JP2828974B2 - Method for manufacturing compound semiconductor integrated circuit - Google Patents

Method for manufacturing compound semiconductor integrated circuit

Info

Publication number
JP2828974B2
JP2828974B2 JP62068817A JP6881787A JP2828974B2 JP 2828974 B2 JP2828974 B2 JP 2828974B2 JP 62068817 A JP62068817 A JP 62068817A JP 6881787 A JP6881787 A JP 6881787A JP 2828974 B2 JP2828974 B2 JP 2828974B2
Authority
JP
Japan
Prior art keywords
pattern
compound semiconductor
integrated circuit
semiconductor integrated
selective growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62068817A
Other languages
Japanese (ja)
Other versions
JPS63236313A (en
Inventor
勝 宮▲崎▼
佑一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62068817A priority Critical patent/JP2828974B2/en
Publication of JPS63236313A publication Critical patent/JPS63236313A/en
Application granted granted Critical
Publication of JP2828974B2 publication Critical patent/JP2828974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体によるMESFETに係わり、特にGa
As MESFETとこれらを中心に集積した半導体装置の製造
方法に関する。 〔従来の技術〕 従来のGaAs MESFETはゲート電極とソース電極の直列
抵抗Rs8を極力小さくして性能を向上させるため、高耐
熱ゲート電極(例えばタングステンシリサイド、WSix
を用いたセルフアライン形構造で作られていた。n+−低
抵抗層をゲート電極の周辺にセルフアラインで形成する
ため、Siイオン打込み技術および選択成長技術が使われ
ている。選択成長層はSiイオン打込みで作つた層より、
高濃度不純物濃度が得やすいので低抵抗化できる、
イオン打込みではアニール温度が750℃以上必要である
が、選択成長温度は約600〜700℃と低くできるので、ゲ
ート電極のシヨツトキ接合の劣化は少ない、などの利点
がある。しかし選択成長にも欠点がある。例えば単位FE
Tや、少規模集積回路では、特に問題にならなかつたこ
とが、中,大規模集積回路で顕在化した。すなわち、選
択成長にパターンの粗・密依存性があり、GaAs成長層の
膜厚が孤立パターン群では厚く、密集パターン群では薄
くなるという問題である。 この膜厚では、LSIを作る上で許容限界を越えて、例
えば密集部では300nmの膜厚のものが、孤立部では600〜
800nmとなつた。また厚く成長する孤立パターンの領域
では、SiO2膜やWSix膜上の成長不用部に結晶粒が析出
し、外観不良となつた。これは配線工程の歩留りを著し
く低下させ、LSI化を困難なものとしていた。なおn+
択成長で得られたFETは、ジヤパニーズ・ジヤーナル
オブ アプライド フイジツクス23,5(1984年)第L342
から第L345 Japanese Journal of Applied Physics,Vo
l.23,No.5(1984)PPL342−345)に記載されている。 〔発明が解決しようとする問題点〕 上記従来技術はLSI化には配慮がされておらず、選択
成長膜厚にパターンの粗・密依存性がある問題があつ
た。 本発明の目的は上述した欠点を解決し、LSI化に適し
た選択成長技術で素子を製造することにある。 〔問題点を解決するための手段〕 SiO2やWSix材の表面をさけてGaAs表面だけにGaAsを選
択的に成長させる技術には主にMOCVDと呼ばれる成長法
が用いられる。実験の結果、成長膜厚にパターンの粗・
密依存性があることがわかつた。 実験では第4図の如き孤立パターンAと距離lで分け
られた周辺パターンBを用いて、lを零から十分離して
変化させたときのパターンAに成長したGaAs層の厚さd
を求めた。パターンA,BはGaAs表面が現われており、両
者はSiO240で分離されている。この結果を第5図に示
す。上記成長層の厚さdは、lが小さいときには、全面
成長厚さと同じ厚さd0となるが、lが約100μmをこえ
ると急激に厚く成長し、lが約250μm以上からは厚さ
が飽和する傾向を有している。しかも成長条件(温度,
流量,ガス比など)でパターンの粗・密によらぬ選択成
長を行なわしめることは困難である結論が得られた。こ
れを解決するには、成長層のパターンを一様に密とする
ようなダミーパターンを粗の領域に形成して、ダミーパ
ターンにも結晶成長を行なうことが好ましいことがわか
つた。また本パターンとダミー・パターンの距離は少な
くとも100μm以内で配置する必要があることが第5図
からわかつた。またダミーパターンは半絶縁性GaAs上に
成長するものであるから、これによつて集積回路の性能
を低下することがないよう配慮して、通常ダミーパター
ンはメモリセル内に用いて分割したくり返しパターン群
を並べたものを利用するようにした。これによつて配線
層がダミーパターン上を通る場合でも、ダミーパターン
のない従来のものと比べて配線容量が増えることはなく
なつた。 〔作用〕 本パターンに近接して、ダミーパターンを設けること
によつて選択成長の厚さはウエーハのどの位置でも均一
にすることができる。 〔実施例〕 以下、本発明の一実施例を以下により説明する。 GaAs LSIのキーデバイスであるFETをn+−GaAsの選択
成長層でセルフアラインして形成した場合の素子断面構
造を第3図に示す。ゲート電極10,11はWSixの耐熱性シ
ヨツトバリアであり、このゲートをはさんで両側にソー
ス,ドレイン用の窓をSiO2膜に明け、MOCVDによる選択
成長でn+−GaAs層20,30をえる。成長不用の部分はSiO2
膜40,SiO2側壁50及びWSixゲート電極11上である。この
ようなFETを沢山使用して、SRAMのようなメモリ回路が
えられている。 選択成長用のFET1コのパターンは第3図に示した如く
であるが、メモリ回路では、第1図(a)に示すような
密度の高いパターン領域がチツプ内に局在して配置され
ている。同図(a)のハツチング部はメモリセル部パタ
ーン群200と周辺回路部パターン群101,102を表わしてい
る。同図(a)のままのパターンでn+−GaAs層を選択成
長すると密集パターンの周辺部で異常に厚い成長層とな
つてLSIとして使用できない。そこで第1図(b)の如
く、成長パターンが従来不用であつた領域にダミーパタ
ーン群300を配置して第1図の(a)と(b)のパター
ンを重ねてウエーハ上に形成して選択成長を行なうよう
にした。 第2図は第1図(a)と(b)のパターンを重ねたと
きの本パターン300とダミーパターン400の境界部を拡大
して表示したものである。この図に示した距離lは本パ
ターンの特性に悪影響を及ばさぬ限り接近させた方がよ
く、通常は5〜50μmの範囲内で決められる。第2図の
如くダミーパターンの模様は本パターンのそれに同じか
近いことが好ましく、通常はメモリセル部200のくり返
しパターン模様を用いている。 本発明の実施例をGaAs SRAMパターンで述べたが、単
体FETを含んだ種々の機能回路でも同様な趣旨によるダ
ミーパターンを用いることで、選択成長による成長膜厚
を均一に得られるようになることは言うに及ばない。 〔発明の効果〕 本発明によれば、GaAs LSIがn+−GaAs選択成長技術
を用いて製作できるようになつたので、従来イオン打込
みで形成したいたn+層の抵抗に比べて、約1/10の低抵抗
比が達成でき、これによつてFETの直列抵抗は約1/5と改
善できた。そのため従来より約2倍高速なメモリ素子を
えることができた。また、これはn+−GaAs選択成長層の
セルフアラインによつて改善されたFETの特性である
が、従来のイオン打込みでは800℃の熱処理によつて短
ゲート効果の劣化,シヨツトキバリアの劣化がみられて
いたものがなくなつて、著しく性能を向上させることが
できた。
The present invention relates to a compound semiconductor MESFET, and particularly relates to a GaSFET.
The present invention relates to a method of manufacturing a semiconductor device in which As MESFETs are mainly integrated. [Prior art] Conventional GaAs MESFETs have high heat resistant gate electrodes (for example, tungsten silicide, WSi x ) in order to improve the performance by minimizing the series resistance R s8 of the gate electrode and the source electrode as much as possible.
It was made with a self-aligned structure using In order to form the n + − low resistance layer around the gate electrode in a self-aligned manner, a Si ion implantation technique and a selective growth technique are used. Selective growth layer is more than layer made by Si ion implantation.
It is easy to obtain a high impurity concentration, so it can reduce resistance.
The ion implantation requires an annealing temperature of 750 ° C. or higher, but the selective growth temperature can be as low as about 600 ° C. to 700 ° C., so that there is an advantage that deterioration of the shot junction of the gate electrode is small. However, selective growth also has disadvantages. For example, unit FE
For T and small-scale integrated circuits, what has not become a particular problem has become apparent in medium- and large-scale integrated circuits. That is, there is a problem that the selective growth depends on the coarse and dense patterns, and the thickness of the GaAs growth layer is large in the isolated pattern group and thin in the dense pattern group. At this film thickness, it exceeds the permissible limit for LSI fabrication.
800nm. Also, in the region of the isolated pattern that grows thick, crystal grains were precipitated in the unnecessary portions on the SiO 2 film or the WSi x film, resulting in poor appearance. This significantly reduces the yield of the wiring process, making it difficult to implement LSI. FETs obtained by n + selective growth are Japanese journals
Of Applied Physics 23,5 (1984) L342
From L345 Japanese Journal of Applied Physics, Vo
l.23, No. 5 (1984) PPL342-345). [Problems to be Solved by the Invention] The prior art described above does not consider the use of an LSI, and has a problem that the selectively grown film thickness has a coarse / fine dependence of the pattern. An object of the present invention is to solve the above-mentioned disadvantages and to manufacture an element by a selective growth technique suitable for LSI. [Means for Solving the Problems] For a technique for selectively growing GaAs only on the GaAs surface while avoiding the surface of SiO 2 or WSi x material, a growth method called MOCVD is mainly used. As a result of the experiment, the pattern
It turns out that there is a close dependency. In the experiment, using the isolated pattern A and the peripheral pattern B separated by a distance l as shown in FIG.
I asked. In the patterns A and B, the GaAs surface appears, and both are separated by SiO 2 40. The result is shown in FIG. The thickness d of the growth layer, when l is small, but the same thickness d 0 and confluent thickness, l is rapidly growing thicker exceeds about 100 [mu] m, l is a thickness from about 250μm or more It has a tendency to saturate. Moreover, the growth conditions (temperature,
It was concluded that it was difficult to perform selective growth regardless of the coarseness and denseness of the pattern with flow rate, gas ratio, etc.). In order to solve this, it has been found that it is preferable to form a dummy pattern in which the pattern of the growth layer is uniformly dense in a rough region, and to perform crystal growth also on the dummy pattern. FIG. 5 shows that the distance between the present pattern and the dummy pattern must be at least within 100 μm. Also, since dummy patterns are grown on semi-insulating GaAs, care should be taken not to reduce the performance of integrated circuits. I used the arrangement of groups. As a result, even when the wiring layer passes over the dummy pattern, the wiring capacity does not increase as compared with the conventional structure without the dummy pattern. [Operation] By providing a dummy pattern close to the present pattern, the thickness of selective growth can be made uniform at any position on the wafer. EXAMPLES Hereinafter, one example of the present invention will be described below. FIG. 3 shows an element cross-sectional structure in the case where an FET, which is a key device of a GaAs LSI, is formed by self-alignment with an n + -GaAs selective growth layer. The gate electrodes 10 and 11 are WSi x heat-resistant shot barriers, and windows for source and drain are formed in the SiO 2 film on both sides of the gate, and the n + -GaAs layers 20 and 30 are selectively grown by MOCVD. I can. Unused portion is SiO 2
Film 40, is on the SiO 2 sidewalls 50 and WSi x gate electrode 11. A memory circuit such as an SRAM is obtained by using a lot of such FETs. Although the pattern of the FET1 for selective growth is as shown in FIG. 3, in the memory circuit, a pattern region having a high density as shown in FIG. 1 (a) is locally arranged in the chip. I have. The hatched portion in FIG. 6A represents a memory cell portion pattern group 200 and peripheral circuit portion pattern groups 101 and 102. If the n + -GaAs layer is selectively grown with the pattern as shown in FIG. 4A, the layer becomes abnormally thick at the periphery of the dense pattern and cannot be used as an LSI. Therefore, as shown in FIG. 1 (b), a dummy pattern group 300 is arranged in a region where the growth pattern is unnecessary in the related art, and the patterns of FIGS. 1 (a) and (b) are formed on a wafer by overlapping. Selective growth is performed. FIG. 2 is an enlarged view of a boundary portion between the main pattern 300 and the dummy pattern 400 when the patterns of FIGS. 1A and 1B are overlapped. It is better that the distance 1 shown in this figure is reduced as long as it does not adversely affect the characteristics of the pattern, and is usually determined within the range of 5 to 50 μm. As shown in FIG. 2, the pattern of the dummy pattern is preferably the same as or close to that of the main pattern. Normally, a repeated pattern of the memory cell section 200 is used. Although the embodiment of the present invention has been described using the GaAs SRAM pattern, it is possible to obtain a uniform film thickness by selective growth by using a dummy pattern having the same purpose in various functional circuits including a single FET. Needless to say. According to the present invention [Effect of the Invention Since GaAs LSI has decreased to allow fabricated using n + -GaAs selective growth technique, as compared with the resistance of the n + layers to be formed by conventional ion implantation, about 1 A low resistance ratio of / 10 was achieved, which improved the series resistance of the FET to about 1/5. As a result, a memory element approximately twice as fast as the conventional one was obtained. This is a characteristic of the FET improved by the self-alignment of the n + -GaAs selective growth layer. However, in the conventional ion implantation, the short gate effect and the shot barrier are deteriorated by the heat treatment at 800 ° C. The performance was remarkably improved because nothing was done.

【図面の簡単な説明】 第1図は本発明の一実施例の(a)本パターン(b)ダ
ミーパターンの上面図、第2図は本パターンとダミーパ
ターンの境界部における拡大図、第3図はFETの素子
図、第4図は選択成長で粗・密依存性を調べたパター
ン、第5図は第4図を用いて実験した結果である。 1……GaAs基板結晶、101,102……周辺回路部パター
ン、200……メモリセル部パターン、300……ダミーパタ
ーン。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view of (a) the present pattern (b) of the dummy pattern according to one embodiment of the present invention, FIG. 2 is an enlarged view of a boundary between the present pattern and the dummy pattern, FIG. FIG. 4 shows the element diagram of the FET, FIG. 4 shows a pattern obtained by examining the coarse / fine dependency by selective growth, and FIG. 5 shows the result of an experiment using FIG. 1 ... GaAs substrate crystal, 101, 102 ... peripheral circuit part pattern, 200 ... memory cell part pattern, 300 ... dummy pattern.

Claims (1)

(57)【特許請求の範囲】 1.化合物半導体上に選択成長技術を用いて化合物半導
体を形成する工程および該化合物半導体の選択成長形成
工程後に配線層を形成する工程を有する化合物半導体集
積回路の製造方法において、上記化合物半導体の選択成
長形成を、上記化合物半導体集積回路の機能に関係した
本パターンと、分割したくり返しパターン群を有する上
記化合物半導体集積回路の機能に関係しないダミーパタ
ーンの両者に適用し、かつ上記配線層を上記分割したく
り返しパターン群の上を通るように形成することを特徴
とする化合物半導体集積回路の製造方法。 2.上記選択成長形成する化合物半導体はGaAsである特
許請求の範囲第1項記載の化合物半導体集積回路の製造
方法。 3.上記本パターンと上記ダミーパターンとの距離は10
0μm以内である特許請求の範囲第1項又は第2項記載
の化合物半導体集積回路の製造方法。 4.上記本パターンは電界効果トランジスタのソースお
よびドレインである特許請求の範囲第1項乃至第3項の
いずれか一項に記載の化合物半導体集積回路の製造方
法。
(57) [Claims] Forming a compound semiconductor on a compound semiconductor by using a selective growth technique, and forming a wiring layer after the selective growth of the compound semiconductor; Is applied to both the present pattern related to the function of the compound semiconductor integrated circuit and the dummy pattern not related to the function of the compound semiconductor integrated circuit having the divided repetitive pattern group, and the repetitive division of the wiring layer is performed. A method for manufacturing a compound semiconductor integrated circuit, wherein the method is formed so as to pass over a pattern group. 2. 2. The method according to claim 1, wherein the compound semiconductor formed by selective growth is GaAs. 3. The distance between the main pattern and the dummy pattern is 10
3. The method for manufacturing a compound semiconductor integrated circuit according to claim 1, wherein the thickness is within 0 μm. 4. 4. The method according to claim 1, wherein the pattern is a source and a drain of a field effect transistor.
JP62068817A 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit Expired - Fee Related JP2828974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068817A JP2828974B2 (en) 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068817A JP2828974B2 (en) 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS63236313A JPS63236313A (en) 1988-10-03
JP2828974B2 true JP2828974B2 (en) 1998-11-25

Family

ID=13384643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068817A Expired - Fee Related JP2828974B2 (en) 1987-03-25 1987-03-25 Method for manufacturing compound semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2828974B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685146B2 (en) * 1988-03-09 1997-12-03 住友電気工業株式会社 Semiconductor selective growth method
JPH06310438A (en) * 1993-04-22 1994-11-04 Mitsubishi Electric Corp Substrate holder and apparatus for vapor growth of compound semiconductor
KR100504940B1 (en) * 2000-12-29 2005-08-03 주식회사 하이닉스반도체 Method of forming a selective monocrystal silicon film in a semiconductor device
KR100798180B1 (en) 2004-04-30 2008-01-24 마츠시타 덴끼 산교 가부시키가이샤 Semiconductor manufacturing method and semiconductor device
KR20110120274A (en) * 2009-03-11 2011-11-03 스미또모 가가꾸 가부시키가이샤 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196542A (en) * 1981-05-28 1982-12-02 Fujitsu Ltd Semiconductor integrated circuit device and manufacture thereof

Also Published As

Publication number Publication date
JPS63236313A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
JPS6215863A (en) Manufacture of self-aligning metal-semiconductor fet
US3461360A (en) Semiconductor devices with cup-shaped regions
JP2828974B2 (en) Method for manufacturing compound semiconductor integrated circuit
JP2714034B2 (en) Method for manufacturing compound semiconductor integrated circuit
JPS6353711B2 (en)
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
JP2645663B2 (en) Thin film semiconductor device and method of manufacturing the same
JPH0969611A (en) Semiconductor device and its manufacturing method
JP2504785B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JPH02210821A (en) Manufacture of compound semiconductor device
JP2890885B2 (en) Semiconductor device and manufacturing method thereof
JPS6215862A (en) Semiconductor device
JPH0219622B2 (en)
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JP2753276B2 (en) Vapor growth of semiconductor thin films
JPH0677019A (en) Formation of resistor
JPH0467338B2 (en)
JPH02268443A (en) Semiconductor device
JPH01296667A (en) Manufacture of heterojunction bipolar transistor
JPH07273296A (en) Semiconductor device
JPS6317561A (en) Structure of field-effect transistor
JPH05275618A (en) Semiconductor integrated circuit
JPH01208870A (en) Manufacture of compound semiconductor device
JPS61236166A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees