JPH04256361A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH04256361A
JPH04256361A JP3017666A JP1766691A JPH04256361A JP H04256361 A JPH04256361 A JP H04256361A JP 3017666 A JP3017666 A JP 3017666A JP 1766691 A JP1766691 A JP 1766691A JP H04256361 A JPH04256361 A JP H04256361A
Authority
JP
Japan
Prior art keywords
ferroelectric film
main surface
region
well region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3017666A
Other languages
Japanese (ja)
Other versions
JP3089671B2 (en
Inventor
Yutaka Tajima
豊 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1766691A priority Critical patent/JP3089671B2/en
Publication of JPH04256361A publication Critical patent/JPH04256361A/en
Application granted granted Critical
Publication of JP3089671B2 publication Critical patent/JP3089671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a non-volatile semiconductor memory device which has adequately fast write and read speed, is free from restriction of read frequency, enables adequate polarization, is resistant to noises and has less leak current. CONSTITUTION:A structure which is provided with a P-well region 2, a ferroelectrics film 7 formed on a main surface of the P-well region 2, an electrode 5 formed on the ferroelectric film 7 and P<+>-regions 12, 13 formed at one end side and the other end side of the ferroelectric film 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、不揮発性の半導体記
憶装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonvolatile semiconductor memory device.

【0002】0002

【従来の技術】従来の半導体記憶装置としては、例えば
「集積回路工学(2)、回路技術編、柳井久義、永田穣
 共著、コロナ社発行  pp.128〜131」に記
載されたものがある。図10は、上記の文献に記載され
ているMOS−RAM形記憶装置の回路図であり、(a
)は6MOSスタティック形、(b)は4MOSダイナ
ミック形、(c)は3MOSダイナミック形、(d)は
1MOSダイナミック形を示す。しかし、上記のごとき
MOS−RAM形の半導体記憶装置においては、MOS
FETのONあるいはOFF状態によって情報を蓄える
ため、記憶装置の電源を切ると記憶しておいた情報が消
失する、すなわち記憶が揮発性であるという問題がある
2. Description of the Related Art Conventional semiconductor memory devices include those described, for example, in "Integrated Circuit Engineering (2), Circuit Technology Edition, co-authored by Hisayoshi Yanai and Minoru Nagata, published by Corona Publishing, pp. 128-131." FIG. 10 is a circuit diagram of the MOS-RAM type storage device described in the above-mentioned document, and (a
) shows a 6MOS static type, (b) shows a 4MOS dynamic type, (c) shows a 3MOS dynamic type, and (d) shows a 1MOS dynamic type. However, in the above-mentioned MOS-RAM type semiconductor memory device, the MOS
Since information is stored depending on the ON or OFF state of the FET, there is a problem that the stored information disappears when the power to the storage device is turned off, that is, the storage is volatile.

【0003】次に、第2の従来例としては、EPROM
(erasable−programmable RO
M)、E2PROM(electrically−er
asable−programmable ROM)等
の不揮発性トランジスタがある(例えば、「半導体デバ
イスの基礎」オーム社発行  pp.188〜189に
記載)。このタイプは電源を切っても記憶は保持される
。しかし、上記第2の従来例は、書き込み速度が非常に
遅い。例えばDRAMの書き込みサイクル時間が150
ns程度であるのに対し、E2PROMでは107ns
程度である(例えば、「日経マイクロデバイス」日経マ
グロウヒル社発行 1989年5月号 p58に記載)
。そのため、RAMとしては使用できないという問題が
ある。
Next, as a second conventional example, EPROM
(erasable-programmable RO
M), E2PROM (electrically-er
There are non-volatile transistors such as (as described in "Fundamentals of Semiconductor Devices" published by Ohm Publishing Co., Ltd., pp. 188-189). This type retains memory even if the power is turned off. However, in the second conventional example, the writing speed is very slow. For example, the write cycle time of DRAM is 150
ns, whereas in E2PROM it is 107ns.
(For example, described in "Nikkei Microdevice" published by Nikkei McGraw-Hill, May 1989 issue, p. 58)
. Therefore, there is a problem that it cannot be used as a RAM.

【0004】次に、第3の従来例としては、強誘電体膜
をキャパシタに用いたメモリ(例えば、「日経マイクロ
デバイス」日経マグロウヒル社発行 1989年4月号
  pp.66〜67に記載)がある。この装置は、電
源を切っても記憶は保持され、かつ高速で情報の書き込
み・読み出しができる。しかし、上記第3の従来例にお
いては、読み出しの際に分極反転を行うため、強誘電体
膜が疲労するので読み出し回数に制限があるという問題
がある。
Next, as a third conventional example, there is a memory using a ferroelectric film as a capacitor (for example, described in "Nikkei Micro Device" published by Nikkei McGraw-Hill, April 1989 issue, pp. 66-67). be. This device retains its memory even when the power is turned off, and can write and read information at high speed. However, in the third conventional example, since polarization inversion is performed during readout, the ferroelectric film becomes fatigued, so there is a problem in that the number of readouts is limited.

【0005】次に、第4の従来例としては、特開昭57
−172771号公報に記載されたものがある。この従
来例は、MOSFETのゲートキャパシタを、強誘電体
膜を用いたキャパシタと酸化膜を用いたキャパシタとの
直列接続で構成することにより、電源のオン・オフに関
係なく、酸化膜キャパシタとSi基板界面の電荷を保存
することによって不揮発性メモリを構成したものである
。図11は、上記の装置におけるゲートキャパシタ部分
の等価回路図である。図11において、200は強誘電
体膜キャパシタ、201は酸化膜キャパシタ、C1は強
誘電体膜キャパシタ200の容量、Q1は強誘電体膜キ
ャパシタ200の電荷、C2は酸化膜キャパシタ201
の容量、Q2は酸化膜キャパシタ201の電荷、V0は
ゲート電圧、V1は強誘電体膜キャパシタ200の電圧
、V2は酸化膜キャパシタ201の電圧である。しかし
、上記第4の従来例においては、次にごとき問題がある
。すなわち、       V1+V2=V0、V1=Q1/C1、V
2=Q2/C2      Q1=Q2(電荷保存則)
                        }
…(数1)      C1≫C2(一般的には左式が
成立)が成り立つため、       V1≒(C2/C1)V0、  V2≒V
0                …(数2)となり
、強誘電体膜キャパシタ200にほとんど電圧がかから
ない。そのため強誘電体膜を十分に分極させることが出
来ないという欠点がある。また、V1を大きくするため
にV0を大きくすると、酸化膜キャパシタ201の酸化
膜が絶縁破壊するという欠点もある。さらに強誘電体膜
が十分に分極できないため、Q2も小さいので、上記記
憶装置の記憶内容“1”と“0”との差を十分に大きく
することが出来ない。そのため信号線に印加された雑音
によって情報が容易に反転されてしまう、という問題が
ある。
Next, as a fourth conventional example, Japanese Patent Laid-Open No. 57
There is one described in JP-172771. In this conventional example, the gate capacitor of the MOSFET is constructed by connecting a capacitor using a ferroelectric film and a capacitor using an oxide film in series, so that the gate capacitor of the MOSFET is connected in series with the oxide film capacitor and the Si capacitor, regardless of whether the power is on or off. A nonvolatile memory is constructed by storing electric charge at the substrate interface. FIG. 11 is an equivalent circuit diagram of the gate capacitor portion in the above device. In FIG. 11, 200 is a ferroelectric film capacitor, 201 is an oxide film capacitor, C1 is the capacitance of the ferroelectric film capacitor 200, Q1 is the charge of the ferroelectric film capacitor 200, and C2 is the oxide film capacitor 201.
, Q2 is the charge of the oxide film capacitor 201, V0 is the gate voltage, V1 is the voltage of the ferroelectric film capacitor 200, and V2 is the voltage of the oxide film capacitor 201. However, the fourth conventional example has the following problems. That is, V1+V2=V0, V1=Q1/C1, V
2=Q2/C2 Q1=Q2 (charge conservation law)
}
...(Math. 1) Since C1≫C2 (generally the left equation holds) holds, V1≒(C2/C1)V0, V2≒V
0 (Equation 2), and almost no voltage is applied to the ferroelectric film capacitor 200. Therefore, there is a drawback that the ferroelectric film cannot be sufficiently polarized. Furthermore, if V0 is increased in order to increase V1, there is also the drawback that the oxide film of the oxide film capacitor 201 will undergo dielectric breakdown. Furthermore, since the ferroelectric film cannot be polarized sufficiently, Q2 is also small, and therefore the difference between the storage contents "1" and "0" of the storage device cannot be made sufficiently large. Therefore, there is a problem in that information is easily reversed by noise applied to the signal line.

【0006】次に、第5の従来例としては、特開昭58
−46680号公報に記載されたものがある。図12は
第5の従来例の等価回路図である。図12において、3
00は強誘電体膜キャパシタ、301は酸化膜キャパシ
タ、302は半導体、303は書き込み線である。この
装置においては、書き込み電圧を強誘電体膜キャパシタ
300と酸化膜キャパシタ301に印加し、電荷−Q1
、Q2によって半導体302の導電率を変化させること
により、情報を記憶させている。上記第5の従来例の問
題点は、前記第4の従来例と同じである。
[0006] Next, as a fifth conventional example, there is
There is one described in the -46680 publication. FIG. 12 is an equivalent circuit diagram of the fifth conventional example. In Figure 12, 3
00 is a ferroelectric film capacitor, 301 is an oxide film capacitor, 302 is a semiconductor, and 303 is a write line. In this device, a write voltage is applied to a ferroelectric film capacitor 300 and an oxide film capacitor 301, and a charge -Q1
, Q2 to change the conductivity of the semiconductor 302 to store information. The problems of the fifth conventional example are the same as those of the fourth conventional example.

【0007】次に、第6の従来例としては、特開昭61
−229350号公報に記載されたものがある。しかし
、この従来例においては、情報の読み出しの際に分極反
転を行うため、強誘電体が疲労するので読み出し回数に
制限が生じるという問題がある。
Next, as a sixth conventional example, there is
There is one described in JP-229350. However, in this conventional example, polarization inversion is performed when reading information, which causes fatigue of the ferroelectric material, which poses a problem in that the number of readings is limited.

【0008】次に、第7の従来例としては、「Hama
kawa Y., Matsui Y., Higum
a Y. and Nakagawa T.,“A N
onvolatile Memory FET Usi
ng PLT Film Gate,”Interna
tionalElectron Devices Me
eting, Tcchnical Digest,論
文番号14.6, pp.294−297,Dec.1
977」又は「Matsui Y., Nakano 
H., Okuyama M., Nakagawa 
T. and HamakawaY.,“PbTiO3
 Thin Film Gate Nonvolati
le Memory FET,” 1979 Proc
eedings ofthe 2nd Meeting
 on Ferroelectric Materia
ls and Their Applications
, 論文番号F−8, pp.239−244, 19
79」に記載されているものがある。上記の従来例は、
通常のMOSFETにおいて、ゲート酸化膜の代わりに
強誘電体膜を用いた構造となっている。しかし、上記第
7の従来例においては、強誘電体膜とSi基板界面に生
ずる界面準位によって、上記記憶装置がオフ状態になっ
ている時でもドレインから上記界面準位を経てソースへ
流れるリーク電流が大きいという問題がある。さらに強
誘電体の分極による電界が、上記界面準位に終端し、S
i基板表面に反転層が十分に形成されないという問題も
ある。
Next, as a seventh conventional example, "Hama
Kawa Y. , Matsui Y. , Higum
aY. and Nakagawa T. , “A N
onvolatile Memory FET Usi
ng PLT Film Gate,”Interna
tionalElectron Devices Me
eting, Tcchnical Digest, Paper No. 14.6, pp. 294-297, Dec. 1
977” or “Matsui Y., Nakano
H. , Okuyama M. , Nakagawa
T. and HamakawaY. , “PbTiO3
Thin Film Gate Nonvolati
le Memory FET,” 1979 Proc.
eedings of the 2nd Meeting
on Ferroelectric Materia
ls and Their Applications
, Paper No. F-8, pp. 239-244, 19
There are some listed in 79. The above conventional example is
A typical MOSFET has a structure in which a ferroelectric film is used instead of a gate oxide film. However, in the seventh conventional example, leakage flows from the drain to the source through the interface state even when the storage device is in the off state due to the interface state generated at the interface between the ferroelectric film and the Si substrate. The problem is that the current is large. Furthermore, the electric field due to the polarization of the ferroelectric material terminates at the above interface level, and S
There is also the problem that an inversion layer is not sufficiently formed on the surface of the i-substrate.

【0009】[0009]

【発明が解決しようとする課題】上記のように、第1の
従来例は記憶が揮発性であり、第2の従来例においては
書き込み速度が遅く、第3の実施例においては読み出し
回数に制限があり、第4、第5の実施例においては強誘
電体膜の分極が小さいので信号線に印加された雑音によ
って情報が容易に反転され、第6の実施例においては読
み出し回数に制限があり、第7の実施例においてはリー
ク電流が大きい、等の種々の問題があった。
[Problems to be Solved by the Invention] As mentioned above, the memory in the first conventional example is volatile, the writing speed in the second conventional example is slow, and the number of reads is limited in the third example. In the fourth and fifth embodiments, the polarization of the ferroelectric film is small, so the information is easily inverted by noise applied to the signal line, and in the sixth embodiment, the number of readouts is limited. , the seventh embodiment had various problems such as large leakage current.

【0010】本発明は、上記のごとき従来技術の種々の
問題を解決するためになされたものであり、書き込み、
読み出し速度が十分に速く、読み出し回数に制限がなく
、分極が十分に出来て雑音に強く、かつリーク電流の少
ない不揮発性の半導体記憶装置を提供することを目的と
する。
The present invention has been made in order to solve the various problems of the prior art as described above.
It is an object of the present invention to provide a non-volatile semiconductor memory device which has a sufficiently high read speed, has no limit on the number of reads, has sufficient polarization, is resistant to noise, and has low leakage current.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明おい
ては、第1導電型の半導体領域の主面上に強誘電体膜を
形成し、その上に電極を形成し、また、上記半導体領域
の主面に、上記強誘電体膜の一端側と他端側にそれぞれ
第1導電型の高濃度不純物領域を形成した構造を有する
ものである。また、請求項2に記載の発明においては、
請求項1に記載の構造をP型とN型とで形成し、それら
を相補的に接続した構造を有するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention is constructed as described in the claims. That is, in the invention according to claim 1, a ferroelectric film is formed on the main surface of the semiconductor region of the first conductivity type, an electrode is formed thereon, and a ferroelectric film is formed on the main surface of the semiconductor region of the first conductivity type. , has a structure in which high concentration impurity regions of the first conductivity type are formed at one end and the other end of the ferroelectric film, respectively. Furthermore, in the invention according to claim 2,
The structure according to claim 1 is formed of P type and N type, and has a structure in which they are complementary connected.

【0012】0012

【作用】本発明は、強誘電体膜の分極を用いて半導体領
域の抵抗値を変化させることによって記憶を保持するよ
うに構成したものである。すなわち、強誘電体膜の分極
電荷の極性に対応して半導体領域内に空乏層と蓄積層と
のいずれか一方を形成させ、上記半導体領域の電気抵抗
を増減させる。空乏層が成長する場合がOFF状態、蓄
積層が成長する場合がON状態に対応する。
[Operation] The present invention is configured to retain memory by changing the resistance value of a semiconductor region using polarization of a ferroelectric film. That is, either a depletion layer or an accumulation layer is formed in the semiconductor region in accordance with the polarity of the polarization charge of the ferroelectric film, thereby increasing or decreasing the electrical resistance of the semiconductor region. The case where the depletion layer grows corresponds to the OFF state, and the case where the accumulation layer grows corresponds to the ON state.

【0013】[0013]

【実施例】図1は、この発明の第1の実施例の断面図で
あり、図2は第1の実施例の等価回路図である。なお、
ワード線WLと一対のビット線BL、BL ̄に接続され
ているトランジスタ110、111、112は、本実施
例の記憶装置の外に形成される部分である。本実施例の
記憶装置は、接合型電界効果トランジスタ(以下JFE
Tと略す)の変形であり、JFETのゲートを強誘電体
膜で置き換えた構造である。本実施例においては、強誘
電体膜の分極によって半導体領域内部に空乏層を形成し
、上記半導体内部において電流が流れるチャネルの幅を
変化させる。つまり強誘電体膜による電流制御作用は、
通常のJFET同様にチャネルの空乏化による実効断面
積の変化に基づいている。この記憶装置では、分極電荷
の極性に対応して半導体領域内に空乏層と蓄積層とのい
ずれか一方を形成させ、上記半導体領域の電気抵抗を増
減させる。空乏層が成長する場合がOFF状態、蓄積層
が成長する場合がON状態に対応する。なお、ON状態
とOFF状態での電気抵抗の差を大きくするために、O
FF状態においては、チャネルが上記空乏層でピンチオ
フ出来るように、あるいはチャネルが上記空乏層と、上
記半導体領域と半導体基板の接合部の空乏層との両方で
ピンチオフできるように、上記半導体領域を十分に薄く
形成しておく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of the first embodiment. In addition,
Transistors 110, 111, and 112 connected to the word line WL and the pair of bit lines BL and BL are parts formed outside the memory device of this embodiment. The memory device of this embodiment is a junction field effect transistor (hereinafter referred to as JFE).
This is a modification of the JFET (abbreviated as T), and has a structure in which the gate of the JFET is replaced with a ferroelectric film. In this embodiment, a depletion layer is formed inside the semiconductor region by polarization of the ferroelectric film, and the width of a channel through which current flows inside the semiconductor is changed. In other words, the current control effect of the ferroelectric film is
Like a normal JFET, this is based on the change in effective cross section due to channel depletion. In this memory device, either a depletion layer or an accumulation layer is formed in the semiconductor region in accordance with the polarity of the polarized charges, thereby increasing or decreasing the electrical resistance of the semiconductor region. The case where the depletion layer grows corresponds to the OFF state, and the case where the accumulation layer grows corresponds to the ON state. In addition, in order to increase the difference in electrical resistance between the ON state and the OFF state, O
In the FF state, the semiconductor region is sufficiently thinned so that the channel can be pinched off at the depletion layer, or at both the depletion layer and the depletion layer at the junction of the semiconductor region and the semiconductor substrate. Form into a thin layer.

【0014】上記のごとき構成の記憶装置を用い、図2
の等価回路に示すように、強誘電体をゲートに持つN型
抵抗(N型半導体に形成した記憶装置、図1の4、6、
8、10、11の部分)101と強誘電体をゲートに持
つP型抵抗(P型半導体に形成した記憶装置、図1の2
、5、7、12、13の部分)102とを相補的に接続
した構成にすれば、N型抵抗101あるいはP型抵抗1
02のうちの一方は必ずOFF状態になるため、全体の
回路に定常的に流れる電流成分を無くすことが出来る。
Using a storage device having the above configuration, FIG.
As shown in the equivalent circuit of
8, 10, 11) 101 and a P-type resistor with a ferroelectric gate (memory device formed in a P-type semiconductor, 2 in Figure 1)
, 5, 7, 12, 13) 102 are connected in a complementary manner, the N-type resistor 101 or the P-type resistor 1
Since one of the circuits 02 is always in the OFF state, it is possible to eliminate the current component that constantly flows through the entire circuit.

【0015】以下、詳細に説明する。図1において、N
型基板1の主面にPウエル領域2、3を形成する。また
、Pウエル領域2の主面上に強誘電体膜7を介して電極
5を形成する。また、Pウエル領域2の主面に、強誘電
体膜7の一端側と他端側でそれぞれ上記強誘電体膜7か
らオフセットした位置にP+領域12、13を形成する
。また、Pウエル領域3の主面にNウエル領域4を設け
、上記Nウエル領域4の主面上に強誘電体膜8を介して
電極6を形成する。また、Nウエル領域4の主面に、強
誘電体膜8の一端側と他端側でそれぞれ上記強誘電体膜
8からオフセットした位置にN+領域10、11を形成
する。また、N型基板1の主面にN+領域9を形成し、
Pウエル領域3の主面にP+領域14を形成する。 そして電極5と電極6をトランジスタ110を介して入
力端子103に接続し、P+領域13とN+領域10を
出力端子104に接続し、N+領域11をトランジスタ
111を介してVDDに接続し、P+領域12をトラン
ジスタ112を介してVSSに接続する。また、N+領
域9をVDDに接続し、P+領域14をVSSに接続す
る。トランジスタ110はワード線WL、トランジスタ
111は一方のビット線BL、トランジスタ112は他
方のビット線BL ̄のそれぞれの信号に応じて開閉する
。なお、一対のビット線BLとBL ̄は相互に逆極性の
特性(一方がhighなら他方はlow)となり、また
、トランジスタ111と112は相互に逆極性のトラン
ジスタである。したがってトランジスタ111と112
は一方がONのときは他方もON、一方がOFFのとき
は他方もOFFになる。
[0015] This will be explained in detail below. In Figure 1, N
P well regions 2 and 3 are formed on the main surface of a mold substrate 1. Furthermore, an electrode 5 is formed on the main surface of the P-well region 2 with a ferroelectric film 7 interposed therebetween. Furthermore, P+ regions 12 and 13 are formed on the main surface of the P well region 2 at positions offset from the ferroelectric film 7 at one end and the other end of the ferroelectric film 7, respectively. Further, an N-well region 4 is provided on the main surface of the P-well region 3, and an electrode 6 is formed on the main surface of the N-well region 4 via a ferroelectric film 8. Further, N+ regions 10 and 11 are formed on the main surface of the N-well region 4 at positions offset from the ferroelectric film 8 at one end and the other end of the ferroelectric film 8, respectively. Further, an N+ region 9 is formed on the main surface of the N-type substrate 1,
A P+ region 14 is formed on the main surface of the P well region 3. Then, electrode 5 and electrode 6 are connected to input terminal 103 via transistor 110, P+ region 13 and N+ region 10 are connected to output terminal 104, N+ region 11 is connected to VDD via transistor 111, and P+ region 12 is connected to VSS via transistor 112. Further, N+ region 9 is connected to VDD, and P+ region 14 is connected to VSS. The transistor 110 opens and closes in response to signals from the word line WL, the transistor 111 from one bit line BL, and the transistor 112 from the other bit line BL. Note that the pair of bit lines BL and BL have mutually opposite polarity characteristics (if one is high, the other is low), and the transistors 111 and 112 are transistors with mutually opposite polarities. Therefore transistors 111 and 112
When one is ON, the other is also ON, and when one is OFF, the other is also OFF.

【0016】次に作用を説明する。まず、強誘電体膜の
分極電荷と印加電界の関係について説明する。図3は強
誘電体膜の分極電荷と印加電界の関係を示す特性図であ
る。図3に示すごとく、強誘電体膜は、電界をかけて分
極させた後、上記電界を零にしても残留分極Prを保持
する。分極を零にするためには、上記電界とは逆向きの
電界Ec(抗電界)を印加する必要がある。
Next, the operation will be explained. First, the relationship between the polarization charge of the ferroelectric film and the applied electric field will be explained. FIG. 3 is a characteristic diagram showing the relationship between the polarization charge of the ferroelectric film and the applied electric field. As shown in FIG. 3, after the ferroelectric film is polarized by applying an electric field, it retains the residual polarization Pr even when the electric field is reduced to zero. In order to make the polarization zero, it is necessary to apply an electric field Ec (coercive electric field) in the opposite direction to the above electric field.

【0017】次に本記憶装置の作用について説明する。 図4は書き込み時のタイムチャート、図5は読み出し時
のタイムチャートである。まず、図4および図1、図2
に基づいてデータの書き込みについて説明する。図4の
(i)区間に示すように、ワード線WL、一対のビット
線BL、BL ̄を全てON信号状態(BLはlow、B
L ̄はhighでONとする)にしてトランジスタ11
0、111、112を全てONにした後、入力端子IN
(103に相当)に正電圧を印加すると、強誘電体膜7
、8は分極し、Pウエル領域2の主面及びNウエル領域
4の主面に負電荷を誘起する。つまりPウエル領域2の
主面には空乏層が形成される。上記空乏層がPウエル領
域2とN型基板1の接合部に生じる空乏層に接すると、
P型抵抗102が著しく高抵抗になる。一方、Nウエル
領域4の主面には電子が誘起され、N型抵抗101の抵
抗は減少する。その結果、出力端子OUT(104に相
当)にはHighが出力される。また、図4の(ii)
区間に示すように、上記の状態で入力端子INを0にし
ても、強誘電体膜には残留分極が残るので、出力端子O
UTのHighは保持される。すなわち“1”が記憶さ
れたことになる。さらに、図4の(iii)、(iv)
区間に示すように、一旦、電源を切った後に再び電源を
印加した場合も、上記の残留分極は変化しないので、出
力端子OUTにはHighが現われる。すなわち記憶が
不揮発性である。次に、図4の(v)区間に示すように
、その後、入力端子INに負電圧を印加した場合を考え
る。Pウエル領域2の主面及びNウエル領域4の主面に
は正電荷が誘起されるように強誘電体7、8は分極する
。そのためNウエル領域4の主面に空乏層が生じてN型
抵抗101は著しく高抵抗となる。一方、Pウエル領域
2の主面には正孔が誘起され、P型抵抗102は低抵抗
になる。その結果、出力端子OUTにはlowがあらわ
れる。すなわち“0”を記憶(“1”の記憶を消去)し
たことになる。
Next, the operation of this storage device will be explained. FIG. 4 is a time chart for writing, and FIG. 5 is a time chart for reading. First, Figure 4, Figure 1, Figure 2
Data writing will be explained based on the following. As shown in section (i) of FIG.
L ̄ is high and ON) and the transistor 11
After turning on all 0, 111, and 112, input terminal IN
(corresponding to 103), when a positive voltage is applied to the ferroelectric film 7
, 8 are polarized and induce negative charges on the main surfaces of the P well region 2 and the N well region 4. In other words, a depletion layer is formed on the main surface of the P-well region 2. When the depletion layer comes into contact with the depletion layer generated at the junction between the P-well region 2 and the N-type substrate 1,
The P-type resistor 102 has a significantly high resistance. On the other hand, electrons are induced in the main surface of the N-well region 4, and the resistance of the N-type resistor 101 decreases. As a result, High is output to the output terminal OUT (corresponding to 104). Also, (ii) in Figure 4
As shown in the section, even if the input terminal IN is set to 0 in the above state, residual polarization remains in the ferroelectric film, so the output terminal O
The high level of UT is maintained. In other words, "1" is stored. Furthermore, (iii) and (iv) in FIG.
As shown in the section, even if the power is once turned off and then turned on again, the residual polarization does not change, so a High level appears at the output terminal OUT. In other words, memory is non-volatile. Next, consider the case where a negative voltage is subsequently applied to the input terminal IN, as shown in section (v) in FIG. The ferroelectric materials 7 and 8 are polarized so that positive charges are induced on the main surfaces of the P-well region 2 and the N-well region 4. Therefore, a depletion layer is generated on the main surface of the N-well region 4, and the resistance of the N-type resistor 101 becomes extremely high. On the other hand, holes are induced in the main surface of the P-well region 2, and the resistance of the P-type resistor 102 becomes low. As a result, a low level appears at the output terminal OUT. In other words, "0" is stored (the memory of "1" is erased).

【0018】次に、図5に基づいてデータの読み出しに
ついて説明する。読み出し時には、ワード線WLはOF
F信号状態のままにし、一対のビット線BL、BL ̄を
ON信号状態にする。図5に示すように、“1”が書き
込まれた後であれば、出力端子OUTにはVDD電圧す
なわちHighが出力される。また、“0”が書き込ま
れた後であれば、出力端子OUTにはVSS電圧すなわ
ちlowが出力される。上記のように、読み出しの際に
は、強誘電体膜の分極反転を行わない。したがって読み
出しを頻繁に行なっても強誘電体膜が疲労する畏れがな
い。また、電気学会発行の“誘電体現象論”の第160
頁〜第161頁にも記載されているように、強誘電体膜
の分極反転は10ns程度と極めて速いので、本実施例
においては、書き込み、読み出しを共に高速で行なうこ
とが出来る。
Next, data reading will be explained based on FIG. 5. During reading, word line WL is OF
Leave the F signal state as is, and set the pair of bit lines BL and BL ̄ to the ON signal state. As shown in FIG. 5, after "1" is written, the VDD voltage, that is, High is output to the output terminal OUT. Further, after "0" is written, the VSS voltage, that is, low, is output to the output terminal OUT. As described above, during readout, the polarization of the ferroelectric film is not inverted. Therefore, there is no risk of fatigue of the ferroelectric film even if reading is performed frequently. Also, No. 160 of “Dielectric Phenomenology” published by the Institute of Electrical Engineers of Japan.
As described on pages 1 to 161, polarization reversal of the ferroelectric film is extremely fast, about 10 ns, so in this embodiment, both writing and reading can be performed at high speed.

【0019】次に、本実施例におけるバンド構造につい
て説明する。図9は、P形領域2の主面に設けた電極5
、強誘電体膜7および半導体主面のバンド構造を示す図
である。図9において、(o),(i),(ii),(
v)のバンド構造は、図4に示した書き込み時のタイム
チャートの(o),(i),(ii),(v)にそれぞ
れ対応している。なお、図9において、EfMは電極の
フェルミ準位、EfはP形半導体のフェルミ準位、Ec
は半導体の伝導帯下端のポテンシャル、Evは半導体の
価電子帯上端のポテンシャルである。図9(o)は、電
圧が全く印加されていない初期状態である。この状態で
は、P形領域2の表面に電荷は誘起されていない。図9
(i)は、入力に正電圧が印加された場合のバンド構造
である。この状態では、P形領域2の主面に空乏層が生
じる。図9(ii)、(iv)は、入力電圧が除かれた
場合のバンド構造である。この状態では、強誘電体の残
留分極のために、P形領域2の主面の空乏層電荷は保持
されている。そのためP形領域2の主面のバンドは曲が
ったまま保持される。図9(v)は、入力に負電圧が印
加された場合のバンド構造である。この状態では、P形
領域2の主面のバンドは電子ポテンシャルの高い方へ曲
がり、正孔が誘起される。本実施例の記憶装置において
は、前記図5に示すように、記憶の読み出し時に入力電
圧は印加されない。したがって記憶の読み出し時に前述
のバンド構造が変化することはない。なお、N形領域4
の主面に設けた記憶装置のバンド構造も上記と同様に説
明することが出来る。
Next, the band structure in this embodiment will be explained. FIG. 9 shows an electrode 5 provided on the main surface of the P-type region 2.
, which shows the band structure of the ferroelectric film 7 and the main surface of the semiconductor. In FIG. 9, (o), (i), (ii), (
The band structure of v) corresponds to (o), (i), (ii), and (v) of the writing time chart shown in FIG. 4, respectively. In addition, in FIG. 9, EfM is the Fermi level of the electrode, Ef is the Fermi level of the P-type semiconductor, and Ec
is the potential at the bottom of the conduction band of the semiconductor, and Ev is the potential at the top of the valence band of the semiconductor. FIG. 9(o) shows an initial state where no voltage is applied. In this state, no charges are induced on the surface of the P-type region 2. Figure 9
(i) shows the band structure when a positive voltage is applied to the input. In this state, a depletion layer is formed on the main surface of the P-type region 2. FIGS. 9(ii) and (iv) show the band structures when the input voltage is removed. In this state, the depletion layer charge on the main surface of the P-type region 2 is retained due to the residual polarization of the ferroelectric material. Therefore, the band on the main surface of the P-type region 2 is kept bent. FIG. 9(v) shows the band structure when a negative voltage is applied to the input. In this state, the band on the main surface of the P-type region 2 bends toward the higher electron potential, and holes are induced. In the memory device of this embodiment, as shown in FIG. 5, no input voltage is applied when reading the memory. Therefore, the band structure described above does not change when reading the memory. Note that N-type region 4
The band structure of the storage device provided on the main surface of the device can also be explained in the same manner as above.

【0020】次に、図1の装置の製造方法について説明
する。図8は、図1の装置の製造工程を示す断面図であ
る。まず、図8(a)に示すごとく、N形基板1の主面
にPウエル領域2、3を形成する。次に、上記Pウエル
領域3の主面にNウエル領域4を設ける。次に、上記N
型基板1の主面、上記Pウエル領域2、3の主面及び上
記Nウエル領域4の主面において、素子を形成しない部
分にLOCOS酸化膜50を形成する。次に、図8(b
)に示すごとく、上記Pウエル領域2及び上記Nウエル
領域4の主面において、強誘電体膜を形成する部分に、
半導体領域と強誘電体膜界面の未結合手を消すために、
フッ素Fを注入する。次に、図8(c)に示すごとく、
上記Pウエル領域2及び上記Nウエル領域4の主面上に
、強誘電体膜7および8を形成し、さらに強誘電体膜7
の上に電極5を、強誘電体膜8の上に電極6をそれぞれ
形成する。次に、図8(d)に示すごとく、N形基板1
の主面にN+領域9を、Pウエル領域2の主面にP+領
域12、13を、Nウエル領域4の主面にN+領域10
、11を、Pウエル領域3の主面にP+領域14を、そ
れぞれ形成する。その後、必要な配線を行なうことによ
って図1に示す装置が完成する。
Next, a method for manufacturing the device shown in FIG. 1 will be explained. FIG. 8 is a cross-sectional view showing the manufacturing process of the device shown in FIG. First, as shown in FIG. 8(a), P well regions 2 and 3 are formed on the main surface of an N type substrate 1. Next, an N-well region 4 is provided on the main surface of the P-well region 3. Next, the above N
A LOCOS oxide film 50 is formed on the main surface of the mold substrate 1, the main surfaces of the P-well regions 2 and 3, and the main surface of the N-well region 4 where no element will be formed. Next, FIG. 8(b)
), on the main surfaces of the P-well region 2 and the N-well region 4, the portion where the ferroelectric film is to be formed is
In order to eliminate dangling bonds at the interface between the semiconductor region and the ferroelectric film,
Inject fluorine F. Next, as shown in FIG. 8(c),
Ferroelectric films 7 and 8 are formed on the main surfaces of the P-well region 2 and the N-well region 4, and the ferroelectric film 7
An electrode 5 is formed on the ferroelectric film 8, and an electrode 6 is formed on the ferroelectric film 8. Next, as shown in FIG. 8(d), the N-type substrate 1
N+ region 9 on the main surface of P well region 2, P+ regions 12 and 13 on the main surface of N well region 4, and N+ region 10 on the main surface of N well region 4.
, 11 and a P+ region 14 are formed on the main surface of the P well region 3, respectively. Thereafter, the device shown in FIG. 1 is completed by performing necessary wiring.

【0021】次に、図6は、本発明の第2の実施例の断
面図である。図6において、半導体基板20の主面上に
、絶縁層23を介してPウエル領域21及びNウエル領
域22を形成する。また、Pウエル領域21の主面上に
強誘電体膜7を介して電極5を設ける。また、Pウエル
領域21の主面に、強誘電体膜7の一端側と他端側でそ
れぞれ上記強誘電体膜7からオフセットした位置にP+
領域12、13を形成する。また、Nウエル領域22の
主面上に強誘電体膜8を介して電極6を設ける。また、
Nウエル領域22の主面に、強誘電体膜8の一端側と他
端側でそれぞれ上記強誘電体膜8からオフセットした位
置にN+領域10、11を形成する。そして、電極5と
電極6をトランジスタ110を介して入力端子103に
接続し、P+領域13とN+領域10を出力端子104
に接続し、N+領域11をトランジスタ111を介して
VDDに接続し、P+領域12をトランジスタ112を
介してVSSに接続する。上記図6の実施例の等価回路
は、図2の回路と同じであり、書き込み時のタイムチャ
ートは図4と、読み出し時のタイムチャートは図5と同
じである。
Next, FIG. 6 is a sectional view of a second embodiment of the present invention. In FIG. 6, a P well region 21 and an N well region 22 are formed on the main surface of a semiconductor substrate 20 with an insulating layer 23 in between. Furthermore, an electrode 5 is provided on the main surface of the P-well region 21 with a ferroelectric film 7 interposed therebetween. Further, on the main surface of the P well region 21, P+
Regions 12 and 13 are formed. Furthermore, an electrode 6 is provided on the main surface of the N-well region 22 with a ferroelectric film 8 interposed therebetween. Also,
N+ regions 10 and 11 are formed on the main surface of the N-well region 22 at positions offset from the ferroelectric film 8 at one end and the other end of the ferroelectric film 8, respectively. Then, electrode 5 and electrode 6 are connected to input terminal 103 via transistor 110, and P+ region 13 and N+ region 10 are connected to output terminal 104.
, N+ region 11 is connected to VDD through transistor 111, and P+ region 12 is connected to VSS through transistor 112. The equivalent circuit of the embodiment shown in FIG. 6 is the same as the circuit shown in FIG. 2, the writing time chart is the same as FIG. 4, and the reading time chart is the same as FIG. 5.

【0022】次に作用について説明する。まず、書き込
みについて、図4と図6に基づいて説明する。図4の(
i)区間では、強誘電体膜7直下のPウエル領域21の
主面から上記ウエル領域と絶縁層23の界面に至るまで
空乏層が生じ、P型抵抗102は著しく高抵抗になる。 その結果、出力端子104にはHighが出力される。 また、図4の(ii)、(iii)、(iv)区間につ
いては、前記図1の実施例の場合と同じであり、“1”
が不揮発状態で記憶される。次に、図4の(v)区間で
は、Pウエル領域21主面には正孔が誘起され、P型抵
抗102は低抵抗になる。また、強誘電体膜8直下のN
ウエル領域22の主面から上記ウエル領域と絶縁層23
の界面に至るまで空乏層が生じ、P型抵抗101は著し
く高抵抗になる。その結果、出力端子104にはlow
が現われる。 すなわち“0”を記憶(“1”の記憶を消去)したこと
になる。なお、読み出しについては、前記図1の実施例
と同じ作用である。
Next, the operation will be explained. First, writing will be explained based on FIGS. 4 and 6. In Figure 4 (
In the i) section, a depletion layer is generated from the main surface of the P well region 21 directly under the ferroelectric film 7 to the interface between the well region and the insulating layer 23, and the P-type resistor 102 has a significantly high resistance. As a result, High is output to the output terminal 104. Furthermore, sections (ii), (iii), and (iv) in FIG. 4 are the same as in the embodiment of FIG.
is stored in a non-volatile state. Next, in the section (v) of FIG. 4, holes are induced in the main surface of the P-well region 21, and the resistance of the P-type resistor 102 becomes low. In addition, N directly below the ferroelectric film 8
From the main surface of the well region 22 to the well region and the insulating layer 23
A depletion layer is generated up to the interface, and the P-type resistor 101 becomes extremely high in resistance. As a result, the output terminal 104 has a low
appears. In other words, "0" is stored (the memory of "1" is erased). Note that the reading operation is the same as that of the embodiment shown in FIG.

【0023】次に、図7は、本発明の第3の実施例の断
面図である。この実施例は、前記図1の実施例に示した
記憶装置において、P+領域12、13の一部分が強誘
電体膜7とオーバラップし、かつN+領域10、11の
一部分が強誘電体膜6とオーバラップしていることを特
徴としている。作用については、図1の実施例の場合と
同じであるが、この実施例においては、P+領域及びN
+領域の一部が強誘電体膜とオーバラップしているため
、チップ面積を小さくできるという利点がある。
Next, FIG. 7 is a sectional view of a third embodiment of the present invention. In this embodiment, in the memory device shown in the embodiment of FIG. It is characterized by the fact that it overlaps with The operation is the same as in the embodiment of FIG. 1, but in this embodiment, the P+ region and the N
Since a portion of the + region overlaps with the ferroelectric film, there is an advantage that the chip area can be reduced.

【0024】[0024]

【発明の効果】以上説明してきたように、この発明によ
れば、強誘電体膜の分極を利用して半導体領域の抵抗を
変化させ、上記抵抗によって情報を記憶するように構成
したことにより、下記のごとき効果が得られる。 (i)記憶保持に残留分極を利用するので不揮発性であ
る。 (ii)強誘電体膜の分極反転は十分に速いので、書き
込み、読み出しを共に高速で行なうことが出来る。 (iii)情報の読み出し時には分極反転させないので
、読み出し回数に制限はない。 (iv)情報の書き込みにおけるゲート電圧がすべて強
誘電体膜にかかるので、低いゲート電圧で強誘電体膜を
十分に分極反転させることができる。したがってノイズ
に強い。 (v)強誘電体膜とSi基板界面に多少の界面準位が生
じても、Si基板内に空乏層さえ形成できれば、本記憶
装置は動作する。 (vi)ゲートと、電極となる高濃度不純物層とがオフ
セットしていても本記憶装置は動作する。したがって本
記憶装置のオフ状態において前記界面準位によるリーク
電流は流れない。
As described above, according to the present invention, the resistance of the semiconductor region is changed using the polarization of the ferroelectric film, and information is stored using the resistance. The following effects can be obtained. (i) It is nonvolatile because residual polarization is used for memory retention. (ii) Since the polarization reversal of the ferroelectric film is sufficiently fast, both writing and reading can be performed at high speed. (iii) Since the polarization is not inverted when reading information, there is no limit to the number of times the information can be read. (iv) Since all the gate voltage for writing information is applied to the ferroelectric film, the polarization of the ferroelectric film can be sufficiently inverted with a low gate voltage. Therefore, it is resistant to noise. (v) Even if some interface states occur at the interface between the ferroelectric film and the Si substrate, the present memory device will operate as long as a depletion layer can be formed within the Si substrate. (vi) The present memory device operates even if the gate and the high concentration impurity layer serving as the electrode are offset. Therefore, when the present memory device is in the off state, no leakage current due to the interface state flows.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例の断面図。FIG. 1 is a sectional view of a first embodiment of the invention.

【図2】第1の実施例の等価回路図。FIG. 2 is an equivalent circuit diagram of the first embodiment.

【図3】強誘電体の分極電荷と印加電界の関係を示す特
性図。
FIG. 3 is a characteristic diagram showing the relationship between polarization charge of a ferroelectric material and applied electric field.

【図4】第1の実施例における書き込み時のタイムチャ
ート。
FIG. 4 is a time chart during writing in the first embodiment.

【図5】第1の実施例における読み出し時のタイムチャ
ート。
FIG. 5 is a time chart at the time of reading in the first embodiment.

【図6】本発明の第2の実施例の断面図。FIG. 6 is a sectional view of a second embodiment of the invention.

【図7】本発明の第3の実施例の断面図。FIG. 7 is a sectional view of a third embodiment of the invention.

【図8】第1の実施例の製造工程を示す断面図。FIG. 8 is a cross-sectional view showing the manufacturing process of the first embodiment.

【図9】第1の実施例におけるP形領域の主面に形成さ
れた電極、強誘電体膜及び上記P形領域のバンド構造を
示す図。
FIG. 9 is a diagram showing an electrode formed on the main surface of the P-type region, a ferroelectric film, and a band structure of the P-type region in the first embodiment.

【図10】第1の従来例の回路図。FIG. 10 is a circuit diagram of a first conventional example.

【図11】第4の従来例におけるゲートキャパシタ部分
の等価回路図。
FIG. 11 is an equivalent circuit diagram of a gate capacitor portion in a fourth conventional example.

【図12】第5の従来例の等価回路図。FIG. 12 is an equivalent circuit diagram of a fifth conventional example.

【符号の説明】[Explanation of symbols]

1…N型半導体基板 2、3…Pウエル領域 4…Nウエル領域 5、6…電極 7、8…強誘電体膜 9、10、11…N+領域 12、13、14…P+領域 20…半導体基板 21…Pウエル領域 22…Nウエル領域 23…絶縁層 101…強誘電体をゲートに持つN型抵抗102…強誘
電体をゲートに持つP型抵抗103…入力端子 104…出力端子 110、111、112…トランジスタ200…強誘電
体膜キャパシタ 201…酸化膜キャパシタ 300…強誘電体キャパシタ 301…酸化膜キャパシタ 302…半導体 303…書き込み線 WL…ワード線 BL、BL ̄…ビット線
1... N-type semiconductor substrate 2, 3... P well region 4... N well region 5, 6... Electrode 7, 8... Ferroelectric film 9, 10, 11... N+ region 12, 13, 14... P+ region 20... Semiconductor Substrate 21...P well region 22...N well region 23...Insulating layer 101...N-type resistor 102 having a ferroelectric material at its gate...P-type resistor 103 having a ferroelectric material at its gate...Input terminal 104...Output terminals 110, 111 , 112...Transistor 200...Ferroelectric film capacitor 201...Oxide film capacitor 300...Ferroelectric capacitor 301...Oxide film capacitor 302...Semiconductor 303...Write line WL...Word line BL, BL ̄...Bit line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体領域と、上記第1導電
型の半導体領域の主面上に形成された強誘電体膜と、上
記強誘電体膜上に形成された電極と、上記半導体領域の
主面に、上記強誘電体膜の一端側と他端側にそれぞれ形
成された第1導電型の高濃度不純物領域と、を備えた半
導体記憶装置。
1. A semiconductor region of a first conductivity type; a ferroelectric film formed on a main surface of the semiconductor region of the first conductivity type; an electrode formed on the ferroelectric film; A semiconductor memory device comprising, on a main surface of a semiconductor region, highly concentrated impurity regions of a first conductivity type formed at one end and the other end of the ferroelectric film.
【請求項2】第1導電型の半導体領域と、上記第1導電
型の半導体領域の主面上に形成された強誘電体膜と、上
記強誘電体膜上に形成された電極と、上記半導体領域の
主面に、上記強誘電体膜の一端側と他端側にそれぞれ形
成された第1導電型の高濃度不純物領域とを備えた第1
の半導体記憶装置と、第2導電型の半導体領域と、上記
第2導電型の半導体領域の主面上に形成された強誘電体
膜と、上記強誘電体膜上に形成された電極と、上記半導
体領域の主面に、上記強誘電体膜の一端側と他端側にそ
れぞれ形成された第2導電型の高濃度不純物領域とを備
えた第2の半導体記憶装置と、を相補的に接続したこと
を特徴とする半導体記憶装置。
2. A semiconductor region of a first conductivity type; a ferroelectric film formed on a main surface of the semiconductor region of the first conductivity type; an electrode formed on the ferroelectric film; a first conductivity type high concentration impurity region formed on one end side and the other end side of the ferroelectric film on the main surface of the semiconductor region;
a semiconductor memory device, a second conductivity type semiconductor region, a ferroelectric film formed on a main surface of the second conductivity type semiconductor region, and an electrode formed on the ferroelectric film; a second semiconductor memory device comprising a second conductivity type high concentration impurity region formed on one end side and the other end side of the ferroelectric film, respectively, on the main surface of the semiconductor region; A semiconductor memory device characterized by being connected.
JP1766691A 1991-02-08 1991-02-08 Semiconductor storage device Expired - Fee Related JP3089671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1766691A JP3089671B2 (en) 1991-02-08 1991-02-08 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1766691A JP3089671B2 (en) 1991-02-08 1991-02-08 Semiconductor storage device

Publications (2)

Publication Number Publication Date
JPH04256361A true JPH04256361A (en) 1992-09-11
JP3089671B2 JP3089671B2 (en) 2000-09-18

Family

ID=11950179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1766691A Expired - Fee Related JP3089671B2 (en) 1991-02-08 1991-02-08 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JP3089671B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250881A (en) * 1992-03-03 1993-09-28 Rohm Co Ltd Nonvolatile storage element
US5723885A (en) * 1995-06-08 1998-03-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a ferroelectric film and control method thereof
EP0869557A2 (en) * 1997-03-07 1998-10-07 Sharp Kabushiki Kaisha Ferroelectric memory cell and method of making the same
US5932904A (en) * 1997-03-07 1999-08-03 Sharp Laboratories Of America, Inc. Two transistor ferroelectric memory cell
EP0936675A2 (en) * 1998-01-02 1999-08-18 Sharp Kabushiki Kaisha C-axis oriented thin film ferroelectric transistor memory cell and method of making the same
US5942776A (en) * 1997-03-07 1999-08-24 Sharp Laboratories Of America, Inc. Shallow junction ferroelectric memory cell and method of making the same
US5962884A (en) * 1997-03-07 1999-10-05 Sharp Laboratories Of America, Inc. Single transistor ferroelectric memory cell with asymmetrical ferroelectric polarization and method of making the same
US6018171A (en) * 1997-03-07 2000-01-25 Sharp Laboratories Of America, Inc. Shallow junction ferroelectric memory cell having a laterally extending p-n junction and method of making the same
US6048738A (en) * 1997-03-07 2000-04-11 Sharp Laboratories Of America, Inc. Method of making ferroelectric memory cell for VLSI RAM array
WO2000077855A1 (en) * 1999-06-10 2000-12-21 Symetrix Corporation Ferroelectric field effect transistor, memory utilizing same, and method of operating same
US6441414B1 (en) 1998-10-13 2002-08-27 Symetrix Corporation Ferroelectric field effect transistor, memory utilizing same, and method of operating same
WO2006115075A1 (en) * 2005-04-22 2006-11-02 National Institute Of Advanced Industrial Science And Technology Semiconductor integrated circuit
WO2017065306A1 (en) * 2015-10-16 2017-04-20 学校法人東京理科大学 Semiconductor material, method for generating carrier in electroconductive layer, thermoelectric conversion element, and switching element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250881A (en) * 1992-03-03 1993-09-28 Rohm Co Ltd Nonvolatile storage element
US5723885A (en) * 1995-06-08 1998-03-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a ferroelectric film and control method thereof
US5942776A (en) * 1997-03-07 1999-08-24 Sharp Laboratories Of America, Inc. Shallow junction ferroelectric memory cell and method of making the same
EP0869557A3 (en) * 1997-03-07 1999-01-07 Sharp Kabushiki Kaisha Ferroelectric memory cell and method of making the same
US5932904A (en) * 1997-03-07 1999-08-03 Sharp Laboratories Of America, Inc. Two transistor ferroelectric memory cell
US5962884A (en) * 1997-03-07 1999-10-05 Sharp Laboratories Of America, Inc. Single transistor ferroelectric memory cell with asymmetrical ferroelectric polarization and method of making the same
US6018171A (en) * 1997-03-07 2000-01-25 Sharp Laboratories Of America, Inc. Shallow junction ferroelectric memory cell having a laterally extending p-n junction and method of making the same
US6048738A (en) * 1997-03-07 2000-04-11 Sharp Laboratories Of America, Inc. Method of making ferroelectric memory cell for VLSI RAM array
EP0869557A2 (en) * 1997-03-07 1998-10-07 Sharp Kabushiki Kaisha Ferroelectric memory cell and method of making the same
KR100288372B1 (en) * 1997-03-07 2001-06-01 존 엠. 매닝 Method for forming a semiconductor structure and ferroelectric memory cell
EP0936675A2 (en) * 1998-01-02 1999-08-18 Sharp Kabushiki Kaisha C-axis oriented thin film ferroelectric transistor memory cell and method of making the same
EP0936675A3 (en) * 1998-01-02 2001-08-08 Sharp Kabushiki Kaisha C-axis oriented thin film ferroelectric transistor memory cell and method of making the same
US6441414B1 (en) 1998-10-13 2002-08-27 Symetrix Corporation Ferroelectric field effect transistor, memory utilizing same, and method of operating same
US6339238B1 (en) 1998-10-13 2002-01-15 Symetrix Corporation Ferroelectric field effect transistor, memory utilizing same, and method of operating same
WO2000077855A1 (en) * 1999-06-10 2000-12-21 Symetrix Corporation Ferroelectric field effect transistor, memory utilizing same, and method of operating same
WO2006115075A1 (en) * 2005-04-22 2006-11-02 National Institute Of Advanced Industrial Science And Technology Semiconductor integrated circuit
JP2006303293A (en) * 2005-04-22 2006-11-02 National Institute Of Advanced Industrial & Technology Semiconductor integrated circuit
US8081499B2 (en) 2005-04-22 2011-12-20 National Institute Of Advanced Industrial Science And Technology Semiconductor integrated circuit
WO2017065306A1 (en) * 2015-10-16 2017-04-20 学校法人東京理科大学 Semiconductor material, method for generating carrier in electroconductive layer, thermoelectric conversion element, and switching element
JPWO2017065306A1 (en) * 2015-10-16 2018-09-20 学校法人東京理科大学 Semiconductor material, method for generating carriers in conductive layer, thermoelectric conversion element, and switching element

Also Published As

Publication number Publication date
JP3089671B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
US5978253A (en) Methods of operating integrated circuit memory devices having nonvolatile single transistor unit cells therein
US6714435B1 (en) Ferroelectric transistor for storing two data bits
US5541870A (en) Ferroelectric memory and non-volatile memory cell for same
US4771323A (en) Semiconductor memory device
US6285577B1 (en) Non-volatile memory using ferroelectric capacitor
US6327172B1 (en) Ferroelectric non-volatile memory device
US7167386B2 (en) Ferroelectric memory and operating method therefor
JPH0745794A (en) Drive method for ferroelectric memory
JP3089671B2 (en) Semiconductor storage device
US4084108A (en) Integrated circuit device
JP2982692B2 (en) Nonvolatile semiconductor memory device and driving method thereof
JPH1117123A (en) Non-volatile memory element
US4037243A (en) Semi conductor memory cell utilizing sensing of variations in PN junction current conrolled by stored data
JP3039245B2 (en) Semiconductor memory device
US6888736B2 (en) Ferroelectric transistor for storing two data bits
JP2001256774A (en) Data read-out method for semiconductor memory, data write-in method, and driving method
JP4042351B2 (en) Storage device
JP3131340B2 (en) Ferroelectric memory element
US4287574A (en) Memory cell with non-volatile memory elements
JP2002521781A (en) Resistive ferroelectric memory cell
US6455883B2 (en) Nonvolatile semiconductor memory
EP0022266B1 (en) Semiconductor circuit device
JP3320474B2 (en) Semiconductor storage device
JPH04253375A (en) Non-voltatile semiconductor memory device and its manufacture
JP2002198497A (en) Semiconductor device and driving method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees