JPH02210821A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH02210821A
JPH02210821A JP2979689A JP2979689A JPH02210821A JP H02210821 A JPH02210821 A JP H02210821A JP 2979689 A JP2979689 A JP 2979689A JP 2979689 A JP2979689 A JP 2979689A JP H02210821 A JPH02210821 A JP H02210821A
Authority
JP
Japan
Prior art keywords
mask
compound semiconductor
gaas
selective growth
wsix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2979689A
Other languages
Japanese (ja)
Inventor
Toru Haga
徹 芳賀
Yuichi Ono
小野 佑一
Yoshihisa Fujisaki
芳久 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2979689A priority Critical patent/JPH02210821A/en
Publication of JPH02210821A publication Critical patent/JPH02210821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent the deposition of polycrystal grain of a mask on a mask by a method wherein a part of the mask is covered with a mask whose diffusion length is longer than the mask, and selective growth is performed by making the distance from the inside of the left mask to its peripheral selective growth layer smaller than the diffusion length of compound semiconductor on the mask. CONSTITUTION:Gate electrodes 10, 11 are made of heat-resistant Schottky metal. In SiO2 films 20, 20', windows for a source and a drain are formed on both sides of the gates, and an N<+> GaAs layer 30 is obtained by selective growth using MOCVD (organometallic chemical vapor deposition). The WSix gate electrode 11 is covered with the SiO2 film 20' because the deposition of GaAs polycrystal grain generates. The gate electrode 10 part is subjected to selective growth as it is, since the distance to the peripheral GaAs growth part is 1mum or less, and then the SiO2 film 20' covering the WSix gate electrode 11 is eliminated. After that, ohmic metal is deposited on the source.drain part, and wiring is formed. Thereby, an MESFET LSI can be manufactured without deposition of polycrystal grain.

Description

【発明の詳細な説明】 r産業上の利用分野】 本発明は化合物半導体装置の製造方法に係り、特に化合
物半導体層の選択エピタキシャル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION r Industrial Application Field The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a method for selective epitaxial growth of a compound semiconductor layer.

]従来の技術】 従来のGaAs  MESFETは、ジャパニーズ ジ
ャーナル オブ アプライド フィジックス(Japa
neese  Journal  ofApplied
  Physics)Vol、23、No5  (19
84)pp  L342−345に記載されているよう
に、S i O2および耐熱ゲート電極(例えばタング
ステンシリサイド;WSix)をマスクとして、ゲート
電極の周辺にソース、ドレインとしてn+低抵抗層を選
択成長技術によりセルファライン形成していた。
[Prior Art] Conventional GaAs MESFETs are described in Japanese Journal of Applied Physics (Japanese Journal of Applied Physics).
neeese Journal ofApplied
Physics) Vol, 23, No5 (19
84) As described in pp L342-345, using SiO2 and a heat-resistant gate electrode (e.g. tungsten silicide; WSix) as a mask, an n+ low resistance layer is grown as a source and drain around the gate electrode by selective growth technology. A self-alignment line was formed.

選択成長層はSiイオン打ち込みで作った層より、■高
い不純物濃度が得やすいので低抵抗化できる、■イオン
打ち込みではアニール温度として750℃以上が必要で
あるが、選択成長温度は約600〜730℃と低くでき
るので、ゲート電極のショットキ接合の劣化は少ないな
どの利点がある。
The selective growth layer is better than the layer made by Si ion implantation: ■ It is easier to obtain a high impurity concentration, so it can lower the resistance. ■ Ion implantation requires an annealing temperature of 750°C or higher, but the selective growth temperature is approximately 600 to 730°C. Since it can be made as low as ℃, there are advantages such as less deterioration of the Schottky junction of the gate electrode.

[発明が解決しようとする課題1 しかし、上述の選択成長では、ゲート材であるWSix
上にGaAsの多結晶粒が析出するという問題が生じる
。そしてこのような析出があると配線工程の歩留まりが
著しく低下し、LSI化が困難になる。
[Problem to be solved by the invention 1 However, in the selective growth described above, the gate material WSix
A problem arises in that polycrystalline grains of GaAs are precipitated thereon. If such precipitation occurs, the yield of the wiring process will be significantly lowered, making it difficult to fabricate into an LSI.

本発明の目的はこのような析出を無くし、選択成長技術
を例えばGaAs  MESFET  LSIの製作に
適用できるようにすることである。
An object of the present invention is to eliminate such precipitation and to enable selective growth techniques to be applied, for example, to the fabrication of GaAs MESFET LSIs.

【課題を解決するための手段] 本発明においては、その内部から周辺のGaAs成長部
分までの距離が1μm以上であるWSixマスクの一部
をS i O,マスクで覆い、残ったWSix部から周
辺のGaAs成長部分までの距離をWSix上のGaA
sの拡散長以下となるようにする。
[Means for Solving the Problems] In the present invention, a part of the WSix mask whose distance from the inside to the surrounding GaAs growth part is 1 μm or more is covered with a SiO mask, and the remaining WSix part is covered with a surrounding GaAs growth part. The distance to the GaAs growth part on WSix is
The diffusion length should be equal to or less than the diffusion length of s.

【作用l 5in、及びWSixをマスクとしたGaAs基板を用
いて有機金属化学気相成長法(MOCVD法;常圧、成
長温度700〜730℃)により選択成長の実験を行っ
た。その結果、SiO2マスク上でのGaAsの拡散長
は20μm、WsiXマスク上では1μmであった。そ
して、それぞれのマスクの内部から周辺の選択成長部ま
での距離が、そのマスク上でのGaAsの拡散長以下の
領域では、GaAs多結晶粒の析出は起こらなかった・ よって、WSix上でのGaAs多結晶粒の析出を無く
すには、WSixマスクの一部をSin。
A selective growth experiment was conducted by metal organic chemical vapor deposition (MOCVD method; normal pressure, growth temperature 700 to 730° C.) using a GaAs substrate with 5 inches of operation and WSix as a mask. As a result, the diffusion length of GaAs on the SiO2 mask was 20 μm, and on the WsiX mask was 1 μm. In the region where the distance from the inside of each mask to the peripheral selective growth region was less than the diffusion length of GaAs on that mask, precipitation of GaAs polycrystalline grains did not occur. To eliminate precipitation of polycrystalline grains, part of the WSix mask is made of Sin.

マスクでさらに覆い、残ったWSixマスクの内部から
周辺の選択成長部までの距離を1μm以下となるように
すれば良いことがわかる。尚実際のGaAs  MES
FET  LSIの製作に用いられるWSixマスクの
大きさは最大のものでもその内部から周辺の選択成長部
までの距離が20μm以下であり、S i O,マスク
で覆った場合にはGaAsの多結晶粒は析出しない。
It can be seen that it is sufficient to further cover with a mask so that the distance from the inside of the remaining WSix mask to the peripheral selective growth portion is 1 μm or less. Furthermore, actual GaAs MES
Even if the size of the WSix mask used for manufacturing FET LSI is the largest, the distance from the inside to the surrounding selective growth part is less than 20 μm, and when covered with a SiO, GaAs polycrystalline grain. does not precipitate.

[実施例] 以下1本発明の詳細な説明する。[Example] Hereinafter, one aspect of the present invention will be explained in detail.

第2図にGaAs  LSIのキーデバイスであるFE
Tを、n”GaAsの選択成長技術を用いて形成した場
合の素子の平面ならびに断面構造を示す。
Figure 2 shows FE, which is a key device of GaAs LSI.
The plan view and cross-sectional structure of an element in which T is formed using n'' GaAs selective growth technique are shown.

ゲート電極10.11はWSixの耐熱性ショットキ金
属であり、このゲートをはさんで両側にソース、ドレイ
ン用の窓をSiO□膜にあけ、MOCVDによる選択成
長でn”GaAs層30を得る。成長不用の部分はSi
○2膜20.Sin。
The gate electrodes 10 and 11 are made of WSix heat-resistant Schottky metal. Windows for sources and drains are opened in the SiO□ film on both sides of the gate, and an n'' GaAs layer 30 is obtained by selective growth using MOCVD.Growth Unused parts are Si
○2 membranes 20. Sin.

側壁40及びWSixゲート電極10.11上である。on the sidewalls 40 and the WSix gate electrode 10.11.

このようなFETをたくさん使用して、SRAMの様な
メモリl路が得られている。
Many such FETs are used to provide memory modules such as SRAM.

第2図に示したWSixゲート電極11はその内部から
周辺のGaAs成長部分までの距離が1μm以上であり
、常圧のMOCVD法(成長温度700〜730℃)を
用いて選択成長を行った場合にはGaAs多結晶粒の析
出が生じる。
The WSix gate electrode 11 shown in FIG. 2 has a distance of 1 μm or more from its inside to the surrounding GaAs growth area, and is selectively grown using the normal pressure MOCVD method (growth temperature 700 to 730°C). GaAs polycrystalline grains are precipitated.

したがって、この部分は第1図に示すように。Therefore, this part is as shown in Figure 1.

5in220’で覆ってしまう、同じゲート電極でも1
0の部分はその周りのGaAs成長部分までの距離が1
μm以下であるのでこのままにしておく。このような処
置を施した後にMOCVD法により選択成長を行う。次
にWSixゲート電極を覆ったS i O,を除去する
。その後ソース、ドレイン部分にオーミック金属を堆積
し、配線を形成してMESFET  LSIの製作を行
う。
Even with the same gate electrode covered with 5in220', 1
The distance to the surrounding GaAs growth area is 1 for the 0 part.
Since it is less than μm, leave it as it is. After performing such treatment, selective growth is performed by MOCVD method. Next, the S i O covering the WSix gate electrode is removed. Thereafter, ohmic metal is deposited on the source and drain portions, wiring is formed, and a MESFET LSI is manufactured.

[発明の効果] 本発明により、GaAs  MESFETのソース、ド
レイン部を、n”GaAsの選択成長技術を用いて、ゲ
ート電極であるWSix上へのGaAs多結晶粒の析出
無しで製作できるようになるので、従来イオン打ち込み
で形成していたn+層の抵抗に比べて、約1710の低
抵抗化が達成でき、これによってFETのソース抵抗は
約175に低減できる。そのため従来より高速なメモリ
素子を得ることができる。
[Effects of the Invention] According to the present invention, the source and drain parts of a GaAs MESFET can be manufactured using n'' GaAs selective growth technology without precipitation of GaAs polycrystalline grains on the gate electrode WSix. Therefore, compared to the resistance of the n+ layer conventionally formed by ion implantation, it is possible to achieve a lower resistance of about 1710, and as a result, the source resistance of the FET can be reduced to about 175.As a result, a faster memory element than before can be obtained. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の選択成長時のFETパター
ンを示す平面図および断面図、第2図は従来使われてい
た選択成長時のFETパターンを示す平面図および断面
図である。 符号の説明 1・・・GaAs基板結晶、lO・・・WSiにゲート
、11 ”・WS ixゲーh、 20.20 ’ ・
・・S x Ox膜。 第1目
FIG. 1 is a plan view and a sectional view showing an FET pattern during selective growth according to an embodiment of the present invention, and FIG. 2 is a plan view and a sectional view showing an FET pattern used in the prior art during selective growth. Explanation of symbols 1...GaAs substrate crystal, lO...WSi gate, 11''・WS ix game h, 20.20'・
...S x Ox film. 1st eye

Claims (1)

【特許請求の範囲】 1、化合物半導体2の基板上に化合物半導体1を選択エ
ピタキシャル成長する工程において、マスク材として、
その上での化合物半導体1の拡散長が小さなマスク1の
一部を、より拡散長の大きなマスク2で覆って、残った
マスク1の内部からその周囲の選択成長層までの距離を
、マスク1上の化合物半導体1の拡散長よりも小さくし
て選択成長を行うことを特徴とする化合物半導体装置の
製造方法。 2、化合物半導体1としてGaAsを、化合物半導体2
としてGaAsを用いることを特徴とする請求項第1項
記載の化合物半導体装置の製造方法。 3、化合物半導体1としてGaAsを、化合物半導体2
としてAlGaAsを用いることを特徴とする請求項第
1項記載の化合物半導体装置の製造方法。 4、マスク1としてWSixを、マスク2としてSiO
_2を用いることを特徴とする請求項第1項記載の化合
物半導体装置の製造方法。
[Claims] 1. In the step of selectively epitaxially growing the compound semiconductor 1 on the substrate of the compound semiconductor 2, as a mask material,
On top of that, a part of the mask 1 with a small diffusion length of the compound semiconductor 1 is covered with a mask 2 with a larger diffusion length, and the distance from the inside of the remaining mask 1 to the selective growth layer around it is A method for manufacturing a compound semiconductor device, characterized in that selective growth is performed with a diffusion length smaller than the diffusion length of the compound semiconductor 1 above. 2. GaAs as compound semiconductor 1, compound semiconductor 2
2. The method of manufacturing a compound semiconductor device according to claim 1, wherein GaAs is used as the compound semiconductor device. 3. GaAs as compound semiconductor 1, compound semiconductor 2
2. The method for manufacturing a compound semiconductor device according to claim 1, wherein AlGaAs is used as the material. 4. WSix as mask 1, SiO as mask 2
2. The method for manufacturing a compound semiconductor device according to claim 1, wherein _2 is used.
JP2979689A 1989-02-10 1989-02-10 Manufacture of compound semiconductor device Pending JPH02210821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2979689A JPH02210821A (en) 1989-02-10 1989-02-10 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2979689A JPH02210821A (en) 1989-02-10 1989-02-10 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH02210821A true JPH02210821A (en) 1990-08-22

Family

ID=12285964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2979689A Pending JPH02210821A (en) 1989-02-10 1989-02-10 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH02210821A (en)

Similar Documents

Publication Publication Date Title
KR900005560B1 (en) Semiconductor device and manufacturing method thereof
JPS60189250A (en) Semiconductor device
JP2828974B2 (en) Method for manufacturing compound semiconductor integrated circuit
JPH02210821A (en) Manufacture of compound semiconductor device
JP2714034B2 (en) Method for manufacturing compound semiconductor integrated circuit
JP2796303B2 (en) Method for manufacturing semiconductor integrated circuit
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPS60144980A (en) Semiconductor device
JP2691571B2 (en) Method for manufacturing compound semiconductor device
JPH0492439A (en) Manufacture of semiconductor integrated circuit device
JPH0219622B2 (en)
JP2890885B2 (en) Semiconductor device and manufacturing method thereof
JPH04352333A (en) Manufacture of semiconductor device
JPS60136264A (en) Manufacture of semiconductor device
JPS60187061A (en) Manufacture of semiconductor device
JPH0434824B2 (en)
JPH01208870A (en) Manufacture of compound semiconductor device
JPH0521467A (en) Manufacture of field-effect transistor
JPH01189960A (en) Manufacture of compound semiconductor device
JPH0352238A (en) Manufacture of compound semiconductor device
JPS6077467A (en) Manufacture of field effect transistor
JPS60116178A (en) Semiconductor device and manufacture thereof
JPS61161770A (en) Manufacture of semiconductor device
JPH0252441A (en) Manufacture of compound semiconductor device
JPH01158778A (en) Manufacture of semiconductor device