JP2838925B2 - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JP2838925B2
JP2838925B2 JP3253269A JP25326991A JP2838925B2 JP 2838925 B2 JP2838925 B2 JP 2838925B2 JP 3253269 A JP3253269 A JP 3253269A JP 25326991 A JP25326991 A JP 25326991A JP 2838925 B2 JP2838925 B2 JP 2838925B2
Authority
JP
Japan
Prior art keywords
voltage
mos transistor
gate
word line
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3253269A
Other languages
Japanese (ja)
Other versions
JPH0595092A (en
Inventor
和夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17248934&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2838925(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3253269A priority Critical patent/JP2838925B2/en
Publication of JPH0595092A publication Critical patent/JPH0595092A/en
Application granted granted Critical
Publication of JP2838925B2 publication Critical patent/JP2838925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高集積化するため構成
要素であるMOSトランジスタを小型化しても、大きい
信号電圧を得ることができる半導体メモリ装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device capable of obtaining a large signal voltage even if a MOS transistor which is a component for high integration is downsized.

【0002】[0002]

【従来の技術】1つのMOSトランジスタと1つのキャ
パシタから構成される半導体メモリセル(以下1Tセル
と略す)は、構成要素が少なく、小型化が容易であるた
め、高集積半導体メモリに広く使われている。この1T
セルでは、出力電圧がキャパシタの充放電電圧差に比例
する。ここで充放電電圧差とは、2進情報に対応したキ
ャパシタへの書き込み電圧をそれぞれV0,V1とした
場合の|V1−V0|のことである。そのため1Tセル
を高集積化し、且つその出力電圧を十分大きい値に保つ
ためには、充放電電圧差を大きく保ったままメモリセル
を小型化する必要がある。
2. Description of the Related Art A semiconductor memory cell (hereinafter abbreviated as 1T cell) composed of one MOS transistor and one capacitor has a small number of components and can be easily miniaturized, so that it is widely used in highly integrated semiconductor memories. ing. This 1T
In the cell, the output voltage is proportional to the charge / discharge voltage difference of the capacitor. Here, the charge / discharge voltage difference is | V1-V0 | when the write voltages to the capacitors corresponding to the binary information are V0 and V1, respectively. Therefore, in order to highly integrate the 1T cell and to keep the output voltage at a sufficiently large value, it is necessary to reduce the size of the memory cell while maintaining a large charge / discharge voltage difference.

【0003】ところが1Tセルを小型化するためには、
その構成要素であるMOSトランジスタを小型化する必
要があり、そのためには比例縮小則に従ってMOSトラ
ンジスタの平面寸法、ゲート絶縁体膜厚を小さくし、動
作電圧を低くする必要がある。そのため従来の1Tセル
では、それを小型化するために、動作電圧、すなわち1
Tセルへの充放電電圧差を小さくしなければならなかっ
た。この結果、小型化の1Tセルからの信号電圧の低下
を招いていた。
However, in order to reduce the size of the 1T cell,
It is necessary to reduce the size of the MOS transistor as a component thereof, and for that purpose, it is necessary to reduce the planar dimensions and the thickness of the gate insulator of the MOS transistor in accordance with the proportional reduction rule and to lower the operating voltage. Therefore, in the conventional 1T cell, the operating voltage, that is, 1
The difference in charge / discharge voltage for the T cell had to be reduced. As a result, the signal voltage from the downsized 1T cell has been reduced.

【0004】小型化しても1Tセルからの信号電圧を低
下させないためには、MOSトランジスタを小型化して
も充放電電圧差を小さくしなければよく、MOSトラン
ジスタの寸法が比較的大きい場合には効果があった。し
かし、MOSトランジスタが小さくなりゲート絶縁体膜
厚が小さくなると、この方法が通用できなくなってき
た。ゲート絶縁体膜に加わる電界がある程度大きくなる
と、ゲート絶縁体膜の破壊などの信頼性上の問題を防ぐ
ことができないからである。
In order to keep the signal voltage from the 1T cell from lowering even if the size is reduced, it is necessary to reduce the charge / discharge voltage difference even if the MOS transistor is reduced. was there. However, as MOS transistors have become smaller and the gate insulator thickness has become smaller, this method has become impractical. This is because if the electric field applied to the gate insulator film increases to some extent, it is not possible to prevent reliability problems such as breakage of the gate insulator film.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、充放
電電圧差を一定にしたままMOSトランジスタのゲート
絶縁体膜を薄くしても、それに加わる電界を緩和するこ
とができるために、ゲート絶縁体膜の信頼性を低下させ
ることなく、小型化しても大きい信号電圧を得ることが
できる半導体メモリ装置を与えることである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the electric field applied to a gate insulator film of a MOS transistor even if the gate insulator film of the MOS transistor is thinned while keeping the charge / discharge voltage difference constant. An object of the present invention is to provide a semiconductor memory device capable of obtaining a large signal voltage even if the insulator film is reduced without reducing the reliability of the insulator film.

【0006】[0006]

【課題を解決するための手段】本発明の半導体メモリ装
置は、1つのMOSトランジスタおよび1つのキャパシ
タからなるメモリセルと、前記MOSトランジスタのゲ
ート電極に接続されたワード線と、前記ワード線に選択
時に第1の電圧、非選択時に第2の電圧をそれぞれ供給
して前記MOSトランジスタの導通、遮断を制御する手
段とを有し、前記第2の電圧値を前記第1の電圧値とは
逆の符号とすることで、前記MOSトランジスタが遮断
状態でゲート・ドレイン間に最大の電圧が加わった場合
においてゲート電極下部に少なくともゲート絶縁膜の厚
さ程度の空乏層が形成されるようにした構成である。
According to the present invention, there is provided a semiconductor memory device comprising a memory cell comprising one MOS transistor and one capacitor, a word line connected to a gate electrode of the MOS transistor, and a selectable word line. Means for supplying the first voltage at the time and the second voltage at the time of the non-selection to control the conduction and cutoff of the MOS transistor, wherein the second voltage value is defined as the first voltage value.
By using the opposite sign, a depletion layer having a thickness of at least about the thickness of the gate insulating film is formed below the gate electrode when a maximum voltage is applied between the gate and the drain while the MOS transistor is shut off . Configuration.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1(a)は、本発明の半導体メモリ装置
を説明するためのもので、その実施例のワード線とその
周辺部を示した回路図である。図の101はワード線、
102a,102bはビット線、103a,103bは
1Tセルを構成するスイッチング用のエンハンスメント
型のnMOSトランジスタ、104a,104bはキャ
パシタ、105はワード線選択時にVon=3V,非選
択時にVoff=−1Vを出力するワード線ドライバ、
をそれぞれ示す。本実施例では、MOSトランジスタ1
03a,103bのしきい値電圧Vthが約0V,2進
情報に対応したキャパシタへの書き込み電圧をそれぞれ
0VとVon−Vth=3Vとする。
FIG. 1A is a circuit diagram showing a semiconductor memory device of the present invention, showing a word line of the embodiment and a peripheral portion thereof. 101 in the figure is a word line,
102a and 102b are bit lines, 103a and 103b are switching-type enhancement nMOS transistors constituting a 1T cell, 104a and 104b are capacitors, and 105 is Von = 3V when a word line is selected, and Voff = -1V when non-selected. Word line driver,
Are respectively shown. In this embodiment, the MOS transistor 1
The threshold voltages Vth of 03a and 103b are about 0V, and the write voltages to the capacitors corresponding to the binary information are 0V and Von-Vth = 3V, respectively.

【0009】図1(b)は、図1(a)の回路に使われ
ているnMOSトランジスタ103a,103bの構造
を示す断面図である。この図の201はp型シリコン基
板、202はドレイン(ここでは便宜上、キャパシタに
接続されている方をいう)となるN型高濃度領域、20
3はソースとなるN型高濃度領域、204はゲート電
極、205は厚さ10nm程度のゲート酸化膜、20
6,207不純物濃度が1018cm-3オーダ以下のN型
領域であって、それぞれドレイン202,ソース203
に接触し、ゲート電極204の下方に設けられている。
FIG. 1B is a sectional view showing the structure of the nMOS transistors 103a and 103b used in the circuit of FIG. 1A. In this figure, reference numeral 201 denotes a p-type silicon substrate; 202, an N-type high-concentration region serving as a drain (here, for convenience, connected to a capacitor);
3 is an N-type high-concentration region serving as a source; 204 is a gate electrode; 205 is a gate oxide film having a thickness of about 10 nm;
6,207, an N-type region having an impurity concentration of 10 18 cm −3 or less, and a drain 202 and a source 203, respectively.
And is provided below the gate electrode 204.

【0010】208はドレインに3V,ソースに0V,
ゲート電極に−1Vが加わった時の電位分布を示す等電
位線を、それぞれ示す。このような電圧が加わった場
合、図示のようにN型領域206には、MOS表面から
空乏層が広がり、その結果、ゲート酸化膜205に加わ
る電圧はゲート・ドレイン間に加わる電圧の最大値Vo
n−Vth−Voff=4Vよりも低減される。このゲ
ート酸化膜205に加わる電圧の低減量は、ゲート酸化
膜205と空乏層のそれぞれの容量の分割によって決ま
る。そのため、その電圧低減効果が実質的な効果を持つ
ためには、両者の厚さに比誘電率を掛けたものが同程度
の大きさになることが必要である。空乏層の厚さが極端
に小さい場合には、ゲート・ドレイン間に加わる4Vの
ほとんどがゲート酸化膜205に加わり、電圧低減効果
は実質的な効果を持たない。
Reference numeral 208 denotes 3 V for the drain, 0 V for the source,
The equipotential lines showing the potential distribution when -1 V is applied to the gate electrode are shown. When such a voltage is applied, a depletion layer spreads from the surface of the MOS in the N-type region 206 as shown in the figure, and as a result, the voltage applied to the gate oxide film 205 becomes the maximum value Vo of the voltage applied between the gate and the drain.
It is reduced from n-Vth-Voff = 4V. The amount of reduction in the voltage applied to the gate oxide film 205 is determined by the division of the capacitance between the gate oxide film 205 and the depletion layer. Therefore, in order for the voltage reduction effect to have a substantial effect, it is necessary that the product of the thicknesses of the two and the relative permittivity be substantially the same. When the thickness of the depletion layer is extremely small, almost 4 V applied between the gate and the drain is applied to the gate oxide film 205, and the voltage reduction effect has no substantial effect.

【0011】空乏層の幅はN型領域206の濃度、ゲー
ト酸化膜205の厚さ、MOSトランジスタのフラット
バンド電圧などで決まる。仮に、ゲート酸化膜205の
厚さを10nm,フラットバンド電圧0Vの場合を想定
すると、空乏層の幅は、N型領域206の不純物濃度が
1018cm-3のとき約4.8nm,1019cm-3のとき
約0.76nm,1020cm-3のとき約0.08nmと
なる。このことから、N型領域の不純物濃度が1019
-3以上では電圧低減効果が小さいことになる。
The width of the depletion layer is determined by the concentration of the N-type region 206, the thickness of the gate oxide film 205, the flat band voltage of the MOS transistor, and the like. Assuming that the thickness of the gate oxide film 205 is 10 nm and the flat band voltage is 0 V, the width of the depletion layer is about 4.8 nm and 10 19 when the impurity concentration of the N-type region 206 is 10 18 cm −3. about 0.76nm when cm -3, is about 0.08nm when the 10 20 cm -3. From this, the impurity concentration of the N-type region is 10 19 c
Above m -3 , the voltage reduction effect is small.

【0012】図1(a)の回路では、nMOSトランジ
スタのしきい電圧が0Vで、書き込み時にワード線に3
Vが加わるから、メモリセルに0V(VO)または3V
(V1=Von−Vth)を書き込むことができる。さ
らにゲート酸化膜205に加わる電圧は、ゲート電圧が
−1Vでドレインまたはソースの電圧が3Vの時に最大
値4Vが加わる可能性があるが、実際は図1(b)を参
照して説明したようにN型領域206または207が空
乏化して、ゲート酸化膜205に加わる電圧は4V未満
になる。
In the circuit shown in FIG. 1A, the threshold voltage of the nMOS transistor is 0 V, and the word line is
Since V is applied, 0 V (VO) or 3 V is applied to the memory cell.
(V1 = Von-Vth). Further, as for the voltage applied to the gate oxide film 205, there is a possibility that a maximum value of 4V may be applied when the gate voltage is -1V and the drain or source voltage is 3V, but actually, as described with reference to FIG. The N-type region 206 or 207 is depleted, and the voltage applied to the gate oxide film 205 becomes less than 4V.

【0013】従来の半導体メモリ装置では、nMOSト
ランジスタのしきい電圧を1V程度に設定し、OVと3
Vを書き込むために書き込み時にワード線に4V以上を
加えていた。この場合、ソースまたはドレインが0Vで
ゲートが4V以上の状態が存在し、4V以上の電圧がゲ
ート絶縁体膜に加わっていた。
In a conventional semiconductor memory device, the threshold voltage of an nMOS transistor is set to about 1 V, and OV and 3
In order to write V, 4 V or more was applied to the word line at the time of writing. In this case, there is a state where the source or the drain is 0 V and the gate is 4 V or more, and a voltage of 4 V or more is applied to the gate insulator film.

【0014】[0014]

【発明の効果】以上説明してきたように、本発明の半導
体メモリ装置は、メモリセルを構成するMOSトランジ
スタが遮断状態で情報“1”が書き込まれているときに
ゲート電極の下部に空乏層ができるので書き込み電圧差
が同じでも、MOSトランジスタのゲート絶縁膜に加わ
る電界を緩和することができるため、ゲート絶縁膜の信
頼性を低下させることなく、小型化しても大きい信号電
圧を得ることができる。
As described above, in the semiconductor memory device of the present invention, the depletion layer is formed under the gate electrode when information "1" is written in a state where the MOS transistor forming the memory cell is cut off. Therefore, even if the write voltage difference is the same, the electric field applied to the gate insulating film of the MOS transistor can be reduced, so that a large signal voltage can be obtained without reducing the reliability of the gate insulating film even if the size is reduced. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体メモリ装置を説明するためのも
ので、その実施例のワード線とその周辺部を示した回路
図(図1(a))および図1(a)の回路に使われてい
るnMOSトランジスタの構造を示す断面図(図1
(b))である。
FIG. 1 is a circuit diagram (FIG. 1 (a)) showing a word line and a peripheral portion thereof according to an embodiment of the present invention, which is used to explain a semiconductor memory device of the present invention; FIG. 1 is a cross-sectional view showing the structure of an nMOS transistor shown in FIG.
(B)).

【符号の説明】[Explanation of symbols]

101 ワード線 102a,102b ビット線 103a,103b キャパシタ 104a,104b ビット線 105 ワード線ドライバ 201 P型シリコン基板 202 ドレイン 203 ソース 204 ゲート電極 205 ゲート酸化膜 206,207 N型領域 101 Word line 102a, 102b Bit line 103a, 103b Capacitor 104a, 104b Bit line 105 Word line driver 201 P-type silicon substrate 202 Drain 203 Source 204 Gate electrode 205 Gate oxide film 206, 207 N-type region

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1つのMOSトランジスタおよび1つの
キャパシタからなるメモリセルと、前記MOSトランジ
スタのゲート電極に接続されたワード線と、前記ワード
線に選択時に第1の電圧、非選択時に第2の電圧をそれ
ぞれ供給して前記MOSトランジスタの導通、遮断を制
御する手段とを有し、前記第2の電圧値を前記第1の電
圧値とは逆の符号とすることで、前記MOSトランジス
タが遮断状態でゲート・ドレイン間に最大の電圧が加わ
った場合においてゲート電極下部に少なくともゲート絶
縁膜の厚さ程度の空乏層が形成されるようにしたことを
特徴とする半導体メモリ装置。
And 1. A memory cell comprising one MOS transistor and one capacitor, a word line connected to the gate electrode of the MOS transistor, a first voltage during selection to the word line, the second at the time of non-selection conduction of the MOS transistor by supplying a voltage, respectively, and means for controlling the cut-off, the first conductive said second voltage value
By setting the sign opposite to the pressure value, a depletion layer having a thickness of at least about the thickness of the gate insulating film is formed below the gate electrode when a maximum voltage is applied between the gate and the drain in a state where the MOS transistor is shut off. the semiconductor memory device being characterized in that as that.
JP3253269A 1991-10-01 1991-10-01 Semiconductor memory device Expired - Lifetime JP2838925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253269A JP2838925B2 (en) 1991-10-01 1991-10-01 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253269A JP2838925B2 (en) 1991-10-01 1991-10-01 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH0595092A JPH0595092A (en) 1993-04-16
JP2838925B2 true JP2838925B2 (en) 1998-12-16

Family

ID=17248934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253269A Expired - Lifetime JP2838925B2 (en) 1991-10-01 1991-10-01 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2838925B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310981A (en) * 1976-07-19 1978-01-31 Fujitsu Ltd Mos type field effect transistor
JPH03190163A (en) * 1989-12-20 1991-08-20 Fujitsu Ltd Semiconductor storage device

Also Published As

Publication number Publication date
JPH0595092A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
KR930000854B1 (en) Semiconductor memory cell and semiconductor memory
US6317357B1 (en) Vertical bipolar read access for low voltage memory cell
US6418050B2 (en) Circuits and methods for a memory cell with a trench plate trench capacitor and a vertical bipolar read device
US5768185A (en) Non-volatile semiconductor memory of a metal ferroelectric field effect transistor
US9595313B2 (en) Semiconductor device
JPH0745794A (en) Drive method for ferroelectric memory
US4084108A (en) Integrated circuit device
JP3039245B2 (en) Semiconductor memory device
JP2001256774A (en) Data read-out method for semiconductor memory, data write-in method, and driving method
JPH04256361A (en) Semiconductor memory device
US4943943A (en) Read-out circuit for semiconductor nonvolatile memory
JPH0152906B2 (en)
JP2838925B2 (en) Semiconductor memory device
JPH0586864B2 (en)
JPH0544195B2 (en)
JP2682393B2 (en) Static type semiconductor memory device
EP0022266B1 (en) Semiconductor circuit device
JP3835455B2 (en) Driving method of nonvolatile latch
US4492973A (en) MOS Dynamic memory cells and method of fabricating the same
JPH0897386A (en) Semiconductor non-volatile memory and operating method thereof
JPH0383289A (en) Mos type semiconductor storage device
JPH05110108A (en) Eprom
JPS6235559A (en) Semiconductor memory
JPH0629549A (en) Field-effect transistor
JPH0358475A (en) Semiconductor memory

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071016

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

EXPY Cancellation because of completion of term