JP2834593B2 - Lead frame material for bare bonding - Google Patents
Lead frame material for bare bondingInfo
- Publication number
- JP2834593B2 JP2834593B2 JP3080706A JP8070691A JP2834593B2 JP 2834593 B2 JP2834593 B2 JP 2834593B2 JP 3080706 A JP3080706 A JP 3080706A JP 8070691 A JP8070691 A JP 8070691A JP 2834593 B2 JP2834593 B2 JP 2834593B2
- Authority
- JP
- Japan
- Prior art keywords
- lead frame
- elements
- group
- bonding
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
- H01L2224/83805—Soldering or alloying involving forming a eutectic alloy at the bonding interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01012—Magnesium [Mg]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0104—Zirconium [Zr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Die Bonding (AREA)
- Wire Bonding (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はベアボンディング用リー
ドフレーム材料に係り、さらに詳しくはAu−Siの共
晶合金法を利用してベアボンディングを行なっても半導
体素子へのリードフレーム材料の成分元素による悪影響
の無い銅系リードフレーム材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead frame material for bare bonding, and more particularly, to a component element of a lead frame material for a semiconductor device even when bare bonding is performed using a eutectic alloy method of Au-Si. The present invention relates to a copper-based lead frame material that does not have an adverse effect due to the above.
【0002】[0002]
【従来の技術】半導体の組立工程は、素子(半導体チッ
プ)とリードフレームを接合するダイボンディング工
程、素子の配線とリードフレームをAuやAlのワイヤ
で接続するワイヤボンディング工程および樹脂で封止す
る工程よりなる。これらの工程においてリードフレーム
は加熱されるため、使用されるリードフレーム材料はこ
れらの加熱によっても軟化しないこと、即ち耐熱性が要
求される。2. Description of the Related Art Semiconductor assembling processes include a die bonding process of bonding an element (semiconductor chip) and a lead frame, a wire bonding process of connecting an element wiring and a lead frame with Au or Al wires, and sealing with a resin. Process. Since the lead frame is heated in these steps, the lead frame material used is required not to be softened by the heating, that is, to have heat resistance.
【0003】一方、熱伝導性や電気伝導性に優れる銅合
金はトランジスタ等、良好な熱放散性が要求される用途
を中心にリードフレーム材料として使用されている。On the other hand, copper alloys having excellent heat conductivity and electric conductivity are used as lead frame materials mainly for applications requiring good heat dissipation such as transistors.
【0004】これらの銅系リードフレーム材料は、耐熱
性や機械的強度、半田付け性など、リードフレーム材料
として要求される特性を満足させるために、各種添加元
素を含有した銅合金となっている。[0004] These copper-based lead frame materials are copper alloys containing various additive elements in order to satisfy characteristics required as lead frame materials such as heat resistance, mechanical strength, and solderability. .
【0005】上記組立工程の内、ダイボンディング工程
では、通常三種類の方法により素子とリードフレームが
接合されている。即ち、Au−Si共晶合金法、半田接
着法、導電性樹脂接着法である。これらの方法の内、A
u−Si共晶合金法は、370℃の共晶温度より50〜
70℃高い420〜440℃の温度に素子およびリード
フレームを数十秒間加熱することにより接合を行うもの
である。In the die bonding step of the above assembling steps, the element and the lead frame are usually joined by three types of methods. That is, an Au-Si eutectic alloy method, a solder bonding method, and a conductive resin bonding method. Of these methods, A
In the u-Si eutectic alloy method, the eutectic temperature of 370 ° C.
The bonding is performed by heating the element and the lead frame to a temperature of 420 to 440 ° C., which is 70 ° C. higher, for several tens of seconds.
【0006】ところで、半導体装置におけるコストダウ
ンの要求は強く、その一つの手段として、従来行ってい
たリードフレームへのめっきを省略してダイボンディン
グやワイヤボンディングを行うベアボンディングと称す
る技術がトランジスタを中心に広まりつつある。Meanwhile, there is a strong demand for cost reduction in semiconductor devices, and as one of the means, a technique called bare bonding, in which plating on a lead frame is omitted and die bonding or wire bonding is performed, is mainly used for transistors. Is spreading.
【0007】しかるに、各種添加元素を含有した従来の
合金よりなるリードフレームにつき前記のAu−Si共
晶合金法によりベアボンディングを行ったところ、半導
体素子の特性に変化をきたすことが判明した。However, when bare bonding was performed on a lead frame made of a conventional alloy containing various additive elements by the above-described Au-Si eutectic alloy method, it was found that the characteristics of the semiconductor element were changed.
【0008】[0008]
【発明が解決しようとする課題】本発明は、Au−Si
共晶合金法を用いてベアボンディングを行っても、半導
体素子の特性に変化をきたすことがなく、かつ、耐熱性
や機械的強度にも優れたベアボンディング用リードフレ
ーム材料を提供することを目的とする。SUMMARY OF THE INVENTION The present invention relates to Au-Si
The purpose of the present invention is to provide a bare bonding lead frame material which does not change the characteristics of a semiconductor element even when performing bare bonding using a eutectic alloy method, and has excellent heat resistance and mechanical strength. And
【0009】[0009]
【課題を解決するための手段】本発明のベアボンディン
グ用リードフレーム材料は、Ni:0.4〜1.0wt
%(0.4wt%は含まず)、Si:0.01〜0.2
5wt%、Zn:0.05〜1.0wt%を含有し、I
IIb族の元素を総量で0.01wt%以下、Vb族の
元素を総量で0.01wt%以下に制限し、残部実質的
にCuよりなることを特徴とする。According to the present invention, a lead frame material for bare bonding according to the present invention comprises Ni: 0. 4 to 1.0 wt
% (Excluding 0.4 wt%), Si: 0.01 to 0.2
5 wt%, Zn: 0.05-1.0 wt%,
The group IIb element is limited to 0.01 wt% or less in total, the Vb group element is limited to 0.01 wt% or less, and the balance is substantially composed of Cu.
【0010】本発明に係るベアボンディング用リードフ
レーム材料の第2の特徴とするところは、Ni:0.1
〜1.0wt%、Si:0.01〜0.25wt%、Z
n:0.05〜1.0wt%、Mn:0.01〜0.0
5wt%、Mg:0.001〜0.01wt%、Cr,
Ti,Zrの内から選ばれる1種または2種以上を0.
001〜0.01wt%を含有し、IIIb族の元素を
総量で0.01wt%以下、Vb族の元素を総量で0.
01wt%以下に制限し、残部実質的にCuよりなるこ
とを特徴とするベアボンディング用リードフレーム材料
に存在する。The second feature of the lead frame material for bare bonding according to the present invention is that Ni: 0.1
To 1.0 wt%, Si: 0.01 to 0.25 wt%, Z
n: 0.05 to 1.0 wt%, Mn: 0.01 to 0.0
5 wt%, Mg: 0.001 to 0.01 wt%, Cr,
One or two or more selected from Ti and Zr may be used in the amount of 0.1.
001-0.01 wt%, group IIIb elements in a total amount of 0.01 wt% or less, and group Vb group elements in a total amount of 0.1 wt%.
It is limited to 01 wt% or less, and the remainder substantially consists of Cu.
【0011】[0011]
【作用】以下に、本発明の作用を本発明をなすに際して
得た知見及び成分の限定理由とともに説明する。The function of the present invention will be described below together with the knowledge obtained when the present invention is carried out and the reasons for limiting the components.
【0012】本発明者は、従来合金について、Au−S
i共晶合金法を用いてベアボンディングを行った場合に
半導体素子の特性に変化をきたす原因の解明をまず行っ
た。The present inventor has reported that Au-S
First, the cause of the change in the characteristics of the semiconductor element when bare bonding was performed using the i-eutectic alloy method was clarified.
【0013】その結果、次のことが判明した。すなわ
ち、420〜440℃に数十秒間加熱される間に溶融し
たAu−Si層に接した銅合金リードフレーム中の成分
元素はAu−Si層を通過し、半導体素子中に拡散す
る。As a result, the following has been found. That is, the component elements in the copper alloy lead frame that are in contact with the Au-Si layer melted while being heated to 420 to 440 ° C for several tens of seconds pass through the Au-Si layer and diffuse into the semiconductor element.
【0014】半導体素子中に拡散する元素の中でも、周
期表のIIIb族に属するB,Al,Ga,InやVb
族に属するN,P,As,SbなどはSi半導体に対し
アクセプターおよびドナーとして作用しそれぞれP型お
よびN型半導体を形成する。トランジスタの場合、一般
にリードフレームと接合されるSi素子の底面部はコレ
クターになっており、この部分に前記のIIIb族ある
いはVb族に属する元素がリードフレームから侵入し、
不純物半導体を形成し、トランジスタの電気的特性に悪
影響を及ぼすものであることを見い出した。すなわち、
従来の銅合金は、耐熱性、機械的強度を高めるために各
種添加元素を含有せしめていたが、この添加元素や不純
物が、Au−Si共晶合金法を用いたベアボンディング
を行った場合には、半導体素子の電気的特性を悪化させ
る原因となっていたわけである。Among the elements that diffuse into the semiconductor element, B, Al, Ga, In and Vb belonging to group IIIb of the periodic table
N, P, As, Sb, and the like belonging to the group act as an acceptor and a donor for the Si semiconductor to form a P-type and N-type semiconductor, respectively. In the case of a transistor, the bottom portion of a Si element generally joined to a lead frame is a collector, and the element belonging to the group IIIb or Vb enters the portion from the lead frame,
It has been found that an impurity semiconductor is formed, which adversely affects the electrical characteristics of the transistor. That is,
Conventional copper alloys contain various additional elements in order to increase heat resistance and mechanical strength, but when these additional elements and impurities are bare bonded using the Au-Si eutectic alloy method, This is a cause of deteriorating the electrical characteristics of the semiconductor element.
【0015】本発明はかかる知見に基づいてなされたも
のである。The present invention has been made based on such findings.
【0016】まず本発明に係るベアボンディング用リー
ドフレーム材料の含有成分および成分の割合について説
明する。 (Ni)Niは次に説明するSiとともに強度および耐
熱性の向上に寄与する元素である。NiとSiは金属間
化合物を形成することにより強度および耐熱性を向上さ
せる。First, the components contained in the lead frame material for bare bonding according to the present invention and the proportions of the components will be described. (Ni) Ni is an element that contributes to improvement in strength and heat resistance together with Si described below. Ni and Si improve strength and heat resistance by forming an intermetallic compound.
【0017】Niの含有量が0.1wt%未満ではその
効果が少なく、また1.0wt%を超えて含有されると
強度や耐熱性は向上するものの導電率が低下する。よっ
てNi含有量は0.1〜1.0wt%とする。ただし、
請求項1においては、0.4〜1.0wt%(0.4w
tは含まず)についてのみ権利を請求する。SiもNi
とともに強度および耐熱性を向上させる元素である。S
i含有量が0.01wt%未満ではその効果は少なく、
また0.25wt%を超えて含有されると強度や耐熱性
は向上するものの導電率が低下する。よってSi含有量
は0.01〜0.25wt%とする。If the Ni content is less than 0.1 wt%, the effect is small. If the Ni content exceeds 1.0 wt%, the strength and heat resistance are improved, but the electrical conductivity is lowered. Therefore, the Ni content is set to 0.1 to 1.0 wt%. However,
In claim 1, 0.4 to 1.0 wt% (0.4 w
t is not included). Si is also Ni
Also, it is an element that improves strength and heat resistance. S
If the i content is less than 0.01 wt%, the effect is small,
If the content exceeds 0.25 wt%, the strength and heat resistance are improved, but the electrical conductivity is reduced. Therefore, the Si content is set to 0.01 to 0.25 wt%.
【0018】NiとSiは金属間化合物を形成すること
により強度や耐熱性の向上に寄与することから、Niと
Siの含有量の比率はNi/Si=4〜7であることが
望ましい。また、NiとSiの金属間化合物を均一微細
に析出させるための溶体化処理、冷間加工および時効処
理を含む製造工程を経ることによりその性能が発揮され
る。 (Zn)Znは半田の耐剥離性を向上させる元素であ
り、含有量が0.05wt%未満ではその効果は少な
く、また1.0wt%を超えて含有されてもその効果は
飽和する一方、導電率が低下する。よってZn含有量は
0.05〜1.0wt%とする。 (Mn)Mnは熱間加工性を向上させる元素であり、含
有量が0.01wt%未満ではその効果は少なく、また
0.05wt%を超えて含有されると造塊時の湯流れ性
が悪化して造塊歩留りが低下する。よってMn含有量は
0.01〜0.05wt%とする。 (Mg)Mgは不可避的に混入してくるSを安定したM
gとの化合物の形で母相中に固定させて熱間加工を可能
にするための必須の元素であり、含有量が0.001w
t%未満ではSは、MgSという安定した化合物の形と
はならず、Sは単体あるいはMnSの形で存在し、その
結果、SあるいはMnSは熱間圧延の加熱時または熱間
圧延中に粒界に移動して割れを生じさせるようになる。Since Ni and Si contribute to the improvement of strength and heat resistance by forming an intermetallic compound, the ratio of the contents of Ni and Si is preferably Ni / Si = 4-7. In addition, its performance is exhibited through a manufacturing process including a solution treatment, a cold working, and an aging treatment for uniformly and finely depositing an intermetallic compound of Ni and Si. (Zn) Zn is an element that improves the peeling resistance of the solder. Its effect is small when its content is less than 0.05 wt%, and its effect is saturated even when it is contained in excess of 1.0 wt%, The conductivity decreases. Therefore, the Zn content is set to 0.05 to 1.0 wt%. (Mn) Mn is an element that improves hot workability, and its effect is small when its content is less than 0.01 wt%, and when it is contained in excess of 0.05 wt%, the flowability of the molten metal at the time of agglomeration becomes poor. It deteriorates and the lumping yield decreases. Therefore, the Mn content is set to 0.01 to 0.05 wt%. (Mg) Mg is stable M
g is an essential element for enabling hot working by being fixed in the matrix in the form of a compound having a content of 0.001 wg.
At less than t%, S does not take the form of a stable compound called MgS, and S exists alone or in the form of MnS. As a result, S or MnS is granulated during heating during hot rolling or during hot rolling. Move to the world and cause cracks.
【0019】また、0.01wt%を超える含有量では
鋳塊中にCu+MgCu2の共晶(融点722℃)を生
じ、722℃以上の温度に加熱すると割れを発生し、溶
湯が酸化し、湯流れ性が悪化し、鋳塊を不健全とし、造
塊歩留りが低下する。よってMg含有量は0.001〜
0.01wt%とする。(Cr,Ti,Zr)Cr,T
i,Zrはいずれの元素も熱間加工性を向上させる元素
であり、含有量が0.001wt%未満はこの効果は少
なく、また、0.01wt%を超える含有量では造塊時
の湯流れ性が悪化し、造塊歩留りが低下する。よって、
Cr,Ti,Zrの含有量は0.001〜0.01wt
%とする。また、Cr,Ti,Zrの2種以上を含有す
る場合でも上記に説明した同じ理由から合計含有量は
0.001〜0.01wt%とする。(IIIb族、V
b族元素)一方、IIIb族、Vb族に属するB,A
l,Ga,In,N,P,As,Sbなどの元素は不純
物として原料に含まれており、製造された銅合金中に侵
入して来る。以上の説明から明らかなように、これらの
不純物の含有量は少ない方が良く、使用される半導体に
よっても異なるが、いずれの元素も総量で0.01wt
%以下とする。0.01wt%以下とすれば、Au−S
i共晶合金法によりベアボンディングを行ったとしても
半導体素子への拡散はほとんど防止することができる。If the content exceeds 0.01 wt%, a eutectic of Cu + MgCu 2 (melting point: 722 ° C.) is generated in the ingot, and when heated to a temperature of 722 ° C. or higher, cracks are generated, and the molten metal is oxidized, The flowability deteriorates, the ingot becomes unhealthy, and the ingot yield decreases. Therefore, the Mg content is 0.001 to
0.01 wt%. (Cr, Ti, Zr) Cr, T
i and Zr are elements that improve hot workability, and if the content is less than 0.001% by weight, the effect is small. Properties are deteriorated, and the yield of lumps is reduced. Therefore,
The content of Cr, Ti, Zr is 0.001-0.01 wt.
%. Even when two or more types of Cr, Ti, and Zr are contained, the total content is set to 0.001 to 0.01 wt% for the same reason described above. (IIIb group, V
Group B) On the other hand, B, A belonging to Group IIIb and Group Vb
Elements such as l, Ga, In, N, P, As, and Sb are contained in the raw material as impurities, and penetrate into the manufactured copper alloy. As is clear from the above description, the content of these impurities is preferably as small as possible and varies depending on the semiconductor used.
% Or less. If the content is 0.01 wt% or less, Au-S
Even if bare bonding is performed by the i-eutectic alloy method, diffusion to a semiconductor element can be almost prevented.
【0020】これらの元素が不純物として合金中に侵入
するのを防ぐためには、例えば次の手段を講ずればよ
い。使用する原料中の不純物の含有量を規制する。これ
らの元素を含む合金を溶解した後には十分に炉洗いを行
い、炉材に付着したこれらの元素を除去してから溶解す
る。また、るつぼもこれら元素を含まない材料からなる
ものを選ぶ。In order to prevent these elements from entering the alloy as impurities, for example, the following measures may be taken. Regulate the content of impurities in the raw materials used. After dissolving the alloy containing these elements, the furnace is sufficiently washed to remove these elements adhering to the furnace material and then melted. Also, a crucible made of a material not containing these elements is selected.
【0021】以上説明したように、本発明では、銅合金
において組成比を所定の割合にするとともに、IIIb
族、Vb族の元素の含有量を制限することにより、Au
−Si共晶合金法によるベアボンディングという用途の
適性の拡大を行うことができる。As described above, in the present invention, the composition ratio of the copper alloy is set to a predetermined ratio, and
By limiting the content of elements of group Vb and group Vb, Au
-The suitability for bare bonding by the Si eutectic alloy method can be expanded.
【0022】[0022]
【実施例】本発明に係るベアボンディング用リードフレ
ーム材料を実施例により説明する。EXAMPLES A lead frame material for bare bonding according to the present invention will be described with reference to examples.
【0023】表1に示す含有成分および含有の割合の合
金をクリプトル炉を使用し、木炭被覆下において大気中
で溶解し、鋳鉄製ブックモールドを用いて45mmt×
80mmw×200mmlの鋳塊を鋳造した後、この鋳
塊の表裏面を2.5mmずつ面削後870℃の温度で1
5mmtまで熱間圧延し、700℃以上の温度から30
℃/秒の速度で水冷した。The alloys having the contents and proportions shown in Table 1 were melted in the air using a kryptor furnace under a charcoal coating, and 45 mmt × using a book mold made of cast iron.
After casting an ingot of 80 mmw x 200 mml, the front and back surfaces of the ingot were beveled 2.5 mm at a time and then at a temperature of 870 ° C,
Hot-rolled to 5 mmt, from temperature of 700 ° C or higher to 30
Water cooling was performed at a rate of ° C / sec.
【0024】さらに、冷間圧延により0.5mmの板厚
にした後、500℃の温度で120分間の焼鈍を行な
い、その後冷間圧延により0.4mmtの板材を得た。
この板材につき導電率、硬さ、耐熱性の試験を行った。Further, after a thickness of 0.5 mm was obtained by cold rolling, annealing was performed at a temperature of 500 ° C. for 120 minutes, and then a 0.4 mmt sheet material was obtained by cold rolling.
This plate was tested for electrical conductivity, hardness and heat resistance.
【0025】これらの試料の試験結果を表2に示す。Table 2 shows the test results of these samples.
【0026】[0026]
【表1】 No. Cu Ni Si Zn Mn Mg Cr,Zr,Ti B,Al N,P Ga,In As,Sb 1 残部 0.12 0.023 0.08 ・・ ・・ ・・ Tr Tr 2 残部 0.25 0.046 0.20 0.020 0.004 ・・ Tr Tr 3 残部 0.40 0.098 0.08 0.021 0.003 Cr:0.005 Tr Tr 4 残部 0.60 0.112 0.20 0.019 0.006 Zr:0.004 Tr Tr 5 残部 0.91 0.184 0.70 0.021 0.005 Ti:0.005 Tr Tr 6 残部 1.24 0.283 0.68 ・・ ・・ ・・ Tr P:0.031 7 残部 0.04 0.009 0.08 ・・ ・・ ・・ Al:0.029 Tr 8 残部 0.43 0.121 0.01 ・・ ・・ ・・ Tr As:0.017 No.1:参考例 No.2〜No.5:本発明 No.6〜No.8:比較例 Tr:0.001wt%以下[Table 1] No. Cu Ni Si Zn Mn Mg Cr, Zr, Ti B, Al N, P Ga, In As, Sb 1 balance 0.12 0.023 0.08・ Tr Tr 3 remaining 0.40 0.098 0.08 0.021 0.003 Cr: 0.005 Tr Tr 4 remaining 0.60 0.112 0.20 0.019 0.006 Zr: 0.004 Tr Tr 5 remaining 0.91 0.184 0.70 0.021 0.005 Ti: 0.005 Tr Tr 6 remaining 1.24 0.283 0.68 ・ ・ ・ ・ ・ ・Tr P: 0.031 7 Remainder 0.04 0.009 0.08 ・ ・ ・ ・ ・ ・ Al: 0.029 Tr 8 Remainder 0.43 0.121 0.01 ・ ・ ・ ・ ・ ・ Tr As: 0.017 No. 1: Reference example No. 2-No. 5: Invention No. 5 6-No. 8: Comparative example Tr: 0.001 wt% or less
【0027】[0027]
【表2】 [Table 2]
【0028】試験方法は以下に説明する通りである。 (1)導電率は15mmw×300mlの試験片を用
い、ダブルブリッジにより測定した電気抵抗の値から算
出した。 (2)硬さは、マイクロビッカース硬さ計を用い荷重5
00grで測定した。 (3)耐熱性はソルトバスを用い、各温度で5分間の加
熱を行なった後硬さを測定し、加熱後の硬さが加熱前の
硬さの80%になる温度をもって評価した。 (4)半田の耐剥離性は、20mmw×50mmlの試
験片に60Sn−40Pbの半田を弱活性フラックスを
用い230℃の温度で5秒間浸漬して半田付けした後、
150℃の温度で500時間加熱後、2mmRで180
°曲げ戻しを行ない、剥離の有無を調べ評価した。The test method is as described below. (1) The conductivity was calculated from a value of electric resistance measured by a double bridge using a test piece of 15 mmw × 300 ml. (2) Hardness was measured using a micro Vickers hardness tester with a load of 5
It was measured at 00 gr. (3) The heat resistance was measured using a salt bath after heating for 5 minutes at each temperature, and the hardness was evaluated at a temperature at which the hardness after heating was 80% of the hardness before heating. (4) The peeling resistance of the solder was determined by immersing a 60Sn-40Pb solder in a test piece of 20mmw × 50mm for 5 seconds at a temperature of 230 ° C. using a weak active flux and soldering.
After heating at a temperature of 150 ° C. for 500 hours, 180 at 2 mmR
° The sheet was bent back, and the presence or absence of peeling was examined and evaluated.
【0029】表2から明らかなように、本発明合金N
o.2〜No.5は55%IACS以上の良好な導電率
とHv100以上の硬さ、および400℃以上の耐熱性
を有している。また、Znの効果により半田の耐剥離性
も良好である。As is clear from Table 2, the alloy N of the present invention
o. 2 to No. No. 5 has good electrical conductivity of 55% IACS or more, hardness of Hv 100 or more, and heat resistance of 400 ° C. or more. Also, the peeling resistance of the solder is good due to the effect of Zn.
【0030】これに対し比較例No.6はNiおよびS
i量が高く硬さや耐熱性には優れるものの導電率が48
%IACSと低い。またNo.7はNiおよびSi量が
低いため導電率は高いが耐熱性が370℃と低い。N
o.8はZn含有量が低いため半田の耐剥離性に劣って
いる。On the other hand, in Comparative Example No. 6 is Ni and S
The conductivity is 48 although the i content is high and the hardness and heat resistance are excellent.
Low as% IACS. No. Sample No. 7 has high conductivity due to low amounts of Ni and Si, but has low heat resistance of 370 ° C. N
o. No. 8 is inferior in the peeling resistance of the solder because the Zn content is low.
【0031】また、本発明合金No.2〜No.5はII
Ib族およびV族bに属する元素がそれぞれ0.01w
t%以下であるためAu−Si合金法によりべアボンデ
ィングされてもSi素子の特性を劣化させない。これに
対し比較例No.6〜No.8はIIIb族およびVb族
の元素をそれぞれ0.01wt%を越えて含有している
ためAu−Si共晶合金法によりべアボンディングされ
るとSi素子の特性を劣化させる。Further, the alloy No. 1 of the present invention. 2 to No. 5 is II
Each of the elements belonging to Group Ib and Group Vb is 0.01 w
Since the content is less than t%, the characteristics of the Si element are not deteriorated even if the bonding is performed by the Au-Si alloy method. On the other hand, in Comparative Example No. 6-No. 8 contains elements of Group IIIb and Group Vb in excess of 0.01 wt%, respectively, and thus, when subjected to bare bonding by the Au-Si eutectic alloy method, the characteristics of the Si element are deteriorated.
【0032】[0032]
【発明の効果】以上説明の通り、本発明に係るベアボン
ディング用リードフレーム材料は上記の構成を有してい
るため、導電性、強度、および耐熱性に優れ、かつ安価
であり、めっきを省略しAu−Si共晶合金法によるダ
イボンディングを行ってもSi素子に悪影響を及ぼさな
いという効果を有している。As described above, since the lead frame material for bare bonding according to the present invention has the above structure, it is excellent in conductivity, strength and heat resistance, is inexpensive, and does not require plating. However, there is an effect that even if die bonding by the Au-Si eutectic alloy method is performed, there is no adverse effect on the Si element.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 9/06 H01L 21/52 H01L 21/60 H01L 23/48Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 9/06 H01L 21/52 H01L 21/60 H01L 23/48
Claims (2)
t%は含まず)、Si:0.01〜0.25wt%、Z
n:0.05〜1.0wt%を含有し、IIIb族の元
素を総量で0.01wt%以下、Vb族の元素を総量で
0.01wt%以下に制限し、残部実質的にCuよりな
ることを特徴とするベアボンディング用リードフレーム
材料。1. Ni: 0. 4 to 1.0 wt% (0.4 w
t% is not included), Si: 0.01 to 0.25 wt%, Z
n: contains 0.05 to 1.0 wt%, restricts the group IIIb element to a total amount of 0.01 wt% or less, the Vb group element to a total amount of 0.01 wt% or less, and substantially consists of Cu. A lead frame material for bare bonding, characterized in that:
0.01〜0.25wt%、Zn:0.05〜1.0w
t%、Mn:0.01〜0.05wt%、Mg:0.0
01〜0.01wt%、Cr,Ti,Zrの内から選ば
れる1種または2種以上を0.001〜0.01wt%
を含有し、IIIb族の元素を総量で0.01wt%以
下、Vb族の元素を総量で0.01wt%以下に制限
し、残部実質的にCuよりなることを特徴とするベアボ
ンディング用リードフレーム材料。2. Ni: 0.1 to 1.0 wt%, Si:
0.01 to 0.25 wt%, Zn: 0.05 to 1.0 w
t%, Mn: 0.01 to 0.05 wt%, Mg: 0.0
01 to 0.01 wt%, one or more selected from Cr, Ti and Zr in an amount of 0.001 to 0.01 wt%
Wherein the total amount of group IIIb elements is 0.01 wt% or less, the total amount of Vb group elements is 0.01 wt% or less, and the balance is substantially made of Cu. material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3080706A JP2834593B2 (en) | 1990-06-25 | 1991-03-19 | Lead frame material for bare bonding |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-165954 | 1990-06-25 | ||
JP16595490 | 1990-06-25 | ||
JP3080706A JP2834593B2 (en) | 1990-06-25 | 1991-03-19 | Lead frame material for bare bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04218632A JPH04218632A (en) | 1992-08-10 |
JP2834593B2 true JP2834593B2 (en) | 1998-12-09 |
Family
ID=26421680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3080706A Expired - Fee Related JP2834593B2 (en) | 1990-06-25 | 1991-03-19 | Lead frame material for bare bonding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2834593B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3739214B2 (en) * | 1998-03-26 | 2006-01-25 | 株式会社神戸製鋼所 | Copper alloy sheet for electronic parts |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5834536B2 (en) * | 1980-06-06 | 1983-07-27 | 日本鉱業株式会社 | Copper alloy for lead material of semiconductor equipment |
JPS63297531A (en) * | 1987-05-29 | 1988-12-05 | Kobe Steel Ltd | Copper alloy for terminal and lead frame having excellent hot workability and its production |
-
1991
- 1991-03-19 JP JP3080706A patent/JP2834593B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04218632A (en) | 1992-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4822560A (en) | Copper alloy and method of manufacturing the same | |
JPS61183426A (en) | High strength, highly conductive heat resisting copper alloy | |
JPS6314056B2 (en) | ||
JPS60218440A (en) | Copper alloy for lead frame | |
JPS59170231A (en) | High tension conductive copper alloy | |
JPH10152737A (en) | Copper alloy material and its production | |
JP2834593B2 (en) | Lead frame material for bare bonding | |
JPS63307232A (en) | Copper alloy | |
JPS6239218B2 (en) | ||
JP2001127076A (en) | Alloy member for die bonding | |
JPS6215621B2 (en) | ||
JPS60152646A (en) | Material for lead frame for semiconductor | |
JP2797846B2 (en) | Cu alloy lead frame material for resin-encapsulated semiconductor devices | |
KR930012180B1 (en) | Lead frame material of bare bonding | |
RU2041783C1 (en) | Solder for soldering mainly copper and copper-based alloys | |
JP2790220B2 (en) | Lead frame material for bare bonding | |
JP2597773B2 (en) | Method for producing high-strength copper alloy with low anisotropy | |
JPS6365038A (en) | Copper alloy for electronic and electrical equipment | |
JPH10298679A (en) | High strength and high conductivity copper alloy | |
JPS63247320A (en) | Manufacture of copper alloy for electrical and electronic parts | |
JPH0219432A (en) | High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material | |
JPH02129326A (en) | High strength copper alloy | |
JPS6240335A (en) | Copper alloy for lead frame material | |
JP2994230B2 (en) | Copper alloy for semiconductor lead frame with excellent Ag plating properties | |
JPS6157379B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |