JPH04218632A - Lead frame material for bare bonding - Google Patents

Lead frame material for bare bonding

Info

Publication number
JPH04218632A
JPH04218632A JP3080706A JP8070691A JPH04218632A JP H04218632 A JPH04218632 A JP H04218632A JP 3080706 A JP3080706 A JP 3080706A JP 8070691 A JP8070691 A JP 8070691A JP H04218632 A JPH04218632 A JP H04218632A
Authority
JP
Japan
Prior art keywords
lead frame
elements
content
bonding
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3080706A
Other languages
Japanese (ja)
Other versions
JP2834593B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Yasuhiro Nakajima
安啓 中島
Tatsuya Kinoshita
達也 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3080706A priority Critical patent/JP2834593B2/en
Publication of JPH04218632A publication Critical patent/JPH04218632A/en
Application granted granted Critical
Publication of JP2834593B2 publication Critical patent/JP2834593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To provide a lead frame material for bare bonding causing no change in the characteristics of semiconductor device and excellent in heat resistance and mechanical strength even if subjected to bare bonding by using an Au-Si eutectic alloy method. CONSTITUTION:The material has a characteristic of having a composition consisting of, by weight, 0.1-1.0% Ni, 0.01-0.25% Si, 0.05-1.0% Zn, <=0.01%, in total, of group IIIb elements, <=0.01%, in total, of group Vb elements, and the balance essentially Cu. Moreover, the material is characterized by further containing, beside the above components, 0.01-0.05% Mn, 0.001-0.01% Mg, and 0.001-0.01% of one or >=2 elements selected from Cr, Ti, and Zr.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はベアボンディング用リー
ドフレーム材料に係り、さらに詳しくはAu−Siの共
晶合金法を利用してベアボンディングを行なっても半導
体素子へのリードフレーム材料の成分元素による悪影響
の無い銅系リードフレーム材料に関する。
[Industrial Application Field] The present invention relates to a lead frame material for bare bonding, and more specifically, even if bare bonding is performed using an Au-Si eutectic alloy method, the constituent elements of the lead frame material are not attached to a semiconductor element. This invention relates to copper-based lead frame materials that do not have any adverse effects.

【0002】0002

【従来の技術】半導体の組立工程は、素子(半導体チッ
プ)とリードフレームを接合するダイボンディング工程
、素子の配線とリードフレームをAuやAlのワイヤで
接続するワイヤボンディング工程および樹脂で封止する
工程よりなる。これらの工程においてリードフレームは
加熱されるため、使用されるリードフレーム材料はこれ
らの加熱によっても軟化しないこと、即ち耐熱性が要求
される。
[Background Art] Semiconductor assembly processes include a die bonding process for bonding an element (semiconductor chip) and a lead frame, a wire bonding process for connecting element wiring and lead frames with Au or Al wires, and sealing with resin. Consists of processes. Since the lead frame is heated in these steps, the lead frame material used must not be softened by the heating, that is, must have heat resistance.

【0003】一方、熱伝導性や電気伝導性に優れる銅合
金はトランジスタ等、良好な熱放散性が要求される用途
を中心にリードフレーム材料として使用されている。
On the other hand, copper alloys with excellent thermal conductivity and electrical conductivity are used as lead frame materials mainly in applications such as transistors that require good heat dissipation.

【0004】これらの銅系リードフレーム材料は、耐熱
性や機械的強度、半田付け性など、リードフレーム材料
として要求される特性を満足させるために、各種添加元
素を含有した銅合金となっている。
[0004] These copper-based lead frame materials are copper alloys containing various additive elements in order to satisfy the properties required for lead frame materials such as heat resistance, mechanical strength, and solderability. .

【0005】上記組立工程の内、ダイボンディング工程
では、通常三種類の方法により素子とリードフレームが
接合されている。即ち、Au−Si共晶合金法、半田接
着法、導電性樹脂接着法である。これらの方法の内、A
u−Si共晶合金法は、370℃の共晶温度より50〜
70℃高い420〜440℃の温度に素子およびリード
フレームを数十秒間加熱することにより接合を行うもの
である。
[0005] Among the above assembly processes, in the die bonding process, the element and the lead frame are usually bonded using three types of methods. That is, the Au-Si eutectic alloy method, the solder bonding method, and the conductive resin bonding method. Among these methods, A
The u-Si eutectic alloy method has a eutectic temperature of 50 to 370°C.
Bonding is performed by heating the element and lead frame to a temperature of 420 to 440°C, which is 70°C higher, for several tens of seconds.

【0006】ところで、半導体装置におけるコストダウ
ンの要求は強く、その一つの手段として、従来行ってい
たリードフレームへのめっきを省略してダイボンディン
グやワイヤボンディングを行うベアボンディングと称す
る技術がトランジスタを中心に広まりつつある。
By the way, there is a strong demand for cost reduction in semiconductor devices, and as one means of achieving this, a technology called bare bonding, in which die bonding or wire bonding is performed without plating the lead frame, which was conventionally done, is being used mainly for transistors. It is becoming widespread.

【0007】しかるに、各種添加元素を含有した従来の
合金よりなるリードフレームにつき前記のAu−Si共
晶合金法によりベアボンディングを行ったところ、半導
体素子の特性に変化をきたすことが判明した。
However, when bare bonding was performed using the Au--Si eutectic alloy method on a lead frame made of a conventional alloy containing various additive elements, it was found that the characteristics of the semiconductor element changed.

【0008】[0008]

【発明が解決しようとする課題】本発明は、Au−Si
共晶合金法を用いてベアボンディングを行っても、半導
体素子の特性に変化をきたすことがなく、かつ、耐熱性
や機械的強度にも優れたベアボンディング用リードフレ
ーム材料を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention is directed to Au-Si
The purpose is to provide a lead frame material for bare bonding that does not cause any change in the characteristics of semiconductor elements even when bare bonding is performed using the eutectic alloy method, and has excellent heat resistance and mechanical strength. shall be.

【0009】[0009]

【課題を解決するための手段】本発明に係るベアボンデ
ィング用リードフレーム材料の第1の特徴とするところ
は、Ni:0.1〜1.0wt%、Si:0.01〜0
.25wt%、Zn:0.05〜1.0wt%を含有し
、IIIb族の元素を総量で0.01wt%以下、Vb
族の元素を総量で0.01wt%以下に制限し、残部実
質的にCuよりなることを特徴とするベアボンディング
用リードフレーム材料。
[Means for Solving the Problems] The first feature of the lead frame material for bare bonding according to the present invention is that Ni: 0.1 to 1.0 wt%, Si: 0.01 to 0.
.. 25 wt%, Zn: 0.05 to 1.0 wt%, total amount of IIIb group elements not more than 0.01 wt%, Vb
A lead frame material for bare bonding, characterized in that the total amount of group elements is limited to 0.01 wt% or less, and the remainder is substantially made of Cu.

【0010】本発明に係るベアボンディング用リードフ
レーム材料の第2の特徴とするところは、Ni:0.1
〜1.0wt%、Si:0.01〜0.25wt%、Z
n:0.05〜1.0wt%、Mn:0.01〜0.0
5wt%、Mg:0.001〜0.01wt%、Cr,
Ti,Zrの内から選ばれる1種または2種以上を0.
001〜0.01wt%を含有し、IIIb族の元素を
総量で0.01wt%以下、Vb族の元素を総量で0.
01wt%以下に制限し、残部実質的にCuよりなるこ
とを特徴とするベアボンディング用リードフレーム材料
に存在する。
The second feature of the lead frame material for bare bonding according to the present invention is that Ni: 0.1
~1.0wt%, Si:0.01~0.25wt%, Z
n: 0.05 to 1.0 wt%, Mn: 0.01 to 0.0
5wt%, Mg: 0.001-0.01wt%, Cr,
One or more selected from Ti and Zr in an amount of 0.
001 to 0.01 wt%, the total amount of group IIIb elements is 0.01 wt% or less, and the total amount of group Vb elements is 0.01 wt% or less.
The lead frame material for bare bonding is limited to 0.01 wt% or less, and the remainder is substantially made of Cu.

【0011】[0011]

【作用】以下に、本発明の作用を本発明をなすに際して
得た知見及び成分の限定理由とともに説明する。
[Function] The function of the present invention will be explained below along with the findings obtained in making the present invention and the reasons for limiting the components.

【0012】本発明者は、従来合金について、Au−S
i共晶合金法を用いてベアボンディングを行った場合に
半導体素子の特性に変化をきたす原因の解明をまず行っ
た。
[0012] Regarding the conventional alloy, the present inventor has discovered that Au-S
We first investigated the cause of changes in the characteristics of semiconductor devices when bare bonding is performed using the i-eutectic alloy method.

【0013】その結果、次のことが判明した。すなわち
、420〜440℃に数十秒間加熱される間に溶融した
Au−Si層に接した銅合金リードフレーム中の成分元
素はAu−Si層を通過し、半導体素子中に拡散する。
As a result, the following was found. That is, the component elements in the copper alloy lead frame that are in contact with the melted Au-Si layer while being heated to 420 to 440° C. for several tens of seconds pass through the Au-Si layer and diffuse into the semiconductor element.

【0014】半導体素子中に拡散する元素の中でも、周
期表のIIIb族に属するB,Al,Ga,InやVb
族に属するN,P,As,SbなどはSi半導体に対し
アクセプターおよびドナーとして作用しそれぞれP型お
よびN型半導体を形成する。トランジスタの場合、一般
にリードフレームと接合されるSi素子の底面部はコレ
クターになっており、この部分に前記のIIIb族ある
いはVb族に属する元素がリードフレームから侵入し、
不純物半導体を形成し、トランジスタの電気的特性に悪
影響を及ぼすものであることを見い出した。すなわち、
従来の銅合金は、耐熱性、機械的強度を高めるために各
種添加元素を含有せしめていたが、この添加元素や不純
物が、Au−Si共晶合金法を用いたベアボンディング
を行った場合には、半導体素子の電気的特性を悪化させ
る原因となっていたわけである。
Among the elements that diffuse into semiconductor elements, B, Al, Ga, In, and Vb, which belong to Group IIIb of the periodic table, are
N, P, As, Sb, etc. belonging to the group act as acceptors and donors for Si semiconductors, forming P-type and N-type semiconductors, respectively. In the case of a transistor, the bottom part of the Si element that is generally joined to the lead frame is a collector, and elements belonging to the IIIb group or Vb group enter this part from the lead frame.
It was discovered that the impurity semiconductor forms and has an adverse effect on the electrical characteristics of transistors. That is,
Conventional copper alloys contain various additive elements to increase heat resistance and mechanical strength, but these additive elements and impurities can cause problems when bare bonding is performed using the Au-Si eutectic alloy method. This caused deterioration of the electrical characteristics of the semiconductor element.

【0015】本発明はかかる知見に基づいてなされたも
のである。
The present invention has been made based on this knowledge.

【0016】まず本発明に係るベアボンディング用リー
ドフレーム材料の含有成分および成分の割合について説
明する。 (Ni)Niは次に説明するSiとともに強度および耐
熱性の向上に寄与する元素である。NiとSiは金属間
化合物を形成することにより強度および耐熱性を向上さ
せる。
First, the components and proportions of the components contained in the lead frame material for bare bonding according to the present invention will be explained. (Ni) Ni is an element that contributes to improving strength and heat resistance together with Si, which will be described next. Ni and Si improve strength and heat resistance by forming an intermetallic compound.

【0017】Niの含有量が0.1wt%未満ではその
効果は少なく、また1.0wt%を超えて含有されると
強度や耐熱性は向上するものの導電率が低下する。よっ
てNi含有量は0.1〜1.0wt%とする。 (Si)SiもNiとともに強度および耐熱性を向上さ
せる元素である。Si含有量が0.01wt%未満では
その効果は少なく、また0.25wt%を超えて含有さ
れると強度や耐熱性は向上するものの導電率が低下する
。よってSi含有量は0.01〜0.25wt%とする
If the Ni content is less than 0.1 wt%, the effect will be small, and if it is more than 1.0 wt%, the strength and heat resistance will improve, but the electrical conductivity will decrease. Therefore, the Ni content is set to 0.1 to 1.0 wt%. (Si) Si is also an element that improves strength and heat resistance together with Ni. If the Si content is less than 0.01 wt%, the effect will be small, and if the Si content exceeds 0.25 wt%, the electrical conductivity will decrease although the strength and heat resistance will improve. Therefore, the Si content is set to 0.01 to 0.25 wt%.

【0018】NiとSiは金属間化合物を形成すること
により強度や耐熱性の向上に寄与することから、Niと
Siの含有量の比率はNi/Si=4〜7であることが
望ましい。また、NiとSiの金属間化合物を均一微細
に析出させるための溶体化処理、冷間加工および時効処
理を含む製造工程を経ることによりその性能が発揮され
る。 (Zn)Znは半田の耐剥離性を向上させる元素であり
、含有量が0.05wt%未満ではその効果は少なく、
また1.0wt%を超えて含有されてもその効果は飽和
する一方、導電率が低下する。よってZn含有量は0.
05〜1.0wt%とする。 (Mn)Mnは熱間加工性を向上させる元素であり、含
有量が0.01wt%未満ではその効果は少なく、また
0.05wt%を超えて含有されると造塊時の湯流れ性
が悪化して造塊歩留りが低下する。よってMn含有量は
0.01〜0.05wt%とする。 (Mg)Mgは不可避的に混入してくるSを安定したM
gとの化合物の形で母相中に固定させて熱間加工を可能
にするための必須の元素であり、含有量が0.001w
t%未満ではSは、MgSという安定した化合物の形と
はならず、Sは単体あるいはMnSの形で存在し、その
結果、SあるいはMnSは熱間圧延の加熱時または熱間
圧延中に粒界に移動して割れを生じさせるようになる。
Since Ni and Si contribute to improving strength and heat resistance by forming an intermetallic compound, it is desirable that the content ratio of Ni and Si is Ni/Si=4 to 7. Further, its performance is demonstrated through a manufacturing process including solution treatment, cold working, and aging treatment to uniformly and finely precipitate the intermetallic compound of Ni and Si. (Zn) Zn is an element that improves the peeling resistance of solder, and its effect is small when the content is less than 0.05 wt%.
Moreover, even if the content exceeds 1.0 wt%, the effect is saturated, while the conductivity decreases. Therefore, the Zn content is 0.
05 to 1.0 wt%. (Mn) Mn is an element that improves hot workability. If the content is less than 0.01 wt%, the effect is small, and if the content exceeds 0.05 wt%, the flowability during agglomeration will be reduced. This worsens and the yield of agglomerates decreases. Therefore, the Mn content is set to 0.01 to 0.05 wt%. (Mg) Mg is a stable M
It is an essential element to enable hot processing by fixing it in the matrix in the form of a compound with g, and the content is 0.001w.
At less than t%, S does not take the form of a stable compound called MgS, and S exists alone or in the form of MnS, and as a result, S or MnS forms particles during heating or during hot rolling. It moves into the world and causes cracks.

【0019】また、0.01wt%を超える含有量では
鋳塊中にCu+MgCu2の共晶(融点722℃)を生
じ、722℃以上の温度に加熱すると割れを発生し、溶
湯が酸化し、湯流れ性が悪化し、鋳塊を不健全とし、造
塊歩留りが低下する。よってMg含有量は0.001〜
0.01wt%とする。(Cr,Ti,Zr)Cr,T
i,Zrはいずれの元素も熱間加工性を向上させる元素
であり、含有量が0.001wt%未満はこの効果は少
なく、また、0.01wt%を超える含有量では造塊時
の湯流れ性が悪化し、造塊歩留りが低下する。よって、
Cr,Ti,Zrの含有量は0.001〜0.01wt
%とする。また、Cr,Ti,Zrの2種以上を含有す
る場合でも上記に説明した同じ理由から合計含有量は0
.001〜0.01wt%とする。(IIIb族、Vb
族元素)一方、IIIb族、Vb族に属するB,Al,
Ga,In,N,P,As,Sbなどの元素は不純物と
して原料に含まれており、製造された銅合金中に侵入し
て来る。以上の説明から明らかなように、これらの不純
物の含有量は少ない方が良く、使用される半導体によっ
ても異なるが、いずれの元素も総量で0.01wt%以
下とする。0.01wt%以下とすれば、Au−Si共
晶合金法によりベアボンディングを行ったとしても半導
体素子への拡散はほとんど防止することができる。
In addition, if the content exceeds 0.01 wt%, a eutectic of Cu + MgCu2 (melting point 722°C) will occur in the ingot, and when heated to a temperature of 722°C or higher, cracks will occur, the molten metal will oxidize, and the melt flow will be interrupted. The properties of the ingots deteriorate, the ingot becomes unsound, and the yield of ingots decreases. Therefore, the Mg content is 0.001~
It is set to 0.01wt%. (Cr, Ti, Zr) Cr, T
Both i and Zr are elements that improve hot workability, and if the content is less than 0.001 wt%, this effect will be small, and if the content is more than 0.01 wt%, the flow of the hot metal during ingot formation will be reduced. The properties deteriorate and the agglomeration yield decreases. Therefore,
The content of Cr, Ti, and Zr is 0.001 to 0.01wt
%. Furthermore, even if two or more of Cr, Ti, and Zr are contained, the total content is 0 for the same reason explained above.
.. 001 to 0.01 wt%. (IIIb group, Vb
Group elements) On the other hand, B, Al, which belong to Group IIIb and Group Vb,
Elements such as Ga, In, N, P, As, and Sb are contained in raw materials as impurities and invade the manufactured copper alloy. As is clear from the above description, the content of these impurities should be as low as possible, and although it varies depending on the semiconductor used, the total content of each element should be 0.01 wt% or less. If the content is 0.01 wt% or less, diffusion into semiconductor elements can be almost prevented even if bare bonding is performed using the Au-Si eutectic alloy method.

【0020】これらの元素が不純物として合金中に侵入
するのを防ぐためには、例えば次の手段を講ずればよい
。使用する原料中の不純物の含有量を規制する。これら
の元素を含む合金を溶解した後には十分に炉洗いを行い
、炉材に付着したこれらの元素を除去してから溶解する
。また、るつぼもこれら元素を含まない材料からなるも
のを選ぶ。
In order to prevent these elements from entering the alloy as impurities, the following measures may be taken, for example. Regulate the content of impurities in the raw materials used. After melting the alloy containing these elements, the furnace is thoroughly washed to remove these elements attached to the furnace material before melting. In addition, a crucible made of a material that does not contain these elements is also selected.

【0021】以上説明したように、本発明では、銅合金
において組成比を所定の割合にするとともに、IIIb
族、Vb族の元素の含有量を制限することにより、Au
−Si共晶合金法によるベアボンディングという用途の
適性の拡大を行うことができる。
As explained above, in the present invention, the copper alloy has a predetermined composition ratio, and IIIb
By limiting the content of group Vb elements, Au
The applicability of bare bonding using the -Si eutectic alloy method can be expanded.

【0022】[0022]

【実施例】本発明に係るベアボンディング用リードフレ
ーム材料を実施例により説明する。
EXAMPLES The lead frame material for bare bonding according to the present invention will be explained by way of examples.

【0023】表1に示す含有成分および含有の割合の合
金をクリプトル炉を使用し、木炭被覆下において大気中
で溶解し、鋳鉄製ブックモールドを用いて45mmt×
80mmw×200mmlの鋳塊を鋳造した後、この鋳
塊の表裏面を2.5mmずつ面削後870℃の温度で1
5mmtまで熱間圧延し、700℃以上の温度から30
℃/秒の速度で水冷した。
[0023] An alloy having the components and proportions shown in Table 1 was melted in the atmosphere under charcoal coating using a Kryptor furnace, and was molded into a 45 mm thick piece using a cast iron book mold.
After casting an ingot of 80 mmw x 200 mml, the front and back sides of this ingot were milled by 2.5 mm and heated at a temperature of 870°C.
Hot rolled to 5mmt and rolled at 30°C from a temperature of 700℃ or higher.
Water cooling was performed at a rate of °C/sec.

【0024】さらに、冷間圧延により0.5mmの板厚
にした後、500℃の温度で120分間の焼鈍を行ない
、その後冷間圧延により0.4mmtの板材を得た。 この板材につき導電率、硬さ、耐熱性の試験を行った。
[0024] Furthermore, after cold rolling the plate to a thickness of 0.5 mm, it was annealed at a temperature of 500°C for 120 minutes, and then cold rolled to obtain a plate of 0.4 mm. This plate material was tested for electrical conductivity, hardness, and heat resistance.

【0025】これらの試料の試験結果を表2に示す。The test results for these samples are shown in Table 2.

【0026】[0026]

【表1】[Table 1]

【0027】[0027]

【表2】[Table 2]

【0028】試験方法は以下に説明する通りである。 (1)導電率は15mmw×300mlの試験片を用い
、ダブルブリッジにより測定した電気抵抗の値から算出
した。 (2)硬さは、マイクロビッカース硬さ計を用い荷重5
00grで測定した。 (3)耐熱性はソルトバスを用い、各温度で5分間の加
熱を行なった後硬さを測定し、加熱後の硬さが加熱前の
硬さの80%になる温度をもって評価した。 (4)半田の耐剥離性は、20mmw×50mmlの試
験片に60Sn−40Pbの半田を弱活性フラックスを
用い230℃の温度で5秒間浸漬して半田付けした後、
150℃の温度で500時間加熱後、2mmRで180
°曲げ戻しを行ない、剥離の有無を調べ評価した。
The test method is as described below. (1) Electrical conductivity was calculated from the electrical resistance value measured with a double bridge using a 15 mmw x 300 ml test piece. (2) Hardness was measured using a micro Vickers hardness tester under a load of 5
Measured at 00gr. (3) Heat resistance was evaluated by measuring the hardness after heating at each temperature for 5 minutes using a salt bath, and at the temperature at which the hardness after heating was 80% of the hardness before heating. (4) Peeling resistance of solder was determined by immersing 60Sn-40Pb solder into a 20 mmw x 50 mml test piece using weakly activated flux for 5 seconds at a temperature of 230°C.
After heating at a temperature of 150℃ for 500 hours, 180℃ at 2mmR.
°Bending was performed and the presence or absence of peeling was examined and evaluated.

【0029】表2から明らかなように、本発明合金No
.1〜No.5は55%IACS以上の良好な導電率と
Hv100以上の硬さ、および400℃以上の耐熱性を
有している。また、Znの効果により半田の耐剥離性も
良好である。
As is clear from Table 2, the alloy No.
.. 1~No. No. 5 has good electrical conductivity of 55% IACS or higher, hardness of Hv100 or higher, and heat resistance of 400°C or higher. Furthermore, due to the effect of Zn, the solder peeling resistance is also good.

【0030】これに対し比較例No.6はNiおよびS
i量が高く硬さや耐熱性には優れるものの導電率が48
%IACSと低い。またNo.7はNiおよびSi量が
低いため導電率は高いが耐熱性が370℃と低い。No
.8はZn含有量が低いため半田の耐剥離性に劣ってい
る。
On the other hand, Comparative Example No. 6 is Ni and S
Although it has a high i content and excellent hardness and heat resistance, its conductivity is 48
%IACS is low. Also No. Sample No. 7 has a high electrical conductivity due to the low amounts of Ni and Si, but has a low heat resistance of 370°C. No
.. No. 8 has a low Zn content and is therefore inferior in solder peeling resistance.

【0031】また、本発明合金No.1〜No.5はI
IIb族およびV族bに属する元素がそれぞれ0.01
wt%以下であるためAu−Si合金法によりベアボン
ディングされてもSi素子の特性を劣化させない。これ
に対し比較例No.6〜No.8はIIIb族およびV
b族の元素をそれぞれ0.01wt%を越えて含有して
いるためAu−Si共晶合金法によりベアボンディング
されるとSi素子の特性を劣化させる。
[0031] Also, the alloy No. of the present invention. 1~No. 5 is I
Elements belonging to group IIb and group Vb are each 0.01
Since it is less than wt%, the characteristics of the Si element will not deteriorate even if bare bonding is performed by the Au-Si alloy method. On the other hand, comparative example No. 6~No. 8 is group IIIb and V
Since each element of group B is contained in an amount exceeding 0.01 wt%, the characteristics of the Si element deteriorate when bare bonding is performed by the Au-Si eutectic alloy method.

【0032】[0032]

【発明の効果】以上説明の通り、本発明に係るベアボン
ディング用リードフレーム材料は上記の構成を有してい
るため、導電性、強度、および耐熱性に優れ、かつ安価
であり、めっきを省略しAu−Si共晶合金法によるダ
イボンディングを行ってもSi素子に悪影響を及ぼさな
いという効果を有している。
[Effects of the Invention] As explained above, the lead frame material for bare bonding according to the present invention has the above structure, so it has excellent conductivity, strength, and heat resistance, is inexpensive, and eliminates plating. This has the effect that even if die bonding is performed using the Au-Si eutectic alloy method, it does not adversely affect the Si element.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Ni:0.1〜1.0wt%、Si:
0.01〜0.25wt%、Zn:0.05〜1.0w
t%を含有し、IIIb族の元素を総量で0.01wt
%以下、Vb族の元素を総量で0.01wt%以下に制
限し、残部実質的にCuよりなることを特徴とするベア
ボンディング用リードフレーム材料。
[Claim 1] Ni: 0.1 to 1.0 wt%, Si:
0.01-0.25wt%, Zn: 0.05-1.0w
t%, and the total amount of group IIIb elements is 0.01wt.
A lead frame material for bare bonding, characterized in that the total amount of Vb group elements is limited to 0.01 wt% or less, and the remainder substantially consists of Cu.
【請求項2】  Ni:0.1〜1.0wt%、Si:
0.01〜0.25wt%、Zn:0.05〜1.0w
t%、Mn:0.01〜0.05wt%、Mg:0.0
01〜0.01wt%、Cr,Ti,Zrの内から選ば
れる1種または2種以上を0.001〜0.01wt%
を含有し、IIIb族の元素を総量で0.01wt%以
下、Vb族の元素を総量で0.01wt%以下に制限し
、残部実質的にCuよりなることを特徴とするベアボン
ディング用リードフレーム材料。
[Claim 2] Ni: 0.1 to 1.0 wt%, Si:
0.01-0.25wt%, Zn: 0.05-1.0w
t%, Mn: 0.01-0.05wt%, Mg: 0.0
01 to 0.01 wt%, 0.001 to 0.01 wt% of one or more selected from Cr, Ti, and Zr.
A lead frame for bare bonding, characterized in that the group IIIb elements are limited to a total amount of 0.01 wt% or less, the Vb group elements are limited to a total amount of 0.01 wt% or less, and the remainder substantially consists of Cu. material.
JP3080706A 1990-06-25 1991-03-19 Lead frame material for bare bonding Expired - Fee Related JP2834593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080706A JP2834593B2 (en) 1990-06-25 1991-03-19 Lead frame material for bare bonding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16595490 1990-06-25
JP2-165954 1990-06-25
JP3080706A JP2834593B2 (en) 1990-06-25 1991-03-19 Lead frame material for bare bonding

Publications (2)

Publication Number Publication Date
JPH04218632A true JPH04218632A (en) 1992-08-10
JP2834593B2 JP2834593B2 (en) 1998-12-09

Family

ID=26421680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080706A Expired - Fee Related JP2834593B2 (en) 1990-06-25 1991-03-19 Lead frame material for bare bonding

Country Status (1)

Country Link
JP (1) JP2834593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949343A1 (en) * 1998-03-26 1999-10-13 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Copper alloy sheet for electronic parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572851A (en) * 1980-06-06 1982-01-08 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS63297531A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd Copper alloy for terminal and lead frame having excellent hot workability and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572851A (en) * 1980-06-06 1982-01-08 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS63297531A (en) * 1987-05-29 1988-12-05 Kobe Steel Ltd Copper alloy for terminal and lead frame having excellent hot workability and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949343A1 (en) * 1998-03-26 1999-10-13 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Copper alloy sheet for electronic parts

Also Published As

Publication number Publication date
JP2834593B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS59170231A (en) High tension conductive copper alloy
JPS63307232A (en) Copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH10152737A (en) Copper alloy material and its production
JPS6215621B2 (en)
JPS6239218B2 (en)
JPS6335699B2 (en)
JPH04218632A (en) Lead frame material for bare bonding
JPS60152646A (en) Material for lead frame for semiconductor
KR930012180B1 (en) Lead frame material of bare bonding
JP2001127076A (en) Alloy member for die bonding
JP3379380B2 (en) High strength and high conductivity copper alloy
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JP2790220B2 (en) Lead frame material for bare bonding
JPS63247320A (en) Manufacture of copper alloy for electrical and electronic parts
JPS6311418B2 (en)
KR100267810B1 (en) The manufacturing method of cu-alloy with lead frame material
JPS63192835A (en) Lead material for ceramic package
JPH04231445A (en) Production of electrifying material
JPH02129326A (en) High strength copper alloy
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6240335A (en) Copper alloy for lead frame material
JPS6362833A (en) Copper alloy for lead for semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees