JPS61236166A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61236166A
JPS61236166A JP7780385A JP7780385A JPS61236166A JP S61236166 A JPS61236166 A JP S61236166A JP 7780385 A JP7780385 A JP 7780385A JP 7780385 A JP7780385 A JP 7780385A JP S61236166 A JPS61236166 A JP S61236166A
Authority
JP
Japan
Prior art keywords
active layer
semiconductor active
gate electrode
insulating film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7780385A
Other languages
Japanese (ja)
Inventor
Hideaki Kozu
神津 英明
Masahiko Matsuo
昌彦 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7780385A priority Critical patent/JPS61236166A/en
Publication of JPS61236166A publication Critical patent/JPS61236166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Abstract

PURPOSE:To prevent the effect of producing a coarse pattern, by providing a first insulation film on the side walls of a gate electrode provided on a first semiconductor active layer on a substrate, then forming a second insulation film on the periphery and in the vicinity of the first active layer, and then growth depositing a second semiconductor active layer. CONSTITUTION:A first semiconductor active layer 102 is formed on an insulating substrate 101 and then a gate electrode 103 is adhered thereon. A part of the gate electrode is etched so as to separate the active layer 102 into two regions so that one of the regions provides a source electrode region and the other provides a drain electrode region. An insulation film is formed and dry etched anisotropically so that an insulation film 106 is provided only on the side walls of the gate electrode 103. A second insulation film is adhered on the whole surface of the substrate and etched so that the insulation film 108 surrounds the active layer 102. Subsequently, a semiconductor active layer 107 is formed to cover the exposed insulating substrate 101 and the semiconductor active layer 102 and removed except its region surrounded by the insulation film 108. A source electrode 104 and a drain electrode 105 are then provided. An MES FET is thereby obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にシ1ットキ
接合ゲート形電界効果トランジスタおよびそれを構成素
子とする半導体集積回路の製造方法に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a Schittky junction gate field effect transistor and a semiconductor integrated circuit using the same as a component. be.

〔従来の技術〕[Conventional technology]

従来、シッットキ接合ゲート形電界効果トランジスタ(
以下、MES FET  と略記)特に、砒化ガリウム
(以下、GaAsと略記)を用い、MES FETを一
構成要素とする集積回路(以下、GaAsICと略記)
においては、一般に第2図に示すようなMES FET
の構造が用いられている。半絶縁性GaAa基板201
にGaAs能動層202を設け、このGaAs能動層2
02にゲート電極203をショットキ障壁を形成するよ
うにつけ、その両側に一ス電極204とドレイン電極2
05をGaAs能動層202にオーミックにつけて構成
されていた。
Traditionally, Sittke junction gate field effect transistors (
In particular, an integrated circuit (hereinafter abbreviated as GaAsIC) that uses gallium arsenide (hereinafter abbreviated as GaAs) and has MES FET as one component.
In general, MES FETs as shown in Figure 2 are used.
structure is used. Semi-insulating GaAa substrate 201
A GaAs active layer 202 is provided on the GaAs active layer 2.
A gate electrode 203 is attached to 02 to form a Schottky barrier, and a first electrode 204 and a drain electrode 2 are attached on both sides of the gate electrode 203 to form a Schottky barrier.
05 was ohmically attached to the GaAs active layer 202.

かかるMES FETの構造に於てはその性能を向上さ
せるのに、ゲート電極203の端からソース電極204
下およびドレイン電極205下までのGaAs能動層2
02の厚さおよびそのキャリア濃度を高くシ、寄生抵抗
の低減を計っている。しかしながら、かかるMES F
ETの構造ではゲート長を短くシ、さらにその性能の向
上を計る際、ゲート電極203下の半絶縁性基板201
にも電流が流nることにより生じる短チヤネル効果によ
り、そのゲート長の短縮には限界がある。一般に第2図
に示すMES FETのゲート長の短縮限界は約2.0
μmであり、その時MES FETの性能の一指標であ
る相互コンダクタンス(以下、詞と略記)は約70m5
/mm  である。
In order to improve the performance of such a MES FET structure, it is necessary to connect the source electrode 204 from the end of the gate electrode 203.
GaAs active layer 2 below and below the drain electrode 205
The thickness of 02 and its carrier concentration are increased to reduce parasitic resistance. However, such MES F
In the structure of ET, when the gate length is shortened and the performance is further improved, the semi-insulating substrate 201 under the gate electrode 203 is
There is a limit to the shortening of the gate length due to the short channel effect caused by the current flowing through the gate. Generally, the limit for reducing the gate length of the MES FET shown in Figure 2 is approximately 2.0.
μm, and at that time, the mutual conductance (hereinafter abbreviated as “J”), which is an index of MES FET performance, is approximately 70 m5.
/mm.

第2図に示すMES FETの短チヤネル効果はゲート
電極203の端からソース電極204下およびドレイン
電極205下までのGaAs能動層202の厚さがゲー
ト電極203下のチャネル層の厚さより厚いことにより
加速さnているので、短チヤネル効果を緩和する方策と
して、第3図に示すように、気相成長法によt) Ga
As能動層307を追加形成して製造されるMES F
ETの構造が考えらnる。第3図は短チヤネル効果を抑
制するためのMES FETの構造を示し、第3図(A
)はその平面図、第3図(B)は第3図(A)のx−x
’線における断面図を示す。半絶縁性GaAs基板30
1の表面領域に第一のGaAs能動層302を設け、こ
の第一のGaAs能動層302にゲート電極303をシ
ョットキー障壁を形成するようにつけ、その両側にはソ
ース電極304とドレイン電極305が設けられている
。ゲート電極303の側面には絶縁膜306を有し、ソ
ースおよびドレイン電極304.305の下は第二のG
aAs能動層307を介して第一のGaAs能動層30
2に接続されている。
The short channel effect of the MES FET shown in FIG. 2 is due to the fact that the thickness of the GaAs active layer 202 from the edge of the gate electrode 203 to below the source electrode 204 and below the drain electrode 205 is thicker than the thickness of the channel layer below the gate electrode 203. As a measure to alleviate the short channel effect, as shown in Fig. 3, Ga
MES F manufactured by additionally forming an As active layer 307
The structure of ET is considered. Figure 3 shows the structure of a MES FET for suppressing short channel effects, and Figure 3 (A
) is the plan view, and Fig. 3 (B) is the x-x of Fig. 3 (A).
A cross-sectional view taken along the ' line is shown. Semi-insulating GaAs substrate 30
A first GaAs active layer 302 is provided in the surface area of 1, a gate electrode 303 is attached to the first GaAs active layer 302 to form a Schottky barrier, and a source electrode 304 and a drain electrode 305 are provided on both sides of the gate electrode 303. It is being An insulating film 306 is provided on the side surface of the gate electrode 303, and a second G is provided below the source and drain electrodes 304 and 305.
First GaAs active layer 30 via aAs active layer 307
Connected to 2.

かかる第3図に示すMES FET構造においては、短
チヤネル効果はゲート長が0.5μm迄現δ1ず、ME
S FETの性能を大幅に向上させうる。例えば、第3
図のMES FETではゲート長0.5μmにおいて約
130m5/mm であ4゜ 第3図に示すMET FETの構造を実現する方法は、
第二のGaAs能動層307を形成する観点から大きく
2つに分けらnる。第一の方法はゲート電極303、お
よび側壁の絶縁膜306を形成後GaAs基板301の
全面に第二のGaAs能動層307を形成した後、必要
な領域のみ残して、第二のGaAs能動層307をエツ
チング除去する方法である。エツチング除去の方法とし
てはウェットエツチングとドライエツチングがあるが後
者はGaAaとゲート電極金属との選択比を大きく採る
ことができないため、ウェットエツチングが多く用いら
れる。第3図に示す構造においては、第二のGaAs能
動層307の側壁の絶縁膜306に接した近傍において
は、その結晶性が悪く、結晶密度も粗であるため、第二
のGaAs能動層307のウェットエツチング除去の際
側壁の絶縁膜306に接した近傍の第二のGaAs能動
層307のエツチング速度が速いため第二のGaAs能
動層307の不必要な領域を除去している間に、エツチ
ング液が側壁の絶縁膜306にそって入り込み、第一の
GaAs能動層302までをもエツチングしてしまう欠
点があった。
In the MES FET structure shown in FIG. 3, the short channel effect does not occur until the gate length is 0.5 μm, and the MES
The performance of S FET can be significantly improved. For example, the third
In the MES FET shown in the figure, the gate length is approximately 130 m5/mm at a gate length of 0.5 μm.The method for realizing the MET FET structure shown in Fig. 3 is as follows.
From the viewpoint of forming the second GaAs active layer 307, it can be roughly divided into two types. The first method is to form the second GaAs active layer 307 on the entire surface of the GaAs substrate 301 after forming the gate electrode 303 and the sidewall insulating film 306, and then to form the second GaAs active layer 307 on the entire surface of the GaAs substrate 301, leaving only the necessary areas. This is a method of etching away. There are wet etching and dry etching methods for etching removal, but the latter method does not allow a high selectivity between GaAa and gate electrode metal, so wet etching is often used. In the structure shown in FIG. 3, in the vicinity of the sidewall of the second GaAs active layer 307 in contact with the insulating film 306, the crystallinity is poor and the crystal density is coarse. When removing the second GaAs active layer 307 by wet etching, the etching speed of the second GaAs active layer 307 in the vicinity of the insulating film 306 on the sidewall is fast. There was a drawback that the liquid entered along the side wall insulating film 306 and etched even the first GaAs active layer 302.

一方、第二の方法は、第二のGaAs能動層307を選
択的に形成しようとするもので、例えばシリコン酸化膜
等の絶縁膜で、第二のGaAs能動層307を形成すべ
き領域を除いて、GaAa基板301を覆い、例えば有
機金属熱分解法(以後MOCVD法と略記)により、第
二のGaAs能動層307を形成する本のである。しか
しながら、本方法においては、第二のGaAs能動層3
07を形成すべき領域の大きさ、配置により、第二のG
aAs能動層307の厚さが各領域により異なるのみで
なく、ゲート電極303上やマスクとして用いた絶縁膜
上にGaAa多結晶が成長してしまう、いわゆるパター
ン粗密効果もしくはレイアウト効果が生じる欠点がある
。このパターン粗密効果は第二のGaAs能動層307
の合計の形成面積が大きい場合には現れない。
On the other hand, the second method attempts to selectively form the second GaAs active layer 307, for example, by using an insulating film such as a silicon oxide film, excluding the region where the second GaAs active layer 307 is to be formed. Then, a second GaAs active layer 307 is formed by covering the GaAa substrate 301, for example, by a metal organic thermal decomposition method (hereinafter abbreviated as MOCVD method). However, in this method, the second GaAs active layer 3
Depending on the size and arrangement of the area where 07 is to be formed, the second G
Not only does the thickness of the aAs active layer 307 vary from region to region, but it also has the disadvantage of causing so-called pattern density effect or layout effect, in which GaAa polycrystals grow on the gate electrode 303 or on the insulating film used as a mask. . This pattern density effect is caused by the second GaAs active layer 307.
It does not appear when the total formation area of is large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、上述した第3図に示す従来のGaAs MES
 FETの製造方法においては、GaAs基板301の
全面に第二のGaAs能動層307を形成した後エツチ
ング除去する第一の方法でウェットエツチングが、側壁
の絶縁膜306の近傍の第二のGaAs能動層307の
悪い結晶性のため十分に制御しえない欠点があり、必要
な領域にのみ第二のGaAs能動層307を形成する、
いわゆる選択成長法を用する第二の方法ではパターン粗
密効果があt)、GaAa集積回路には適用しえない欠
点がある。
Therefore, the conventional GaAs MES shown in FIG.
In the FET manufacturing method, the first method involves forming the second GaAs active layer 307 on the entire surface of the GaAs substrate 301 and then removing it by etching. The second GaAs active layer 307 is formed only in the necessary regions because of the poor crystallinity of the GaAs 307.
The second method, which uses a so-called selective growth method, has the disadvantage that it cannot be applied to GaAa integrated circuits due to the pattern density effect.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によnば、絶縁性基板もしくは半導体基板上に第
一の半導体能動層を形成する工程と、この第一の半導体
能動層上にゲート電極を形成する工程と、少くともこの
ゲート電極とこの近傍の絶縁性基板もしくは半導体基板
および第一の半導体能動層を覆うように第一絶縁膜を被
着する工程と第一絶縁膜を異方性エツチング技術を用い
て、ゲート電極の側壁にのみ残るように除去する工程と
、第二絶縁膜を被着する工程と、この第二絶縁膜を第一
の半導体能動層の領域の周囲およびその近傍上にのみ残
し、絶縁性基板もしくは半導体基板と第一の半導体能動
層との領域の大部分を露出するように、除去する工程と
、気相成長法により第二の半導体能動層を形成する工程
と、ソース電極とドレイン電極を形成すべき第二の半導
体能動層領域およびほかに必要とする第二の半導体能動
層の領域および、少くとも前記の第二絶縁膜の一部をマ
スクし、マスク外の第二の半導体能動層を除去する工程
と第二の半導体能動層上にソース電極とドレイン電極を
形成する工程とを含む半導体装置の製造方法にある。
According to the present invention, the steps include forming a first semiconductor active layer on an insulating substrate or a semiconductor substrate, forming a gate electrode on the first semiconductor active layer, and at least forming a gate electrode on the first semiconductor active layer. A process of depositing a first insulating film so as to cover the insulating substrate or semiconductor substrate and the first semiconductor active layer in the vicinity, and etching the first insulating film only on the sidewalls of the gate electrode using an anisotropic etching technique. a step of removing the second insulating film so that it remains; and a step of depositing a second insulating film, leaving the second insulating film only around and in the vicinity of the region of the first semiconductor active layer, and forming the second insulating film on the insulating substrate or the semiconductor substrate. A step of removing the first semiconductor active layer so as to expose most of the region, a step of forming a second semiconductor active layer by vapor phase epitaxy, and a step of forming a second semiconductor active layer in which a source electrode and a drain electrode are to be formed. a step of masking the second semiconductor active layer region, the other necessary second semiconductor active layer region, and at least a part of the second insulating film, and removing the second semiconductor active layer outside the mask; and forming a source electrode and a drain electrode on a second semiconductor active layer.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例であり、第1図において(A
−1) 、 (B−1) 、 (C−1) 、・・・・
・・は平面図を、(A−2) 、 (B−2) 、 (
C−2)、・・・・・・各平面図のA−A′における断
面図を示す。第1図(A−1) 、 (A−2)におい
て、例えばクロムをドープし九〇aAgである絶縁性基
板101に、例えばイオン注入法により、例えばシリコ
ンを注入アニールを施すことによりn型GaAa層であ
る第1の半導体能動層102を形成する。ここで半導体
基板としてシリコンを用いる場合には第1の半導体能動
層102と反対の伝導盤を示す半導体基板を用いる必要
がある。また、第1の半導体能動ノーの形成には他の例
えば気相成長法等を用いても本発明の主旨を損うもので
はない。次に第1図(B−1) 、 (B−2)に示す
ように、例えばゲート電極103としてタングステンを
第一の半導体能動層102を含む絶縁性基板101上に
被着した後、写真食刻法を用いて、少くともゲート電極
103の一部が第一の半導体能動層領域102を二つに
分かれるように形成する。この時、第一の半導体能動層
領域102の一方の側がソース電極領域に、他方の側が
ドレイン電極領域になる。次に、第1図(C−1)、(
C−2)に示すように、ゲート電極103.第一の半導
体能動層102.絶縁性基板101を覆うように第一の
絶縁膜を形成した後、異方性ドライエツチングを施すと
、ゲート電極103の側壁にのみ第一の絶縁膜106が
形成される。次に、第1図(D−1) 、 (D−2)
に示すように、第二の絶縁膜を基板全面に被着した後、
写真食刻法によす、第一の半導体能動層領域102を囲
むように第二の絶縁膜108を形成する。写真食刻法に
より第二の絶縁膜の一部を除去する際に異方性ドライエ
ツチングを用いnば第一の絶縁膜106の側壁にも第二
の絶縁膜は残るが、等方性ドライエツチングもしくはウ
ェットエツチングを用いnば第一の半導体能動層102
上の第二の絶縁膜106の側壁に第二の絶縁膜を残すこ
となく除去しうる。異方性ドライエツチングを用いる場
合には第一の絶縁膜106と第二の絶縁膜108とが同
種でもかまわない。ここで、絶縁性基板101と第一の
半導体能動層102の大部分の領域が露出されているこ
とになる。次に、第1図(E−1) 、 (E−2)に
示すように、気相成長法例えばトリメチルガリウムおよ
びトリメチル砒素を用いた熱分解法によりGaAsを成
長させると、露出さnた絶縁性基板101と第一の半導
体能動層102の上に第二の半導体能動層107が形成
される。この気相成長において、例えばセレシ、イオウ
等の不純物を導入すると、第二の半導体能動層307は
n−型半導体能動層とな秒非常に小さな比抵抗を示す。
FIG. 1 shows an embodiment of the present invention, and in FIG.
-1), (B-1), (C-1),...
... is a plan view, (A-2), (B-2), (
C-2), . . . A sectional view taken along line A-A′ of each plan view is shown. In FIGS. 1(A-1) and (A-2), n-type GaAa is implanted into an insulating substrate 101 made of 90Ag doped with chromium, for example, by implanting silicon, for example, by an ion implantation method. A first semiconductor active layer 102 is formed. Here, when silicon is used as the semiconductor substrate, it is necessary to use a semiconductor substrate exhibiting a conduction plate opposite to the first semiconductor active layer 102. Furthermore, the gist of the present invention will not be impaired even if other methods such as vapor phase growth are used to form the first semiconductor active layer. Next, as shown in FIGS. 1(B-1) and 1(B-2), after depositing tungsten, for example, as a gate electrode 103 on the insulating substrate 101 including the first semiconductor active layer 102, photolithography is performed. Using a cutting method, at least a portion of the gate electrode 103 is formed so as to divide the first semiconductor active layer region 102 into two. At this time, one side of the first semiconductor active layer region 102 becomes a source electrode region, and the other side becomes a drain electrode region. Next, Figure 1 (C-1), (
As shown in C-2), the gate electrode 103. First semiconductor active layer 102. After forming the first insulating film to cover the insulating substrate 101, anisotropic dry etching is performed to form the first insulating film 106 only on the side walls of the gate electrode 103. Next, Figure 1 (D-1), (D-2)
After depositing the second insulating film on the entire surface of the substrate, as shown in
A second insulating film 108 is formed by photolithography to surround the first semiconductor active layer region 102. If anisotropic dry etching is used when removing a part of the second insulating film by photolithography, the second insulating film will remain on the sidewalls of the first insulating film 106, but isotropic dry etching will The first semiconductor active layer 102 is etched using etching or wet etching.
The second insulating film can be removed without leaving any second insulating film on the sidewalls of the second insulating film 106 above. When using anisotropic dry etching, the first insulating film 106 and the second insulating film 108 may be of the same type. Here, most regions of the insulating substrate 101 and the first semiconductor active layer 102 are exposed. Next, as shown in FIGS. 1(E-1) and (E-2), when GaAs is grown by vapor phase epitaxy, such as pyrolysis using trimethyl gallium and trimethyl arsenic, the exposed insulation is removed. A second semiconductor active layer 107 is formed on the semiconductor substrate 101 and the first semiconductor active layer 102 . In this vapor phase growth, when impurities such as sulfur and sulfur are introduced, the second semiconductor active layer 307 becomes an n-type semiconductor active layer and exhibits a very small resistivity.

また、露出さ几た絶縁性基板101および第一の半導体
能動層102の領域が非常に広いためにゲート電極10
3上に多結晶GaAsが形成されることもなく、各領域
に均一な厚さの第二の半導体能動層107を形成するこ
とができ、パターン粗密効果は現われない。次に第1図
(F−1) 、 (F−2)に示すように、第二の絶縁
膜108で囲まれた領域以外の領域に形成された第二の
半導体能動層107を除去した後、前記ソースおよびド
レイン領域である第一の半導体能動層102上に形成さ
れた第二の半導体能動層107上にそれぞれソース電極
104とドレイン電極105を形成し、MES FET
を構成する。第二の絶縁膜で囲まれた以外の領域には第
二の半導体能動層107がないため、GaAs集積回路
を形成する場合必要となる配線も絶縁性基板101上に
形成することができる。また、第二の半導体能動層10
7をエツチング除去する際、例えばホトレジストである
マスクは第二の絶縁体108上に形成され、エツチング
に際し、エツチング液がゲート電極103の側壁である
第一の絶縁膜106に沿って進みソースおよびドレイン
領域の第二の半導体能動層107および第一の半導体能
動層102をエツチングして犯すことはない。
In addition, since the exposed areas of the insulating substrate 101 and the first semiconductor active layer 102 are very wide, the gate electrode 101
The second semiconductor active layer 107 can be formed with a uniform thickness in each region without forming polycrystalline GaAs on the second semiconductor active layer 107, and the pattern density effect does not appear. Next, as shown in FIGS. 1(F-1) and (F-2), after removing the second semiconductor active layer 107 formed in the area other than the area surrounded by the second insulating film 108. , a source electrode 104 and a drain electrode 105 are respectively formed on the second semiconductor active layer 107 formed on the first semiconductor active layer 102 which is the source and drain region, and the MES FET
Configure. Since there is no second semiconductor active layer 107 in the area other than the area surrounded by the second insulating film, wiring required when forming a GaAs integrated circuit can also be formed on the insulating substrate 101. Moreover, the second semiconductor active layer 10
7, a mask made of, for example, photoresist is formed on the second insulator 108, and during etching, the etching solution travels along the first insulating film 106, which is the side wall of the gate electrode 103, and removes the source and drain. The regions of the second semiconductor active layer 107 and the first semiconductor active layer 102 are not etched.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は気相成長法による選択エ
ピタキシャル成長により、MES  FITのソースお
よびドレイン領域に高いキャリア濃度を有し、比抵抗の
小さな能動層を形成して、MESFET の寄生抵抗を
低減せしめ高性能にすることができるとともに、選択エ
ピタキシャル成長に伴う欠点であったパターン粗密効果
が防止できるため集積回路にも適した製造方法である。
As explained above, the present invention reduces the parasitic resistance of the MESFET by forming an active layer with high carrier concentration and low resistivity in the source and drain regions of the MESFET by selective epitaxial growth using the vapor phase growth method. This manufacturing method is also suitable for integrated circuits because it can improve high performance and prevent the pattern density effect, which was a drawback of selective epitaxial growth.

本製造方法では、ソースおよびドレイン領域の能動層が
ゲート電極下のチャネル層より深くは形成されないため
、短チヤネル効果による特性の劣化を防ぐことができる
In this manufacturing method, since the active layers in the source and drain regions are not formed deeper than the channel layer under the gate electrode, deterioration of characteristics due to the short channel effect can be prevented.

また、本発明の実施例からも容易に類推しうるようにG
aA@に限定されることはなく、シリコン等の他の半導
体にも本発明は適用しうるものである。
Furthermore, as can be easily inferred from the embodiments of the present invention, G
The present invention is not limited to aA@, and can be applied to other semiconductors such as silicon.

第1図に示す本発明の実施例により、短チヤネル効果を
示さないゲート長の短縮限界は0.5μmマテニナリ、
ソノ時、MES FET+7)gmは約140m5/m
mを得た。
According to the embodiment of the present invention shown in FIG. 1, the limit for shortening the gate length without exhibiting the short channel effect is 0.5 μm maternary,
When sono, MES FET+7)gm is approximately 140m5/m
I got m.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例をその製造工程順に示す因で
あり、第1図の(A−1) 、 (B−1) 、 (C
−1)(D−1) 、 (E−1) 、 (F−1)は
平面図、第1図の(A−2) 、 (B−2) 、 (
C−2) 、 (n−2) 、 (E−2) 、 (F
7−2)は第1図(A−1) 、 (B−1) 、 (
C−1) 、 (D−1) 、 (TiP−1)、(F
−1)の各図のx−x’線における断面図である。第2
図は従来方法になる半導体装置の断面図、第3図は従来
技術を説明するために用いるもので(A)がその半導体
装置の平面図、(B)は(A)のx−x’線における断
面図である。 101・・・・・・絶縁性基板、102・・・・・・第
一の半導体能動層、103,203,303・・・・・
・ゲート電極、104.204,304・・・・・・ソ
ース電極、105,205゜305・・・・・・ドレイ
ン電極、106,306・・・・・・第一の絶縁膜、1
07・・・・・・第二の半導体能動層、108・・・・
・・第二の絶縁膜、201,301・・・・・・半絶縁
性GaAg基板、202−−−−−−GaAB能動層、
302−−−−−−第一のGaAs能動層、307・・
・・・・第二のGaAa能動1−0−5F2  図 、第 3UJ
FIG. 1 shows one embodiment of the present invention in the order of its manufacturing process, and (A-1), (B-1), (C
-1) (D-1), (E-1), (F-1) are plan views, (A-2), (B-2), (
C-2), (n-2), (E-2), (F
7-2) is shown in Figure 1 (A-1), (B-1), (
C-1), (D-1), (TiP-1), (F
-1) is a sectional view taken along line xx' in each figure. Second
The figure is a cross-sectional view of a semiconductor device using a conventional method, and FIG. 3 is used to explain the conventional technique. (A) is a plan view of the semiconductor device, and (B) is a line xx' of (A). FIG. 101... Insulating substrate, 102... First semiconductor active layer, 103, 203, 303...
・Gate electrode, 104.204,304...Source electrode, 105,205°305...Drain electrode, 106,306...First insulating film, 1
07... Second semiconductor active layer, 108...
...Second insulating film, 201,301...Semi-insulating GaAg substrate, 202-----GaAB active layer,
302-----First GaAs active layer, 307...
...Second GaAa active 1-0-5F2 Figure, 3rd UJ

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板もしくは半導体基板上に第一の半導体能動
層を形成する工程と、該第一の半導体能動層上にゲート
電極を形成する工程と、少くとも該ゲート電極とこの近
傍の前記絶縁性基板もしくは半導体基板および前記第一
の半導体能動層を覆うように第一の絶縁膜を被着する工
程と、該第一の絶縁膜を前記ゲート電極の側壁にのみ残
るように除去する工程と、第二の絶縁膜を被着する工程
と、該第二の絶縁膜を、前記第一の半導体能動層の周囲
およびその近傍上にのみ残し、前記絶縁性基板もしくは
半導体基板と前記第一の半導体能動層との領域の大部分
を露出するように、除去する工程と、気相成長法により
第二の半導体能動層を形成する工程と、該第二の半導体
能動層のうちソース電極とドレイン電極を形成すべき領
域および少くとも前記の第二絶縁膜の一部をマスクし、
マスク外の前記第二の半導体能動層を除去する工程と、
前記第二の半導体能動層上にソース電極とドレイン電極
を形成する工程とを含むことを特徴とする半導体装置の
製造方法。
a step of forming a first semiconductor active layer on an insulating substrate or a semiconductor substrate; a step of forming a gate electrode on the first semiconductor active layer; and a step of forming at least the gate electrode and the insulating substrate in the vicinity thereof. Alternatively, a step of depositing a first insulating film to cover the semiconductor substrate and the first semiconductor active layer, and a step of removing the first insulating film so that it remains only on the sidewalls of the gate electrode; a step of depositing a second insulating film, leaving the second insulating film only on the periphery of the first semiconductor active layer and its vicinity; a step of removing the second semiconductor active layer so as to expose most of the region between the layers, a step of forming a second semiconductor active layer by a vapor phase growth method, and a step of removing the source electrode and the drain electrode of the second semiconductor active layer. masking the region to be formed and at least a portion of the second insulating film;
removing the second semiconductor active layer outside the mask;
A method of manufacturing a semiconductor device, comprising the step of forming a source electrode and a drain electrode on the second semiconductor active layer.
JP7780385A 1985-04-12 1985-04-12 Manufacture of semiconductor device Pending JPS61236166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7780385A JPS61236166A (en) 1985-04-12 1985-04-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7780385A JPS61236166A (en) 1985-04-12 1985-04-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61236166A true JPS61236166A (en) 1986-10-21

Family

ID=13644164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7780385A Pending JPS61236166A (en) 1985-04-12 1985-04-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61236166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191373A (en) * 1987-02-03 1988-08-08 Canon Inc Information recording carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191373A (en) * 1987-02-03 1988-08-08 Canon Inc Information recording carrier

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
KR970004457B1 (en) Semiconductor device and fabrication method
KR100939037B1 (en) ENHANCEMENT AND DEPLETION-MODE PHEMT DEVICE HAVING TWO InGaP ETCH-STOP LAYERS AND METHOD OF FORMING SAME
KR19980024988A (en) Integrated CMOS circuit apparatus and its manufacturing method
KR0174879B1 (en) Method for isolating compound semiconductor device
JPS61236166A (en) Manufacture of semiconductor device
JP3858888B2 (en) Etching method and semiconductor device manufacturing method
JPH05129345A (en) Manufacturing method of microwave integrated circuit
JPH0492439A (en) Manufacture of semiconductor integrated circuit device
JPH05275464A (en) Manufacture of compound semiconductor integrated circuit device
JPH07114212B2 (en) Method for manufacturing semiconductor device
JP3393797B2 (en) Field effect transistor
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
US3506890A (en) Field effect semiconductor device having channel stopping means
JPH05235045A (en) Field-effect transistor
JPH07263643A (en) Semiconductor device and its manufacturing method
JPH0810704B2 (en) Method for manufacturing semiconductor device
JPH1064924A (en) Semiconductor device and production method thereof
JPH0233940A (en) Manufacture of semiconductor device
JPH0199263A (en) Semiconductor integrated circuit and manufacture thereof
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH0758717B2 (en) Method for manufacturing field effect transistor
JPS6070772A (en) Manufacture of field-effect transistor
JPH0547982B2 (en)
JPS6038882A (en) Manufacture of schottky gate type field effect transistor