ずれ検出信号は図1
8の(3)の破線354で示すようにピークが半分以下
に減少しを持ち、焦点近傍の検出感度も半分以下に減少
する。自動焦点合わせ制御の引き込み動作時に検出感度
が減少すると、フォーカスレンズをディスクのずれに追
従させるための駆動力が不足し、フォーカスレンズの動
きが遅くなるため、引き込み動作に失敗していまう可能
性がある。よって、上記の従来例では、焦点制御引き込
み動作が不安定になる、という問題がある。
【0016】他方、自動トラッキング制御においては、
トラック追従の目標点合わせが自動的に行われ、しかも
光学部品の位置がずれても原理的にオフセットが生じな
い方式として、プリウォーブルピットを用いたサンプル
サーボ方式がある。この方式におけるトラックずれ検出
方法は、トラック中心に対して右と左に等量ずれて配置
された2組のプリウォーブルピットをメインスポットが
通過する場合、トラックずれ量に応じて反射ビームの変
調レベルに差が生じることを利用して、反射ビームを光
検出器で受光し、変調レベルの差を検出してトラックず
れ検出信号を得る。この方法では、メインスポットがト
ラック中心を通過すればトラックずれ検出信号は自動的
にゼロレベルになるので、トラック追従の目標点合わせ
のための光学部品位置調整は不要である。また、光検出
器は反射ビームの全光量を受光していればよく、光学部
品の取付け位置が変化してもトラックずれ検出信号にオ
フセットは生じない。しかしながら、通常、光ヘッドを
小型化低コスト化するためには、焦点ずれ検出とトラッ
クずれ検出には同一の光学系を用いており、焦点ずれ検
出用光検出素子とトラックずれ検出光検出素子も同一の
光検出器パッケージに取り付けられている。そのため、
光ヘッドの組立において、トラック追従の目標点合わせ
のための光学部品位置調整は不要であっても、依然とし
て焦点合せのためには光学部品の高精度な位置調整が必
要であり、サンプルサーボ方式の利点も十分に発揮され
ていない、という問題があった。
【0017】また、偏光ビームスプリッタやハーフプリ
ズムやハーフミラーを用いてディスク反射ビームを直角
方向に分離するビーム分離光学系を用いると、半導体レ
ーザからフォーカスレンズに至るフォーカシング光学系
の光路とは別に、ビームスプリッタから光検出器に至る
検出光学系の光路が必要になり、光ヘッドの小形化には
不向きである、という問題がある。
【0018】一方、回折格子またはホログラム素子など
をビーム分離光学系に用いれば、半導体レーザと光検出
器を隣接して実装することによりフォーカシング光学系
の光路と検出光学系の光路を共有できるので、光ヘッド
の小形化に有効である。しかし、回折格子またはホログ
ラム素子などは、半導体レーザ出射ビームとディスク反
射ビームを完全に分離はできないので、以下に示す問題
がある。半導体レーザ出射ビームも、回折格子やホログ
ラム素子を通過することにより0次回折ビームの他に多
数の高次回折ビームに分離するので、メインビームの光
強度が低下してしまう、という問題がある。また、上述
したメインビームの光強度の極端な低下を防ぐために、
高次回折ビームの回折効率を低く抑えなければならない
ので、ディスク反射光のビーム分離効率が低く、十分な
検出信号が得られない、という問題がある。また、ディ
スク反射光の大部分が半導体レーザに戻ってしい、レー
ザノイズが発生し易い、という問題がある。
【0019】本発明の目的は、半導体レーザの劣化を防
止して、長期間安定な性能が維持できる、小形の光ヘッ
ドを提供することにある。
【0020】本発明の他の目的は、焦点合せのための光
学部品位置調整が不要で、しかも、光学部品の取付け位
置が変化しても焦点ずれ検出信号にオフセットが生じな
く、さらに光ディスクの半径方向のずれに影響されない
で安定な自動焦点引き込み動作が達成できる焦点ずれ検
出方式を用いた、小形の光ヘッドを提供することにあ
る。また、サンプルサーボ方式用にフォーマットされた
光ディスクを用い、トラッキング制御にサンプルサーボ
方式を用いて、無調整化が可能な小形の光ヘッドを提供
することにある。
【0021】また、本発明のその他の目的は、半導体レ
ーザ出射ビームとディスク反射ビームとを完全に分離で
き、しかも、フォーカシング光学系の光路と検出光学系
の光路を共有できるビーム分離光学系を用いた、小形の
光ヘッドを提供することにある。
【0022】
【課題を解決するための手段】上記目的を達成するため
に、本発明では、半導体レーザの特に半導体レーザチッ
プと、半導体レーザから出射した出射ビームをディスク
などの情報媒体面上に結像させるフォーカスレンズなど
の結像光学系と、情報媒体により反射した反射ビームと
該出射ビームを分離する回折格子やビームスプリッタプ
リズムやハーフミラーなどのビーム分離光学系と、ビー
ム分離光学系で分離した検出ビームを受光する光検出器
と、半導体レーザと結像光学系とビーム分離光学系と光
検出器を固定する光ヘッド筺体と、からなる光ヘッドに
おいて、結像光学系またはビーム分離光学系と光ヘッド
筺体とによって半導体レーザを密閉する。
【0023】本発明の好ましい態様(態様2)では、結
像光学系またはビーム分離光学系と光ヘッド筺体とによ
って密閉される空間を乾燥した窒素ガスで置換する。
【0024】本発明の別の好ましい態様(態様3)で
は、結像光学系またはビーム分離光学系と光ヘッド筺体
とによって密閉される空間を真空で置換する。
【0025】本発明の好ましい態様(態様4)では、結
像光学系またはビーム分離光学系と光ヘッド筺体とを焼
結によって気密接合する。
【0026】本発明の好ましい態様(態様5)では、焦
点ずれ検出信号やトラックずれ検出信号に応じて、2次
元レンズアクチュエータなどにより光ヘッド筺体全体を
2方向に位置制御する。
【0027】本発明の好ましい態様(態様6)では、ビ
ーム分離光学系は、半導体レーザから出射した出射ビー
ムをメインビームと2つのサブビームに分離する第1の
ビーム分離光学系と、情報媒体により反射した複数の反
射ビームを出射ビームとは異なる方向に分離する第2の
ビーム分離光学系とからなり、第1のビーム分離光学手
段は、2つのサブビームに正の非点収差と負の非点収差
を与える第1の回折格子またはホログラム素子からな
り、情報媒体面上には、サブビームの反射光量を変調す
るために予め記録された凹凸形状のピットや反射率の異
なるピットなどのマークがあり、第2のビーム分離光学
系で分離した+1次サブビームと−1次サブビームをそ
れぞれ受光するための複数の光検出器または分割型光検
出器の少なくとも2つの光検出素子と、サブビームを受
光する2つの光検出素子が出力する光量信号からマーク
によって変調された振幅の大きさを検出するための2つ
の振幅検出回路と振幅検出回路から出力された2つの振
幅検出信号を引算する差動演算回路とからなる焦点ずれ
検出回路からなる。
【0028】本発明のさらに好ましい態様(態様7)で
は、第1の回折格子またはホログラム素子は、その格子
溝間隔が順次増加または減少する複数の直線溝の集合で
ある。また、マークは、トラックの方向とは垂直な方向
にそろって配置されている。
【0029】本発明の別のさらに好ましい態様(態様
8)では、第1の回折格子またはホログラム素子は、そ
の格子溝間隔が順次増加または減少する複数の同心楕円
溝の集合の一部分であり、さらに、その同心楕円溝の中
心位置が0次ビームの主光線軸の位置から偏心した位置
に配置されている。また、マークは、トラックの方向と
は垂直な方向にそろって配置されている。
【0030】本発明の他のさらに好ましい態様(態様
9)では、振幅検出回路は、+1次ビームまたは−1次
ビームがマーク間にある時の光検出素子の出力信号レベ
ルを保持する第1のサンプルホールド回路と、+1次ビ
ームまたは−1次ビームがマーク上にある時の光検出素
子の出力信号レベルを保持する第2のサンプルホールド
回路と、第1のサンプルホールド回路の出力信号と第2
のサンプルホールド回路の出力信号を引算する差動演算
回路とよりなる。
【0031】本発明の他の好ましい態様(態様10)で
は、振幅検出回路は、該振幅検出回路の出力信号の極性
を常に正レベルまたは負レベルにするためのスイッチ回
路を内蔵する。
【0032】本発明の他の好ましい態様(態様11)で
は、マークは、情報媒体面上をメインスポットが案内さ
れる所定のトラック中心線に対して片側に一定距離だけ
はなれて配置された第1のピット群とトラック中心線に
対して反対側に等距離だけはなれて配置された第2のピ
ット群からなり、メインスポットが第1のピットを通過
するときの光検出素子の出力信号レベルと第2のピット
を通過するときの光検出素子の出力信号レベルを比較す
ることによりトラックずれ検出信号を得る。
【0033】本発明の他の好ましい態様(態様12)で
は、情報媒体により反射した反射ビームを該出射ビーム
とは異なる方向に分離する第2のビーム分離光学系は、
少なくとも一方の面に複屈折性物質からなる第2の回折
格子を有する回折格子板と、反射ビームが第2の回折格
子を通過するときに異常光線(または常光線)となるよ
うに偏光方向を回転するためのファラデーローテータや
4分の1波長板などの偏光回転手段とからなり、第2の
回折格子の凸部と凹部は、異常光線(または常光線)に
対する光路長の差が波長の整数倍と2分の1波長で、幅
がほぼ等しい。
【0034】本発明の好ましい態様(態様13)では、
第2の回折格子の凸部と凹部は、さらに常光線(または
異常光線)に対する光路長の差が波長の整数倍である。
【0035】本発明の好ましい態様(態様14)では、
偏光回転手段が4分の1波長板である。
【0036】本発明の好ましい態様(態様15)では、
回折格子板と4分の1波長板とが一体になっている。
【0037】本発明の好ましい態様(態様16)では、
第1の回折格子は、第2の回折格子を有する回折格子板
の他方の面に形成されている。
【0038】本発明の好ましい態様(態様17)では、
第1の回折格子は複屈折性物質からなり、第1の回折格
子の凸部と凹部は、異常光線(または常光線)に対する
光路長の差が波長の整数倍で、幅がほぼ等しい。
【0039】
【作用】本発明において、半導体レーザの特に半導体レ
ーザチップは、結像光学系またはビーム分離光学系と光
ヘッド筺体とによって密閉されているので、光ヘッド筺
体の外部から流入する湿気等を含んだ外気に半導体レー
ザチップが直接さらされることはない。よって、半導体
レーザチップの端面等が劣化してレーザ発振が不安定に
なることはないので、長期間使用したり多湿な環境で保
存または使用しても、光ヘッドの性能な安定である。
【0040】さらに第2または第3のの態様において
は、半導体レーザの特に半導体レーザチップは、光ヘッ
ド製作当初から乾燥した窒素ガス雰囲気中または真空中
に置かれるので、清浄な半導体レーザチップの端面を長
く維持できる。よって、光ヘッドは、より長期間の保存
または使用に耐えることができる。
【0041】また、第4の態様においては、フォーカス
レンズや回折格子等の光学部品の材質よりは融点の低い
焼結材、例えば、コバルトガラス(融点が約500度
C)などを加熱して溶融させゆっくりと冷却することに
より、半導体レーザチップを密閉する接合部分の気密性
を良くし、さらに、接着剤使用時に生じる接着剤から放
出される不純ガスによる半導体レーザチップ端面の劣化
の問題も解決される。
【0042】第5の態様においては、焦点ずれ検出信号
やトラックずれ検出信号に応じて、2次元レンズアクチ
ュエータなどにより光ヘッド筺体全体を2方向に位置制
御することにより、自動焦点制御や自動トラッキング制
御を達成することができる。
【0043】次に、第6の態様の作用を説明するため
に、第1の回折格子の作用と本発明の焦点ずれ検出原理
を、図16および図17を用いて説明する。図16は、
本発明の光ヘッドの基本構成図で、導体レーザ300か
ら出射したレーザ光束301は、第1の回折格子302
によって0次ビーム304aと+1次ビーム304bと
−1次ビーム304cに分離される。+1次ビーム30
4bと−1次ビーム304cは、0次ビーム304aに対し
て正と負の微小角度だけ異なる方向に出射する。さら
に、本発明で用いる第1の回折格子302は、通常の等
間隔直線溝型回折格子とは異なり、非等間隔直線溝型回
折格子または同心楕円弧型回折格子などであり、+1次
ビームに対して正の円柱レンズまたはトロイダルレンズ
として作用し、−1次ビームに対して負の円柱レンズま
たはトロイダルレンズとして作用する。よって、+1次
ビームと−1次ビームに絶対値が等しい正と負の非点収
差を与える。第1の回折格子302の作用によって、少
なくとも紙面内方向においては、+1次ビーム304b
は0次ビーム304aよりも集束状態になり、−1次ビ
ーム304cは0次ビーム304aよりも発散状態にな
る。各々のビームは、フォーカスレンズ306によって
絞り込まれる。紙面内方向において、0次ビーム304
aの集束点を307aとし、+1次ビーム304bの集
束点を307bとし、−1次ビーム304cの集束点を
307cとする。ただし、集束点307bと307c
は、+1次ビーム304bと−1次ビーム304cの焦
線である。光ディスク308による、0次ビーム304
aと+1次ビーム304bと−1次ビーム304cは光
ディスク308で反射し、、フォーカスレンズ306を
通過して、第2の回折格子303で半導体レーザ300
の出射ビーム301から分離され、光検出素子に到達す
る。光検出素子311bは+1次反射ビーム310bを
受光して光量信号312bを出力し、光検出素子311
cは−1次反射ビーム310cを受光して光量信号31
2cを出力する。光ディスク308には凹凸形状のピッ
トなどのマークがある。光ディスク308が紙面横方向
に移動すると、+1次反射ビーム310bの光量と−1
次反射ビーム310cの光量はマークによって変調さ
れ、光量信号312bと光量信号312cも変調され
る。光量信号312bと光量信号312cの変調の大き
さは、例えば、エンベロープ検波回路によって検出する
ことができる。エンベロープ検波回路は、入力信号の振
幅の上レベルと下レベルを検出し、その差、すなわち入
力信号の変調の大きさを出力する。よって、変調度信号
314bは+1次反射ビーム310bがマークによって
変調される大きさを示し、変調度信号314cは+1次
反射ビーム310cがマークによって変調される大きさ
を示す。変調度信号314bと変調度信号314cを差動演
算回路315に入力し、その出力を焦点ずれ検出信号3
16とする。
【0044】0次ビーム304aによって情報の記録再
生をするために最も適した光ディスク308の位置(焦
点合わせの目標点位置)は、0次ビーム304aの集束
点307aの位置309(2)である。第1の回折格子
302が+1次ビーム304bと−1次ビーム304cに与
える非点収差は符号が反対で絶対値が等しいから、集束
点306bと集束点306cの光ディスク308からの
ずれ量は等しい。よって、このディスク位置では、+1
次反射ビーム310bと−1次反射ビーム310cがマ
ークによって変調される大きさは等しく、変調度信号3
14bのレベルと変調度信号314cのレベルは等しく
なり、焦点ずれ検出信号316はゼロレベルになる。光
ディスク308が位置309(1)の方へずれると、+
1次反射ビーム310bの変調度は大きくなり、−1次
反射ビーム310cの変調度は小さくなり、焦点ずれ検
出信号316は正レベルになる。光ディスク308が+
1次ビーム304bの集束点307bの位置309
(1)において、+1次反射ビーム310bの変調度は
最大になり、焦点ずれ検出信号316は最大の正レベル
になる。逆に、光ディスク308が位置309(3)の
方へずれると、+1次反射ビーム310bの変調度は小
さくなり、−1次反射ビーム310cの変調度は大きく
なり、焦点ずれ検出信号316は負レベルになる。光デ
ィスク308が−1次ビーム304cの集束点307c
の位置309(3)において、−1次反射ビーム310
cの変調度は最大になり、焦点ずれ検出信号316は最
大の負レベルになる。
【0045】図17の(1)と(2)は、図16の光デ
ィスク308が位置309(3)の位置にずれた場合の
光ディスク面上を示し、320aはメインスポット、32
0bと320cはサブスポットを示し、321はトラック
で、322はトラック321上に記録されているピット
を示す。ピット322の位置は、数トラックにわたって
ディスク半径方向にそろっている。(1)は、3つのス
ポットがトラック321の上を通過する場合で、サブスポ
ット320cの反射光は、複数のピット322で大きく
変調される。図には示さないが、図16の光ディスク3
08が位置309(1)の位置にずれた場合は、サブスポ
ット320bの反射光が複数のピット322で大きく変
調される。よって、(1)に示すように3つのスポット
がトラック321の上を通過する場合、焦点ずれ検出信
号は(3)の実線323で示す曲線になる。実線323
は、図18の(3)の実線353とほぼ同じ検出感度が
得られることを示す。また、図17の(2)は3つのス
ポットがトラック321の間を通過する場合で、サブス
ポット320cの反射光はやはり複数のピット322で
大きく変調されるので、変調度は、(1)の場合と同程
度に得られ減少しない。図には示さないが、図16の光
ディスク308が位置309(1)の位置にずれた場合
でも、サブスポット320bの反射光は複数のピット3
22によって変調され、変調度は(1)の場合と同程度
に得られ減少しない。よって、(2)の様に3つのスポ
ットがトラック321の間を通過する場合でも、焦点ず
れ検出信号は、図17の(3)の破線324で示すよう
にほぼ実線323と同じレベルで、ピークや焦点近傍の
検出感度も減少する事はない。よって、トラックずれが
生じた場合でも、自動焦点合わせ制御の引き込み動作を
安定に行うことが出来る。
【0046】以上の説明のように本発明によれば、第1
の回折格子302が+1次ビーム304bと−1次ビー
ム304cに与える非点収差は符号が反対で絶対値は必
ず等しいので、光ディスク308が焦点合わせの目標点
位置にあれば、集束点307bと集束点307cのずれ量は
必ず等しくなり、マークによる+1次反射ビーム310
bと−1次反射ビーム310cの変調度も必ず等しくな
り、焦点ずれ検出信号316は自動的にゼロレベルにな
る。よって、本発明によれば、焦点合わせの目標点位置
の設定が自動的に行われるので、焦点合わせのために光
学部品の位置調整を行う必要がない。また、本発明で
は、光検出素子311bと光検出素子311cは+1次
反射ビーム310bと−1次反射ビーム310cの全光
量を受光していればよく、各々の反射ビームが光検出素
子の受光面のどの位置にあってもよい。よって、光学部
品の位置がずれても焦点ずれ検出信号には原理的にオフ
セットが生じない。また、トラックずれが生じた場合で
も、自動焦点合わせ制御の引き込み動作を安定に行うこ
とができる。
【0047】第7の態様では、第1の回折格子302ま
たはホログラム素子は、その格子溝間隔が順次増加また
は減少する複数の直線溝の集合であり、+1次ビームと
−1次ビームに1方向にだけ集束または発散する正と負
の非点収差を与え、+1次ビームと−1次ビームを0次
ビームの主光線軸に対して反対方向に放射する。また、
マークは、トラックの方向とは垂直な方向にそろって配
置されているので、トラックずれが生じた場合でも、焦
点ずれ検出信号の減少はなく、自動焦点合わせ制御の引
き込み動作を安定に行うことができる。
【0048】第8の態様では、第1の回折格子またはホ
ログラム素子は、その格子溝間隔が順次増加または減少
する複数の同心楕円溝の集合の一部分であり、+1次ビ
ームと−1次ビームに2方向に集束または発散する正と
負の非点収差を与える。さらに、その同心楕円溝の中心
位置が0次ビームの主光線軸の位置から偏心した位置に
配置され、+1次ビームと−1次ビームを0次ビームの
主光線軸に対して反対方向に放射する。また、マーク
は、トラックの方向とは垂直な方向にそろって配置され
ているので、トラックずれが生じた場合でも、焦点ずれ
検出信号の減少はなく、自動焦点合わせ制御の引き込み
動作を安定に行うことができる。
【0049】第9の態様では、振幅検出回路を、+1次
ビームまたは−1次ビームがマーク間にある時の光検出
素子の出力信号レベルを保持する第1のサンプルホール
ド回路と、+1次ビームまたは−1次ビームがマーク上
にある時の光検出素子の出力信号レベルを保持する第2
のサンプルホールド回路と、第1のサンプルホールド回
路の出力信号と第2のサンプルホールド回路の出力信号
を引算する差動演算回路とで構成することにより、サブ
ビームを受光する光検出素子が出力する光量信号からマ
ークによって変調された振幅の大きさを検出することが
できる。
【0050】第10の態様では、振幅検出回路が、振幅
検出回路の出力信号の極性を常に正レベルまたは負レベ
ルにするためのスイッチ回路を内蔵することにより、振
幅信号が常に同じ極正になるので、それらの差動演算を
行った結果、焦点ずれ検出信号に、誤動作が生じない。
【0051】第11の態様では、マークが、情報媒体面
上をメインスポットが案内される所定のトラック中心線
に対して片側に一定距離だけはなれて配置された第1の
ピット群とトラック中心線に対して反対側に等距離だけ
はなれて配置された第2のピット群からなり、メインス
ポットが第1のピットを通過するときの光検出素子の出
力信号レベルと第2のピットを通過するときの光検出素
子の出力信号レベルを比較することにより、本発明にお
ける焦点ずれ検出方式と同じく、サンプルサーボ方式用
にフォーマットされた光ディスクを用いてトラッキング
制御にサンプルサーボ方式を用いることができ、無調整
化が可能な小形の光ヘッドを実現できる。
【0052】次に、第12の態様の作用を説明するため
に、第2の回折格子と偏光回転手段からなるビーム分離
光学系の作用を説明する。図16で、半導体レーザ30
0などの光源は、直線偏光のレーザビーム301を出射
する。半導体レーザ出射ビーム301は、複屈折性物質
でできている第2の回折格子板303を通過し、ファラ
デーローテータや4分の1波長板などの偏光回転手段3
05を通過し、光ディスク308などの情報媒体に達す
る。情報媒体308で反射した反射ビームは、再度偏光
回転手段305を通過する。ファラデーローテータや4
分の1波長板などの偏光回転手段305は、レーザビー
ムを往復させると直線偏光の偏光方向を90度回転する
ことができる。よって、例えば、光源300からの出射
ビーム301は第2の回折格子板303中を常光線とし
て伝搬し、ディスク308からの反射ビームは第2の回
折格子板303中を異常光線として伝搬する。第2の回
折格子板303に回折格子の格子溝深さは、凸部を通過
した異常光線の光路長と凹部を通過した異常光線の光路
長の差が波長の整数倍と2分の1波長になるように設定
されている。また、格子溝の凸部の幅と凹部の幅は、ほ
ぼ等しい。そこで、凸部を通過したビームと凹部を通過
したビームは、強度が等しく、位相が半波長分だけずれ
ているので、0次回折方向においては互いに打ち消し合
う。一方、±1次回折方向においては互いに強め合うの
で強い±1次回折ビームとなり、半導体レーザ300の
近傍に配置された光検出器311bや311cに到達す
る。よって、ディスク反射ビームを完全に分離すること
ができ、十分な検出信号が得られる。また、ディスク反
射ビームは、半導体レーザ300には戻ることがなく、
レーザノイズの発生も少なくなる。
【0053】第13の態様では、さらに第2の回折格子
の凸部と凹部の常光線(または異常光線)に対する光路
長の差が波長のほぼ整数倍になるように設定されている
ので、第2の回折格子の凸部を通過したビームの位相と
凹部を通過したビームの位相は一致するので、半導体レ
ーザ出射ビーム301に対しては回折格子として作用し
ない。よって、半導体レーザ出射ビーム301は、第2
の回折格子によっては分離されないで、第1の回折格子
303によってのみ分離して、光ディスク308に達す
るので、メインビーム304aの光強度が低下すること
はない。
【0054】第14の態様では、偏光回転手段305に
4分の1波長板を用いることにより、光ヘッドを小さく
することができ、また、光ヘッドのコストを低下するこ
とができる。
【0055】第15の態様では、回折格子板と4分の1
波長板とを一体にすることにより、部品数が減少するの
で光ヘッドの組立が容易になり、また、さらに光ヘッド
も小さくなる。
【0056】また、第16の態様では、第1の回折格子
302は、回折格子板303の他方の面に形成されてい
るので、光学部品数を減少することができて光ヘッドが
小型になる。また、光ヘッドの組立を容易にすることが
できる。
【0057】第17の態様では、さらに、第1の回折格
子302は、複屈折性物質からなる。なた、第1の回折
格子302の凸部と凹部は、異常光線(または常光線)
に対する光路長の差がほぼ波長の整数倍で、幅がほぼ等
しい。そのため、第1の回折格子302は、ディスク反
射ビームに対しては回折格子の作用はない。よって、第
1の回折格子302によって半導体レーザ出射ビームか
ら分離した複数のビーム304aと304bと304c
は、ディスクで反射した後に再度第1の回折格子302
を通過しても、さらに分離することはない。
【0058】
【実施例】以下、本発明の一実施例を、図1から図13
および図19を用いて説明する。
【0059】図1は、本発明を用いた光ヘッドの構成図
である。1は半導体レーザ、2は複屈折性物質の回折格
子板、5は4分の1波長板、6はフォーカスレンズ、7
Aと7Bは3分割型光検出器、8は半導体レーザ1のパ
ワーモニタ用光検出器、9は光検出器出力信号の演算回
路、である。回折格子板2の半導体レーザ1側の面には
回折格子3があり、フォーカスレンズ6側の面には回折
格子4がある。半導体レーザ1から出射したビーム14
は、回折格子4によって、メインビーム15aと、サブ
ビーム15bおよび15cに分離される。16は、メイ
ンビーム15aとサブビーム15bと15cが図1には
示さない光ディスクで反射し、4分の1波長板を通過し
た反射ビームである。反射ビーム16は、回折格子3に
よって、ビーム17Aと17Bに分離される。反射ビー
ム16,ビーム17A,ビーム17Bは各々、メインビ
ーム15aと2つのサブビーム15bと15cからな
る。ビーム17Aは3分割型光検出器7Aで受光され、
ビーム17Bは3分割型光検出器7Bで受光される。半
導体レーザ1と光検出器7Aおよび7Bは、フランジ1
0を介して円形基板11上に固定されている。また、パ
ワーモニタ用光検出器8と集積型電子回路9も円形基板
11上に固定されている。12は筒状の光ヘッド筺体
で、光ヘッド筺体12の中には、フォーカスレンズ6と
4分の1波長板5と回折格子板2と円形基板11が、ス
ペーサ13aと13bと13cを介して固定されてい
る。
【0060】図19は、このヘッドの組立図である。ま
ず、図19の(a)に示すように、光ヘッド筺体12と
フォーカスレンズ6の間に、コバルトガラスなどの低融
点のガラス粉末400をはさみ、オーブンで加熱する。
例えば、コバルトガラスなどは、摂氏500度程度で溶
融する。徐々に室温に戻すと、図19の(b)に示すよ
うに、溶融した低融点ガラスは固まって焼結ガラス40
1になり、光ヘッド筺体12とフォーカスレンズ6を密
閉接着する。フォーカスレンズ6が焼結接着された光ヘ
ッド筺体12に、乾燥した窒素雰囲気中で、スペーサ1
3a,4分の1波長板5,スペーサ13b,回折格子板
2,スペーサ13cの順に挿入する。その後、光ヘッド
筺体12のつば部分403に、銅などの柔らかい金属で
できたリング状のパッキン402をのせ、円形基板11
をかぶせ、図には示さないネジで金属パッキン402の
凸部をつば部分403と円形基板11でつぶしながら、
円形基板11を固定する。以上の工程により、光ヘッド
筺体12の内部は、乾燥した窒素ガスによって満たさ
れ、外気から密閉される。
【0061】図2は、図1に示した光ヘッドを用いた光
ディスク装置の機構系構成図である。21は装置基板、
22は光ディスク、23は光ディスク22を回転するモ
ーターである。光ヘッド筺体12は、バネ24を介して
2次元光ヘッドアクチュエータ25に取り付けられてい
る。2次元光ヘッドアクチュエータ25は、光ヘッド筺
体12全体を紙面上下方向に移動してフォーカシング制
御を行うためのコイルと磁石からなるフォーカシングア
クチュエータ26と、光ヘッド筺体12全体を紙面左右
方向に移動してトラッキング制御を行うためのコイルと
磁石からなるトラッキングアクチュエータ27とからな
る。また、キャリッジ28は、2次元光ヘッドアクチュ
エータ25全体を光ディスク22の半径方向に移動し、
アクセス制御を行なう。
【0062】図3は、3分割型光検出器7Aと7Bの構
造と、演算回路9のブロックダイアグラムである。3分
割型光検出器7Aは、3つの受光素子7Aa,7Ab,
7Acからなり、受光素子7Aaはビーム17Aのメイ
ンビーム17Aaを受光し、受光素子7Abはビーム1
7Aのサブビーム17Abを受光し、受光素子7Acは
ビーム17Aのサブビーム17Acを受光する。3分割
型光検出器7Bは、3つの受光素子7Ba、7Bb、7
Bcからなり、受光素子7Baはビーム17Bのメイン
ビーム17Baを受光し、受光素子7Bbはビーム17
Bのサブビーム17Bbを受光し、受光素子7Bcはビ
ーム17Bのサブビーム17Bcを受光する。加算回路
30は、受光素子7Aaと7Baの出力信号を加算し
て、メインビーム15aの光量信号31を出力する。サ
ンプルサーボ回路32は、メインビーム15aの光量信
号31からトラックずれ検出信号33を生成する。トラ
ックずれ検出信号33を図2のトラッキングアクチュエ
ータ27に供給し、トラッキング制御をおこなう。加算
回路34bは、受光素子7Abと7Bbの出力信号を加
算して、サブビーム15bの光量信号35bを出力す
る。エンベロープ検波回路36bは、サブビーム15b
の光量信号35bから変調度信号37bを生成する。加
算回路34cは、受光素子7Acと7Bcの出力信号を
加算して、サブビーム15cの光量信号35cを出力す
る。エンベロープ検波回路36cは、サブビーム15c
の光量信号35cから変調度信号37cを生成する。差
動演算回路38は、変調度信号37bと変調度信号37
cを引算して、焦点ずれ検出信号を出力する。焦点ずれ
検出信号39を図2のフォーカシングアクチュエータ2
6に供給し、フォーカシング制御をおこなう。
【0063】まず、本発明によるビーム分離光学系の動
作について説明する。
【0064】図4は、回折格子板2の構造を説明する図
である。回折格子板2は、例えばLiNbO3(ニオブ
酸リチウム)である。図4の(a)は、LiNbO3
屈折率楕円体40を示す。LiNbO3 は、三方晶系の
結晶で光学的に負の一軸結晶である。よって、その屈折
率楕円体40は、光学軸(または結晶軸のC軸)41方
向に偏平な回転対称な楕円体である。図3の(b)は、
回折格子板2とLiNbO3 の光学軸41とビーム14
と16の偏光方向を示す。光学軸41は、回折格子板2
の面内にある。屈折率楕円体40のビーム14または1
6に垂直な切断面形状は、楕円42で示すように光学軸
41方向が短軸の楕円になる。半導体レーザ1の出射ビ
ーム14の偏光方向14′は、光学軸41の方向と一致
している。よって、出射ビーム14は、回折格子板2中
を異常光線として伝搬する。回折格子板2を通過したビ
ーム14は、4分の1波長板5によって円偏光になり、
光ディスク22で反射し逆回りの円偏光になり、再度4
分の1波長板5を通過すると、出射ビーム14の偏光方
向14′とは垂直な方向の直線偏光になる。よって、デ
ィスク反射ビーム16の偏光方向16′は楕円42の長
軸方向に一致し、ディスク反射ビーム16は回折格子2
中を常光線として伝搬する。回折格子板2の半導体レー
ザ側の面には、図4の(c)に示すような等間隔直線型
の回折格子3があり、回折格子3の溝深さは例えば4.
63μm である。また、回折格子板2のフォーカスレ
ンズ側の面には、例えば図4の(d)に示すような不等
間隔直線型の回折格子4があり、回折格子4の溝深さは
1.85μm である。
【0065】図5は、2つの回折格子3と4の溝深さが
違う理由を説明する図である。図5の上段の図に示すよ
うに、屈折率がnの物質50でできた回折格子51の溝
深さをdとすると、凸部の光路長52はndで、回折格
子の周囲が空気で囲まれているとすれば凹部の光路長5
3はdであるから、凸部と凹部の光路長の差ΔOPは、 ΔOP=(n−1)d である。ΔOPが波長の整数倍であれば、凸部を通過し
たビームの位相と凹部を通過したビームの位相のずれは
なく、回折格子の作用はない。ΔOPが波長の整数倍か
らずれると、凸部を通過したビームの位相と凹部を通過
したビームの位相がずれ、回折格子として作用する。特
に、ΔOPが波長の整数倍と半波長であれば、凸部を通
過したビームの位相と凹部を通過したビームの位相が1
80度ずれ、0次回折方向に出射するビームは互いに打
ち消し合うので、0次回折ビームは生じない。よって、
通過ビームは主に±1次回折方向に回折される。図5の
下段のグラフは、横軸が溝深さdで、縦軸が波長単位の
光路長の差ΔOP/λ=(n−1)d/λである。Li
NbO3 の波長780nm近辺における常光線屈折率n
oと異常光線屈折率neは、 no=2.262 ne=2.179 で、これらの常光線屈折率noの値から求めたΔOP/
λを直線54で示し、異常光線屈折率neの値から求め
たΔOP/λを直線55で示す。上述したように、縦軸
の値がちょうど整数になれば、回折格子の作用はない。
縦軸の値が半整数になれば、0次回折ビームは無く、強
い±1次回折ビームを生じる回折格子となる。その他の
値では、整数に近いほど0次回折ビームが強く、半整数
に近いほど±1次回折ビームが強い回折格子になる。図
5のグラフから、溝深さが4.63μmの場合は、異常
光線に対しては光路長の差がちょうど波長の7倍で、常
光線に対しては光路長の差が7.5 倍でる。よって、回
折格子板2の半導体レーザ側の面の回折格子4の溝深さ
を4.63μm とすれば、回折格子4は、半導体レーザ
出射ビーム14に対しては回折格子としての作用がな
く、ディスク反射ビーム16に対しては0次回折ビーム
はなく±1次回折ビームだけ生じる回折格子となる。即
ち、回折格子3と4分の1波長板5によって、半導体レ
ーザ出射ビーム14とディスク反射ビーム16を完全に
分離することができる。また、溝深さが1.85μm の
場合は、常光線に対しては光路長の差がちょうど波長の
3倍で、異常光線に対しては光路長の差が2.8 倍で
る。よって、回折格子板2のフォーカスレンズ側の面の
回折格子4の溝深さを1.85μm とすれば、回折格子
4は、半導体レーザ出射ビーム14に対しては強い0次
回折ビームと弱い±1次回折ビームを生じる回折格子と
して作用し、ディスク反射ビーム16に対しては回折格
子としての作用がない。よって、回折格子4を、半導体
レーザ出射ビーム14から記録再生用のメインビームと
スポット位置制御用の2つのサブビームを生成するため
の回折格子として用いることができる。しかも、これら
のビームが光ディスクで反射した後、再度回折格子4を
通過しても、通常の回折格子のようにさらに多くのビー
ムに分離することはない、という利点がある。
【0066】以上の説明から、図1において、半導体レ
ーザ1から出射したビーム14は、回折格子4によっ
て、メインビーム15aと、サブビーム15bおよび1
5cに分離し、4分の一波長板を通過して、光ディスク
22(図2に示す)に達する。光ディスク22で反射し
たメインビーム15aとサブビーム15bと15cは、
4分の1波長板を通過し、回折格子3によってビーム1
7Aとビーム17Bになり、半導体レーザ出射ビーム1
4とは完全に分離することができる。
【0067】次に、本実施例の光ヘッドにおける焦点ず
れ検出方法およびフォーカシング制御について説明す
る。
【0068】図6は、不等間隔直線型の回折格子4の構
造と作用を説明する図である。回折格子4を含む平面内
にx軸とy軸をとり、ビームの進行方向にz軸をとり、
設計上の座標原点をOとする。図6の(1)はx−y平
面を示し、回折格子4の多数の格子溝60は、y軸に平
行な直線群61n(n=±1,±2,±3,…)の一部
分である。回折格子4の作用はy軸方向には一様である
から、図7に示すx−z断面でその集光発散作用を説明
する。原点Oからfだけ離れたz軸上の点をPとし、点
Pを中心に半径fの円をSoで示す。また、波長をλと
して、点Pを中心に半径(f+nλ)の円をSn(n=
1,2,3,…)で示す。円Snとx軸との交点を直線
群61nとすれば、x−y平面に入射して直線群61n
で回折した後点Pに集束するビームは、点Pにおいて同
位相になり強めあうので、+1次の回折ビーム15bと
なる。同時に、直線群61nで+1次回折ビームとは反
対方向に回折するビームは、回折格子による回折角の対
称性によって、原点Oから−fだけ離れたz軸上の点Q
から発散する−1次の回折ビーム15cになる。よっ
て、図6の(1)に示す直線群61nの原点Oからの位
置Xn(n=1,2,3,…)を、
【0069】
【数1】
【0070】とすれば、このような不等間隔直線型の回
折格子は、図6の(2)に示すように、+1次ビーム1
5bに対しては焦線距離fの正の円柱レンズとして作用
して正の非点収差を与え、+1次ビーム15bは焦線P
xに集束する。また、−1次回折ビームに対しては焦点
距離−fの負の円柱レンズとして作用して負の非点収差
を与え、−1次ビーム15cは焦線Qxから発散するビ
ームになる。
【0071】図8は、光ディスク22の情報記録膜面上
を示す。光ディスク22のデータ領域は、例えば、1周
が32セクタに分かれ、1セクタは43セグメントに分
かれ、各々のセグメントの先頭には、一点鎖線で示すト
ラック92上に凹凸形状のピット93aとピット93b
が配置されている。各々のピット93aとピット93bの
位置は、ディスクの半径方向(紙面上下方向)に沿って
少なくとも数トラックの範囲でそろっている。また、ト
ラック92の間隔は1.5μm で、ピット93aは紙面上
方向に約4分の1トラックずれており、ピット93bは
紙面下方向に約4分の1トラックずれている。91aは
0次回折のメインビーム15aのスポット、91bは+
1次回折のサブビーム15bのスポット、91cは−1
次回折のサブビーム15cのスポット、である。ピット
93aと93bがスポット91aと91bと91cを通
過すると、メインビーム16aとサブビーム16bとサ
ブビーム16cの反射光量はそれぞれ変調される。図8
の(2)は光ディスク22がメインビーム15aの焦点
位置にある場合で、スポット91aは最も小さく、情報
の記録再生に適したディスク位置(焦点合わせの目標点
位置)である。回折格子4が作用する方向はトラック9
2の方向である。サブビーム15bと15cは、トラッ
クに垂直な方向には最もよく集束するがトラック方向に
は集束しない。よって、スポット91bとスポット91
cは同じ大きさのトラック方向に長いスポットになり、
サブビーム16bと16cのピット93aおよびピット
93bによる変調度は等しくなる。図8の(1)は、光
ディスク22が−1次回折のサブビーム15cの焦線位
置にある場合で、スポット91cは縦に長い焦線にな
り、各々のピット93aとピット93bはディスクの半
径方向(紙面上下方向)に沿ってそろっているので、サ
ブビーム16cは最も大きく変調される。スポット91
bは(2)の場合よりもさらに横に大きくなり、サブビ
ーム16bの変調度は(2)の場合よりも小さくなる。
逆に、図8の(3)は、光ディスク22が+1次回折の
サブビーム15bの焦線位置にある場合で、スポット9
1bは縦に長い焦線になり、サブビーム16bは最も大
きく変調される。スポット91cは(2)の場合よりも
さらに横に大きくなり、サブビーム16cの変調度は
(2)の場合よりも小さくなる。
【0072】図9の(1)は、光ディスク位置の変化を
横軸にとった場合に、ピット93aと93bによる光量
信号35bと光量信号35cの変調度の変化を示す。横
軸の(1)はー1次回折のサブビーム15cの焦線位置
で、(2)はメインビーム15cの焦点位置で焦点合わ
せの目標点位置であり、(3)は+1次回折のサブビー
ム15bの焦線位置である。ディスクが(1)の位置で
はサブビーム15cが最も多く変調されるので、光量信
号35cの振幅は最大になり、光ディスクが(3)の位
置ではサブビーム15bが最も多く変調されるので、光
量信号35bの振幅は最大になる。光ディスクが(2)
の位置では、光量信号35bの振幅と光量信号35cの
振幅は等しく、最大振幅の約半分に減少する。光量信号
35bと光量信号35cは、図3に示したエンベロープ
検波回路36bと36cに入力される。エンベロープ検
波回路36bは、図8の(1)の光量信号35bの振幅
の上レベル81bと下レベル82bを検出し、その差、
すなわち光量信号35bの変調度信号37bを出力す
る。エンベロープ検波回路36cは、図8の(1)の光
量信号35cの振幅の上レベル81cと下レベル82c
を検出し、その差、すなわち光量信号35cの変調度信
号37cを出力する。図8の(2)は、エンベロープ検
波回路で得られる変調度信号37bと37cを示し、変
調度信号37cはディスク位置(1)で最大になり、変調
度信号37bはディスク位置(3)で最大になる。焦点
合わせの目標点位置(2)では、変調度信号37bと3
7cは最大値の約半分になる。よって、変調度信号37
bと37cを差動演算回路38に入力すれば、図8の
(3)の実線で示すような焦点ずれ検出信号39がえら
れる。光ディスク22が焦点合わせの目標点位置(2)
にある場合は、焦点ずれ検出信号振幅信号39は自動的
にゼロレベルになる。よって、焦点ずれ検出信号39を
用いて2次元光ヘッドアクチュエータ25のフォーカシ
ングアクチュエータ26で光ヘッド全体を光ディスク2
2面に垂直な方向に動かすことにより、フォーカシング
制御を行うことができる。
【0073】図10は、エンベロープ検波回路36bお
よび36cブロックダイアグラムの一例を示す。入力信
号100をアンプ101で増幅し、微分回路103で微
分した後、フィルタ105で微分信号104の高域のノ
イズを除去し、両極性のゼロコンパレータ106に入力
してパルス信号107を得る。図11の(1)には入力
信号100の一例を示し、(2)にはその微分信号10
4を示し、(3)にはパルス信号107を示す。図11
は全体として、紙面右方向に同一の時間経過を示す。入
力信号100が極小値または極大値になると微分信号1
04は一点鎖線125で示すゼロレベルになり、微分信
号104がゼロレベルを通過する度に、ゼロレベルコン
パレータ106はパルス126を出力する。パルス信号
107はフリップフロップ回路108に入力され、フリ
ップフロップ回路108にパルス126が入力される度
に、そのQ端子はハイレベル状態とローレベル状態のど
ちらかを繰り返す。よって、Q端子出力とパルス信号1
07をアンド回路109に入力すれば、図11の(4)
に示すような1パルスおきのパルス信号110が得られ
る。よって、サンプルホールド回路111を用いてパル
ス信号110によりアンプ出力102のサンプルタイミ
ングをとれば、サンプルホールド回路111は、図11
の(1)の丸点113で示す振幅の下レベルを保持する
レベル信号112を出力する。一方、フリップフロップ
回路108のQバー端子はQ端子とは逆のハイレベル状
態とローレベル状態を繰り返す。よって、Qバー端子出
力とパルス信号107をアンド回路114に入力すれ
ば、図11の(5)に示すようなパルス信号110とは
逆の1パルスおきのパルス信号115が得られる。よっ
て、サンプルホールド回路116を用いてパルス信号1
15によりアンプ出力102のサンプルタイミングをと
れば、サンプルホールド回路116は、図11の(1)
の三角点118で示す振幅の上レベルを保持するレベル
信号117を出力する。よって、レベル信号117と1
12を差動演算回路118に入力すると、入力信号10
0の振幅の大きさに応じた振幅信号119が得られる。
ただし、パルス信号110と115のタイミングによっ
ては、レベル信号117が入力信号100の振幅の上レ
ベルを保持しレベル信号117が振幅の下レベルを保持
し、振幅信号が負になる場合がある。そこで、制御信号
が正レベルならA端子を選び負レベルならB端子を選ぶ
スイッチ回路121を用いて、A端子に振幅信号119
を入力しB端子に振幅信号119をインバータ120を
通して入力し、さらに振幅信号119を制御端子に入力
すれば、振幅の大きさを常に正で示す出力信号122が
得られる。
【0074】通常の光ディスク装置では、自動焦点制御
系に必要な応答周波数は2kHz程度である。一方、ピ
ット93aと93bが配置されているセグメントの数は
1周で32*43=1376個で、光ディスク30の回
転数は2400rpm (40Hz)とすれば、焦点ずれ検
出信号のサンプリング周波数は約55kHzである。よ
って、本実施例によれば、十分に安定な自動焦点制御が
達成できる。本実施例の焦点ずれ検出方式では、3分割
型光検出器7Aと7Bの光受光素子7Ab,7Ac,7
Bb,7Bcは各々、サブビームである17Ab,17
Ac,17Bb,17Bcの全光量を受光すればよく、光検
出器などの位置調整をしなくてもフォーカシングの目標
点を自己調整できる。また、光検出素子などの取付け位
置が変化しても焦点ずれ検出信号にオフセットは生じな
い。
【0075】次に、トラッキング制御について図12と
図13を用いて説明する。
【0076】図12は、図3に示したサンプルサーボ回
路32のブロックダイヤグヤムである。入力信号130
をアンプ131で増幅し、微分回路133で微分した
後、フィルタ135で微分信号134の高域のノイズを
除去し、立ち上がりのゼロコンパレータ136に入力し
てパルス信号137を得る。図13の(1)は、図8の
(2)に示したのと同じ光ディスク22面上で、特にト
ラッキング制御に関する部分を示す。91aはメインビ
ーム15aのスポット、92はトラック中心、93aは
紙面上方に4分の1トラックだけずれて配置されたピッ
ト、93bは紙面下方に4分の1トラックだけずれて配
置されたピットを示し、スポット91aがトラック中心
92の真上(トラッキング制御の目標点)を紙面右方向
に移動する場合である。図13の(2)には入力信号1
30の一例を示し、(3)にはその微分信号134を示
し、(4)にはパルス信号137を示す。図13は、紙
面右方向に全体として同一の時間経過を示す。入力信号
130が極小値または極大値になると微分信号134は
一点鎖線155で示すゼロレベルになり、微分信号13
4が負レベルから正レベルへとゼロレベル155を通過
する度に、立ち上がりのゼロレベルコンパレータ136
はパルス156を出力する。パルス信号137はフリップ
フロップ回路138に入力され、フリップフロップ回路
138にパルス156が入力される度に、そのQ端子は
ハイレベル状態とローレベル状態のどちらかを繰り返
す。よって、Q端子出力とパルス信号137をアンド回
路139に入力すれば、図13の(5)に示すような1
パルスおきのパルス信号140が得られる。よって、サ
ンプルホールド回路141を用いてパルス信号140に
よりアンプ出力132のサンプルタイミングをとれば、
サンプルホールド回路141は、図13の(2)の丸点1
43で示すピット93aによる変調レベルを保持するレ
ベル信号142を出力する。一方、フリップフロップ回
路138のQバー端子はQ端子とは逆のハイレベル状態
とローレベル状態を繰り返す。よって、Qバー端子出力
とパルス信号137をアンド回路144に入力すれば、
図13の(6)に示すようなパルス信号140とは逆の1
パルスおきのパルス信号145が得られる。よって、サ
ンプルホールド回路146を用いてパルス信号145に
よりアンプ出力132のサンプルタイミングをとれば、
サンプルホールド回路146は、図13の(2)の三角
点148で示すピット93bによる変調レベルを保持す
るレベル信号147が得られる。よって、レベル信号1
47と142を差動演算回路148に入力して、出力信
号149をトラックずれ検出信号に用いる。ピット93
aと93bはトラック92の中心から同じ量だけずれて
配置されているから、図13の(1)に示すようにスポ
ット91aがトラック92の真上(トラッキング制御の
目標点)を移動する場合には、ピット93aによる変調
レベル143とピット93bによる変調レベル148は等
しくなり、トラックずれ検出信号149は自動的にゼロ
レベルになる。図13の(1a)に示すようにスポット
91aが紙面上方向にずれた場合には、図13の(2
a)に示すようにピット93aではより大きく変調され
変調レベル143はより低いレベルになり、ピット93
bではあまり変調されずに変調レベル148はより高い
レベルになる。よって、トラックずれ検出信号149は
負レベルになる。逆に、図13の(1b)に示すように
スポット91aが紙面下方向にずれた場合には、図13
の(2b)に示すようにピット93aではあまり変調さ
れずに変調レベル143はより高いレベルになり、ピッ
ト93bでは大きく変調され変調レベル148はより低
いレベルになる。よって、トラックずれ検出信号149
は正レベルになる。よって、トラックずれ検出信号33
を用いて2次元光ヘッドアクチュエータ25のトラッキ
ングアクチュエータ27で光ヘッド全体をディスク半径
方向に動かすことにより、トラッキング制御を行うこと
ができる。
【0077】通常の光ディスク装置では、トラッキング
制御系に必要な応答周波数は8kHz程度である。一
方、トラックずれ検出信号のサンプリング周波数は焦点
ずれ検出信号と同じく約55kHzである。よって、本
実施例によれば、十分に安定な自動トラッキング制御が
達成できる。本実施例のトラックずれ検出方式では、3
分割型光検出器7Aと7Bの光受光素子7Aaと7Ba
は各々、メインビームである17Aaと17Baの全光
量を受光すればよく、光検出器などの位置調整をしなく
てもトラッキングの目標点を自己調整できる。また、光
検出素子などの取付け位置が変化してもトラックずれ検
出信号にオフセットは生じない。
【0078】情報の記録および再生は、通常の光ディス
ク装置と同様に行なうことができる。一例として、追記
型光ディスクを用いた場合について説明する。情報の記
録時には、半導体レーザ1に情報に合わせたパルス状の
駆動電流を流してレーザビームの強度をパルス状に変調
し、メインビーム15aのスポット91aを用いて、光
ディスク22面上の記録膜に熱的に穴を開けて情報を記
録する。情報の再生時には半導体レーザ1を一定の低パ
ワーで発光させ、同じくメインビーム15aを用いて、
スポット91aの反射ビーム17Aaおよび17Baの
反射光量が穴として記録された情報によって変調される
ので、光量信号31から情報を再生することができる。
相変化光ディスクを用いた場合は、情報が穴形状ではな
く記録膜の反射率の変化として記録されるのが異なるだ
けで、本実施例の光ヘッドをそのまま用いることができ
る。
【0079】本発明の第2の実施例を、図14と図15
を用いて説明する。第2の実施例では、第1の実施例で
用いた図6の(1)の不等間隔直線型回折格子4の替わ
りに、図14の(1)に示すような同心楕円型の回折格
子201を用いる。その他の部品および作用は第1の実
施例とまったく同じなので、説明を省略する。
【0080】同心楕円型の回折格子201の格子溝20
2は、図14の(1)の破線で示すように原点Oを中心
とする同心楕円203n(n=1,2,3,…)の一部
分(楕円弧)である。回折格子201を含む平面内で楕
円203nの長軸方向にx軸をとり、短軸方向にy軸を
とり、ビームの進む方向にz軸をとり、座標原点をOと
する。楕円203nの長軸方向の半径RXn(n=1,
2,3,…)を、
【0081】
【数2】
【0082】楕円203nの短軸方向の半径RYn(n
=1,2,3,…)を、
【0083】
【数3】
【0084】とする(ただし、fy<fx)。そうする
と、図7での説明と同様に、x−z平面においては、+
1次回折ビーム15bは原点Oからfxだけ離れたz軸
上の点に収束し、−1次回折ビーム15cは原点Oから
−fxだけ離れたz軸上の点から出たように発散する。
一方、y−z平面においては、+1次回折ビーム15b
は原点Oからfyだけ離れたz軸上の点に収束し、−1
次回折ビーム15cは原点Oから−fyだけ離れたz軸
上の点から出たように発散する。よって、図14の
(2)に示すように、+1次ビーム15bはx方向には
焦線Pxを結びy方向には焦線Pyを結び、−1次ビー
ム15cはx方向には焦線Qxから出たように発散しy
方向には焦線Qyから出たように発散する。よって、こ
のような同心楕円型の回折格子201は、+1次回折ビ
ームに対しては焦線距離がfxとfyの正のトロイダル
レンズとして作用し、−1次回折ビームに対しては焦線
距離が−fxと−fyの負のトロイダルレンズとして作
用する。よって、同心楕円型の回折格子201は、+1
次ビーム15bと−1次ビーム15cに絶対値が等しい
正と負の2方向の非点収差(楕円の短軸方向に強く長軸
方向に弱い)を与え、かつ、+1次ビーム15bと−1
次ビーム15cを0次ビーム15aに対して正と負の微
小角度だけ異なる方向に出射する。
【0085】図15は、図8同様に、同心楕円型の回折
格子201を用いた場合の光ディスク22面上における
0次回折のメインビーム15aのスポット91aと、+
1次回折のサブビーム15bのスポット91bと、−1
次回折のサブビーム15cのスポット91cを示す。図
15の紙面横方向が図14のx方向(楕円203の長軸
方向)に相当し、紙面上下方向がy方向(楕円203の
短軸方向)に相当する。また、光ディスク22面上の一
点鎖線で示すトラック92上のピット93aと93b
は、図8で説明したものと同じ作用をする。図14の
(2)は、図8の(2)と同じく光ディスク22がメイ
ンビーム15aの焦点位置にある場合で、スポット91
aは最も小さく、情報の記録再生に適したディスク位置
(焦点合わせの目標点位置)である。サブビーム15b
と15cは、回折格子201によって与えられた紙面上
下方向(y方向)に強く紙面横方向(x方向)に弱い非
点収差のため、紙面上下方向には収束位置が大きくず
れ、紙面横方向には収束位置が少しずれているので、同
じ大きさの縦に長い楕円型のスポット91bと91cに
なる。よって、サブビーム15bと16cのピット93
aおよび93bによる変調度は等しくなる。図15の
(1)は、図8の(1)と同じく光ディスク22が−1
次回折のサブビーム15cのx方向の焦線位置にある場
合で、サブビーム15cは横方向に一番よく絞られるの
で、スポット91cは縦に長いスポットになり、各々の
ピット93aとピット93bはディスクの半径方向(紙
面上下方向)に沿ってそろっているので、サブビーム1
5cは最も大きく変調される。+1次回折のサブビーム
15bのスポット91bは(2)の場合よりもさらに大
きくなり、サブビーム15bの変調度は(2)の場合よ
りも小さくなる。図15の(0)は、光ディスク22がさ
らにフォーカスレンズ8から離れて−1次回折のサブビ
ーム15cのy方向の焦線位置にある場合で、サブビー
ム15cは今度は縦方向に絞られるので、スポット91
cは横に長いスポットになり、サブビーム15cの変調
度は(1)の場合よりも減少する。サブビーム15bの
スポット91bは(1)の場合よりもさらに大きくな
り、サブビーム15bの変調度は(1)の場合よりもさ
らに小さくなる。逆に、図15の(3)は、図8の
(3)と同じく光ディスク22が+1次回折のサブビー
ム15bのx方向の焦線位置にある場合で、サブビーム
15bは横方向に一番よく絞られるので、スポット91
bは縦に長いスポットになり、各々のピット93aとピ
ット93bはディスクの半径方向(紙面上下方向)に沿
ってそろっているので、サブビーム15bは最も大きく
変調される。サブビーム15cのスポット91cは
(2)の場合よりもさらに大きくなり、サブビーム15
cの変調度は(2)の場合よりも小さくなる。図15の
(4)は、光ディスク22がさらにフォーカスレンズ8
に近ずき+1次回折のサブビーム15bのy方向の焦線
位置にある場合で、サブビーム15bは今度は縦方向に
絞られるので、スポット91bは横に長いスポットにな
り、サブビーム15bの変調度は(3)の場合よりも減
少する。サブビーム15cのスポット91cは(3)の
場合よりもさらに大きくなり、サブビーム15cの変調
度は(3)の場合よりもさらに小さくなる。そこで、光
ディスク位置の変化を横軸にとった場合に、ピット93
aと93bによる光量信号35bと光量信号35cの変
調度の変化は、図9の(1)に示した図とまったく同様
になる。すなわち、光量信号35bの振幅はディスク位
置(3)で最大になり、光量信号35cの振幅はディス
ク位置(1)で最大になり、ディスク位置(2)では光
量信号35bの振幅と光量信号35cの振幅は等しくな
る。さらに、エンベロープ検波回路36bと36cが出力
する変調度信号37bと37cは、図9の(2)と同じ
になり、差動演算回路38により、図9の(3)の実線
に示すような焦点ずれ検出信号39がえられ、光ディス
ク22が焦点合わせの目標点位置(2)にある場合は、
焦点ずれ検出信号39は自動的にゼロレベルになる。
【0086】第1の実施例や第2の実施例で示した回折
格子板2と4分の1波長板5を貼合わして一体にするこ
ともできる。一例として、回折格子板2のフォーカスレ
ンズ6側の面にある回折格子4または回折格子201と
4分の1波長板5を、赤外線硬化樹脂(UV樹脂)で貼
合わせる場合について説明する。回折格子の溝が屈折率
1.5のUV樹脂で埋められているとすれば、回折格子
の凸部と凹部の光路長の差ΔOPは、ΔOP=(n−
1.5)dである。回折格子内の屈折率として、常光線
屈折率no=2.262から求めたΔOP/λを直線25
4で示し、異常光線屈折率ne=2.179から求めたΔ
OP/λを直線255で示す。溝深さが2.05μm の場
合は、常光線に対しては光路長の差がちょうど波長の2
倍で、異常光線に対しては光路長の差が1.8 倍でる。
よって、回折格子板2の貼合わせ面側の回折格子4の格
子溝60、または回折格子201の格子溝202の溝深
さを2.05μm とすれば良い。
【0087】図20は、本発明のその他の実施例を説明
する図で、部品番号が図1と同じ部品は、同じ作用をす
る。図20の実施例は、光ヘッド筺体12内部の回折格
子板2と円形基板11ではさまれた領域を密閉したもの
である。円形基板11とスペーサ13dおよび回折格子
板2とスペーサ13dの間にリング状のゴムパッキン4
10を入れ、ネジ411で締め付けて密閉する。スペー
サ13dのゴムパッキン410があたる角の部分は、密
閉を保つために斜めにカットしてある。組立作業は、乾
燥した窒素雰囲気中で行なう。または、ネジ411をし
める手前までの組立作業を予め大気中で行ない、真空装
置の真空ベルジャー内で、モーターによってネジ411
を締め付けても良い。
【0088】
【発明の効果】本発明によれば、半導体レーザの劣化が
なく長期間安定な性能が維持できる、小形の光ヘッドが
実現できる。また、半導体レーザ出射ビームとディスク
反射ビームとを完全に分離でき、しかも、フォーカシン
グ光学系の光路と検出光学系の光路を共有できて光ヘッ
ドの小形化に有効な、ビーム分離光学系が達成できる。
【図面の簡単な説明】
【図1】光ヘッドの構成図。
【図2】光ディスク装置の機構系の構成図。
【図3】光検出器と演算回路の構成図。
【図4】回折格子板の構造の説明図。
【図5】回折格子の格子溝深さと位相差の説明図。
【図6】不等間隔直線型回折格子の構造と作用の説明
図。
【図7】回折格子の集光発散作用の説明図。
【図8】光ディスク面上のスポットとピットの説明図。
【図9】焦点ずれ検出信号生成の説明図。
【図10】エンベロープ検波回路の構成図。
【図11】タイミング信号生成の説明図。
【図12】サンプルサーボ回路の構成図。
【図13】トラックずれ検出信号生成の説明図。
【図14】同心楕円型回折格子の構造と作用の説明図。
【図15】光ディスク面上のスポットとピットの説明
図。
【図16】本発明の光ヘッド基本構成図。
【図17】本発明の光ディスク面上のスポットとピット
の説明図。
【図18】従来例の光ディスク面上のスポットとピット
の説明図。
【図19】光ヘッド組立の説明図。
【図20】光ヘッド組立の説明図。
【符号の説明】
1…半導体レーザ、2…回折格子板、3…回折格子、4
…回折格子、5…4分の1波長板、6…フォーカスレン
ズ、7A,7B…3分割型光検出器、12…光ヘッド筺
体、22…光ディスク、36b,36c…エンベロープ
検波回路、38…差動演算回路、41…光学軸。
フロントページの続き (72)発明者 梅田 麻理子 東京都国分寺市東恋ケ窪1丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平2−265036(JP,A) 特開 昭62−283430(JP,A) 特開 昭61−253588(JP,A) 実開 昭61−151366(JP,U) (58)調査した分野(Int.Cl.6,DB名) G11B 7/135

Claims (6)

    (57)【特許請求の範囲】
  1. 【請求項1】 半導体レーザと、該半導体レーザから出射
    した出射ビームを情報媒体面上に結像させる結像光学系
    と、該情報媒体により反射した反射ビームと該出射ビー
    ムを分離するビーム分離光学系と、該ビーム分離光学系
    で分離した検出ビームを受光する光検出器と、該半導体
    レーザと該結像光学系と該ビーム分離光学系と該光検出
    器を固定する光ヘッド筺体とを有し、該結像光学系また
    は該ビーム分離光学系と該光ヘッド筺体とによって該半
    導体レーザを密閉した光ヘッドを具備し、 該ビーム分離光学系は、該半導体レーザから出射した該
    出射ビームをメインビームと+1次及び−1次の2つの
    サブビームに分離する第1のビーム分離光学系と、該情
    報媒体により反射した上記メインビームと+1次及び−
    1次の2つのサブビームの反射ビームを該出射ビームと
    は異なる方向に分離する第2のビーム分離光学系とを有
    し、 該第1のビーム分離光学手段は、2つの該サブビームに
    正の非点収差と負の非点収差を与える第1の回折格子ま
    たはホログラム素子を有し、 該情報媒体面上には、該サブビームの反射光量を変調す
    るために予め記録されたマークがあり、 該光検出器は、該サブビームを受光する2つの光検出素
    子を有し、 該2つの光検出素子が出力する光量信号から該マークに
    よって変調された振幅の大きさを検出するための2つの
    振幅検出回路と、該振幅検出回路から出力された2つの
    振幅検出信号を引算する差動演算回路とを有する焦点ず
    れ検出回路、をさらに具備し、 上記サブビームは上記情報媒体との距離に応じて上記情
    報媒体のトラック方向に長いスポットを形成する場合と
    該トラックに垂直な方向に長いスポットを形成する場合
    を有することを特徴とする情報記録装置。
  2. 【請求項2】 請求項に記載の情報記録装置であって、 該第1の回折格子またはホログラム素子は、その格子溝
    間隔が順次増加または減少する複数の直線溝の集合であ
    り、該マークは、該トラックの方向とは垂直な方向にそ
    ろって配置されている、ことを特徴とする情報記録装
    置。
  3. 【請求項3】 請求項に記載の情報記録装置であって、 該第1の回折格子またはホログラム素子は、その格子溝
    間隔が順次増加または減少する複数の同心楕円溝の集合
    の一部分であるとともに、その該同心楕円溝の同心点位
    置が該メインビームの主光線軸の位置から偏心してお
    り、該マークは、該トラックの方向とは垂直な方向にそ
    ろって配置されている、ことを特徴とする情報記録装
    置。
  4. 【請求項4】 請求項から請求項のうちいずれかに記
    載の情報記録装置であって、 該振幅検出回路は、2つの該サブビームの各々につい
    て、該マーク間にある時の該光検出素子の出力信号レベ
    ルを保持する第1のサンプルホールド回路と、該マーク
    上にある時の該光検出素子の出力信号レベルを保持する
    第2のサンプルホールド回路と、該第1のサンプルホー
    ルド回路の出力信号と該第2のサンプルホールド回路の
    出力信号を引算する差動演算回路とを有する、ことを特
    徴とする情報記録装置。
  5. 【請求項5】 請求項に記載の情報記録装置であって、 該振幅検出回路は、該振幅検出回路の出力信号の極性を
    常に正レベルまたは負レベルにするためのスイッチ回路
    を内蔵する、ことを特徴とする情報記録装置。
  6. 【請求項6】 請求項から請求項のうちいずれかに記
    載の情報記録装置であって、 該マークは、該情報媒体面上を該メインスポットが案内
    される所定のトラック中心線に対して片側に一定距離だ
    けはなれて配置された第1のピット群と該トラック中心
    線に対して反対側に等距離だけはなれて配置された第2
    のピット群を有し、該メインスポットが該第1のピット
    を通過するときの該光検出素子の出力信号レベルと該第
    2のピットを通過するときの該光検出素子の出力信号レ
    ベルを比較することによりトラックずれ検出信号を得
    る、ことを特徴とする情報記録装置。
JP3077567A 1991-04-10 1991-04-10 光ヘッドおよび情報記録装置 Expired - Lifetime JP2861449B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3077567A JP2861449B2 (ja) 1991-04-10 1991-04-10 光ヘッドおよび情報記録装置
US07/865,114 US5361244A (en) 1991-04-10 1992-04-08 Optical head and information recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077567A JP2861449B2 (ja) 1991-04-10 1991-04-10 光ヘッドおよび情報記録装置

Publications (2)

Publication Number Publication Date
JPH04311828A JPH04311828A (ja) 1992-11-04
JP2861449B2 true JP2861449B2 (ja) 1999-02-24

Family

ID=13637595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077567A Expired - Lifetime JP2861449B2 (ja) 1991-04-10 1991-04-10 光ヘッドおよび情報記録装置

Country Status (1)

Country Link
JP (1) JP2861449B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69326213T2 (de) * 1992-11-17 1999-12-30 Seiko Epson Corp Optischer Abtastkopf
TW289872B (ja) * 1992-12-24 1996-11-01 Sharp Kk
EP0605929B1 (en) * 1993-01-04 1998-07-29 Koninklijke Philips Electronics N.V. Device for optically scanning a surface
KR100269710B1 (ko) * 1996-01-23 2000-10-16 윤종용 광출력장치 및 이를 채용한 광픽업장치
JP5583019B2 (ja) * 2007-11-23 2014-09-03 コーニンクレッカ フィリップス エヌ ヴェ ビームシェーパ、光学系及びその使用方法

Also Published As

Publication number Publication date
JPH04311828A (ja) 1992-11-04

Similar Documents

Publication Publication Date Title
US5361244A (en) Optical head and information recording apparatus
US5532990A (en) Optical information processing method and apparatus including measuring and correcting the offset of a tracking error signal from an output of a photodetector using a vibrating objective lens
US5189655A (en) Optical head for optical disk recording/reproducing apparatus including modified wollaston prism
US6822771B2 (en) Optical pickup unit and optical disk drive for accurate and stable information recording and reproduction
JP2866160B2 (ja) 光学式ディスクプレーヤ
US4706232A (en) Optical recording and reproducing apparatus
JPH05120720A (ja) 情報記録・再生装置
US7126899B2 (en) Optical recording medium processing device and focal point control method thereof
US5903529A (en) Optical pickup device and disk player apparatus
US20070159936A1 (en) Optical head unit and optical disc apparatus
JPH10188320A (ja) 光ディスク記録再生装置および方法
JP2861449B2 (ja) 光ヘッドおよび情報記録装置
US6775221B1 (en) Optical pickup and recording and/or reproducing apparatus
JPH0620291A (ja) 光学的情報記録再生装置
KR19980018955A (ko) 광학픽업장치, 광학기록재생장치 및 대물렌즈의 조정방법 (Optical Pickup Device, Optical Recording/Reproducing Apparatus and Objective Lens)
JP3106047B2 (ja) 光ピックアップ装置
JP3046394B2 (ja) 光ヘッドおよび光情報記録装置
JP2000348371A (ja) 光学ヘッドおよび光ディスクシステム
JPH0935319A (ja) 光情報記録装置及び光学装置、並びに収差調整方法
JP2001256662A (ja) 光ピックアップ装置
JP2966612B2 (ja) 情報再生装置
JP3984211B2 (ja) 光ヘッド装置及び信号再生装置
JP2001110077A (ja) 光学的情報記録再生装置
JPH0369041A (ja) 光学的記録再生方法
JPH05197980A (ja) 光ヘッド装置